Skip to main content

Novel Algorithm for Detection and Analysis of Irremediable diseases—Progeria

  • Conference paper
  • First Online:
Smart Systems: Innovations in Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 235))

  • 813 Accesses

Abstract

In this Paper, a novel algorithm is designed to detect Hutchinson-Gilford Progeria. We aim to test five symptoms in a set of people by devising an algorithm to detect whether the person has Progeria or not. The symptoms included are bone density, hair growth patterns, teeth, skin texture (wrinkles) and voice patterns. Then, in order to test the efficiency of our algorithm, we developed applications for comparison of two images. On an average, when the similarity was around 80%, it showed that Progeria is not present whereas when the similarity average was around 30%, it showed that Progeria is present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machado, C. E.P. et al.: A new approach for the analysis of facial growth and age estimation: iris ratio. (2017). https://doi.org/10.1371/journal.pone.0180330

  2. Smith, A.S., Wiznitzer, M., Karaman, B.A., Horwitz, S.J., Lanzieri, C.F.: MRA detection of vascular occlusion in a child with Progeria. Am. Soc. Neuroradiol. 441–443 (1993). 10.0195-6108/93/1402-0441

    Google Scholar 

  3. McClintock, D., Gordon, L.B., Djabali, K.: Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. Proc. Natl. Acad. Sci. U.S.A. 103(7), 2154–2159 (2006). https://doi.org/10.1073/pnas.0511133103

    Article  Google Scholar 

  4. Kashyap, S., Shanker, V., Hutchinson, S.N.: Gilford progeria syndrome: a rare case report. Indian Dermatol. Online J. 5:478-481 (2014).https://doi.org/10.4103/2229-5178.142507

  5. Ullrich, N.J., Silvera, V.M., Campbell, S.E., Gordon, L.B.: Craniofacial abnormalities in Hutchinson-Gilford Progeria syndrome. Am. J. Neuroradiol. 33(8), 1512–1518 (2012). https://doi.org/10.3174/ajnr.A3088.

  6. Gude, D., Abbas, A., Zubair, M.: The curious case of ageing. Int. J. Health Allied Sci. 2, 43–45 (2013). https://doi.org/10.4103/2278-344X.110561

    Article  Google Scholar 

  7. Gungor, O.E., Nur, B.G., Yalcin, H., Karayilmaz, H., Mihci, E.: Comprehensive dental management in a Hallermann-Streiff syndrome patient with unusual radiographic appearance of teeth. Niger. J. Clin. Pract. 18, 559–562 (2015). https://doi.org/10.4103/1119-3077.156910

    Article  Google Scholar 

  8. Kuru, K., et al.: Biomedical visual data analysis to build an intelligent diagnostic decision support system in medical genetics. Artif. Intell. Med. (2014). https://doi.org/10.1016/j.artmed.2014.08.003

    Article  Google Scholar 

  9. Bhukya, A.S., Reddy, B.S.N.: Hutchinson-Gilford progeria syndrome. Indian Dermatol. Online J. 6, 438–440 (2015). https://doi.org/10.4103/2229-5178.169733

    Article  Google Scholar 

  10. Wang, K., Das, A., Xiong, Z., Cao, K., Hannenhalli, S.: Phenotype-dependent coexpression gene clusters: application to normal and premature ageing. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 12(1), pp. 30–39 (2015). https://doi.org/10.1109/TCBB.2014.2359446

  11. Ramakrishnan, V., Akram Husain, R.S., Kumar, S.G.: An overview of rare genetic disorders and recent diagnostic approaches. Saudi J. Health Sci. 5, 105–117 (2016). https://doi.org/10.4103/2278-0521.195812

    Article  Google Scholar 

  12. Zeljkovic, V., et al.: Mathematical models for bone density assessment. In: 2016 13th Symposium on Neural Networks and Applications (NEUREL), Belgrade, pp. 1–6 (2016). https://doi.org/10.1109/NEUREL.2016.7800102

  13. Shukla, P., Gupta, T., Saini, A., Singh, P., Balasubramanian, R.: A deep learning frame-work for recognizing developmental disorders. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, pp. 705–714 (2017). https://doi.org/10.1109/WACV.2017.84

  14. Srivastava, N., Singh, S., Shukla, A., Gupta, K.: Hutchinson-Gilford progeria syndrome—a rare genetic disorder (2018). https://doi.org/10.7439/ijpr.v8i5.4634

  15. Singh, U.S., Kumar Gupta, A., Choudhury, T., Singh, T.P.: Developing a new framework using facial recognition system for the detection of Progeria. In: 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, pp. 136–140 (2019). https://doi.org/10.1109/ICCIKE47802.2019.9004365

  16. MachadoCEP, F.M.R.P., Lima, L.N.C., Tinoco, R.L.R., Franco, A., Bezerra, A.C.B., et al.: A new approach for the analysis of facial growth and age estimation: iris ratio. PLoS ONE 12(7), e0180330 (2017). https://doi.org/10.1371/journal.pone.0180330

    Article  Google Scholar 

  17. Shumaker, D.K., et al.: Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 103(23), 8703–8708 (2006). https://doi.org/10.1073/pnas.0602569103

    Article  Google Scholar 

  18. Gordon, L.B., Cao, K., Collins, F.S.: Progeria: translational insights from cell biology. J. Cell Biol. 199(1), 9–13 (2012). https://doi.org/10.1083/jcb.201207072

    Article  Google Scholar 

  19. Zhang, H., Kieckhaefer, J.E., Cao, K.: Mouse models of laminopathies. Aging Cell 12(1), 2–10 (2013). https://doi.org/10.1111/acel.12021

    Article  Google Scholar 

  20. Bhardwaj, S., Kumar, A., Yadava, R.L.: Approximation and analysis of single band FIR pass integrator centered around mid-band frequencies with degree k = 1, 2, 3. Periodica Polytechnica Electr. Eng. Comput. Sci. 64(4), 366–373 (2020). https://doi.org/10.3311/PPee.16026

    Article  Google Scholar 

  21. Bhardwaj, S., Kumar, A., Yadava, R.L.: Approximation and analysis for fir based multiband pass integrator for frequency ωm; 0 < ωm < π. Suranaree J. Sci. Technol. (2021). http://ird.sut.ac.th/e-journal/Journal/pdf/200101886.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhardwaj, S., Sharma, N. (2022). Novel Algorithm for Detection and Analysis of Irremediable diseases—Progeria. In: Somani, A.K., Mundra, A., Doss, R., Bhattacharya, S. (eds) Smart Systems: Innovations in Computing. Smart Innovation, Systems and Technologies, vol 235. Springer, Singapore. https://doi.org/10.1007/978-981-16-2877-1_10

Download citation

Publish with us

Policies and ethics