Skip to main content

“Device Design of 30 and 10 nm Triple Gate Single Finger Fin-FET for on Current (ION) and off Current (IOFF) Measurement”

  • Conference paper
  • First Online:
Smart Computing Techniques and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 224))

  • 560 Accesses

Abstract

Nowadays, users need portable gadgets like laptops and cellular phones with small in size which occupies less area, consumes low power and having low cost. Justifying Moore’s law by designing the smaller size transistors on the silicon wafer, more numbers of transistors available on a single wafer help to design complicated circuits with very low cost. Scaling plays vital role to decide the size of transistor with high performance. Most attracted multi-gate technology for researchers as well for industry is Fin-FET for nano-scale design. The nano-scale Fin-FET technology provides best solution for Moore’s law. This paper focuses on how Fin-FET helps to reduce short channel effect and also presents design of 30 nm and 10 nm single Fin-FET with Triple Gate. Leakage current, threshold voltage and drain drive current evaluated from device design by using high K of dielectric material. Simulation carried out using COMSOL MULTIPHYSICS Version 5.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narendar, Mishra, R.: Threshold voltage control schemes in FIN-FETS. Int. J. VLSI Des. Commun. Syst. (VLSICS) 3(2):175–191 (2012). https://doi.org/10.5121/vlsic.2012.3215

  2. Anju, C.: Performance analysis of wavy Fin-FET and optimization for leakage reduction. In: 2016 IEEE International Symposium on Nano electronic and Information Systems, pp 83–85. https://doi.org/10.1109/iNIS.2016.43

  3. Shukla, S., Gill S.S.: Comparative simulation analysis of process parameter variations in 20 nm triangular Fin-FET. Act Passive Electron Compon 2017, 8 pp. Article ID 5947819. https://doi.org/10.1155/2017/5947819.

  4. Mishra, P., Anish, M., Jha, N.K.: Fin-FET circuit design. Nanoelectronic Circuit Design. Springer Science New York, pp 23–54 (2011)

    Google Scholar 

  5. Ranka, D., Rana, A.K.: Performance evaluation of FD-SOI MOSFETS for different metal gate work function. Int. J. VLSI Des. Commun. Syst. (VLSICS) 2(1), 11–24 (2011)

    Article  Google Scholar 

  6. Chopade, S.S., Padole, D.V.: Dual material pile gate approach for low leakage FIN-FET. Int. J. Technol. (2017). https://doi.org/10.14716/ijtech.v8i1.3699

  7. Fan, J.-C., Lee, S.-F.: Effect of oxide layer in metal-oxide-semiconductor systems. In: MATEC Web of Conferences SMAE 2016, 5 pp. https://doi.org/10.1051/06103 (2016). [matecconf/2016MATEC Web of Conferences 6SMAE 2016706103]

  8. Keerti Kumar, K., Anil, P., Bheema, R.N.: Parametric variation with doping concentration in a Fin-FET using 3D TCAD. Int. J. Comput. Appl. 3, 21–23. [International Conference on Microelectronics, Circuits and Systems (MICRO-2014)] 0975 – 8887

    Google Scholar 

  9. Mohd Radzi, N., Sanudin, R.: Effect of oxide thickness variation in sub-micron NMOS transistor. Int. Res. Innov. Summit (IRIS2017) 10. IOP Publishing. https://doi.org/10.1088/1757-899X/226/1/012145

  10. Somra, N., Sawhney, R.S.: 32 nm Gate Length Fin-FET: impact of doping. Research Gate (2015). Int. J. Comput. Appl. 122(6), 11–14 (2015). 0975 – 8887

    Google Scholar 

  11. Hasan, M., Hassan, E.: Study of scaling effects of a double gate silicon MOSFET. In: 10th International Conference on Electrical and Computer Engineering, 20–22 Dec 2018, pp. 169–172

    Google Scholar 

  12. Chaudhry, A.: Fundamentals of nano-scaled field effect transistors. Nanoscale Effects: Gate Oxide Leakage Currents. Springer Science New York (2013)

    Google Scholar 

  13. George James, T. Joseph, S.: The influence of metal gate work function on short channel effects in atomic-layer doped DG MOSFET. J. Electron Devices 8, 310–319 (2010)

    Google Scholar 

  14. Walke, A.M.: Design strategies for ultralow power 10 nm Fin-FETs. In: 2017 Rochester Institute of Technology RIT Scholar Works

    Google Scholar 

  15. Cerdeira, A., Estrada, M., Alvarado, J.: Review on double-gate Mosfets and Fin-Fets modeling. Facta Univ. Ser. Electron. Energetics 26(3), 197–213 (2013). https://doi.org/10.2298/FUEE1303197C

    Article  Google Scholar 

  16. Farkhani, H., Peiravi, A., Kargaard, J.M., Moradi, F.: Comparative study of Fin-FETs versus 22 nm bulk CMOS technologies: SRAM design perspective. In: 2014 27th IEEE International System-on-Chip Conference (SOCC) 2–5 Sept 2014, pp. 449–454

    Google Scholar 

  17. Mushahhid Majeed, M.A., Rao, S.: Influence of thickness of oxide and dielectric constant on short channel metrics in Fin-FETs. J. Adv. Res. Dyn. Control Syst. 9(4), 57–64 (2017)

    Google Scholar 

  18. Nirmal, D., Thomas, D.M.: Impact of channel engineering on Fin-Fets using high-K dielectrics. Int. J. Micro Nano Electron. Cir. Syst. 3(1), 6 (2011)

    Google Scholar 

  19. Yin, H., Yao, J.: Advanced transistor process technology from 22- to 14-nm node (2018)

    Google Scholar 

  20. Sivasankaran, K., Mallick, P.S.: Impact of device geometry and doping concentration variation on electrical characteristics of 22 nm Fin-FET. In: 2013 (ICECCN 2013), pp. 528–531

    Google Scholar 

  21. Gupta, T.K.: Copper interconnect technology. Dielectric Materials. Springer Science (2009)

    Google Scholar 

  22. Shehata, N., Gaber, A.-R.: 3D multi-gate transistors: concept, operation, and fabrication. J. Electr. Eng. (2015)

    Google Scholar 

  23. Hossain, M.Z., Hossain, M.A.: Electrical characteristics of trigate Fin-FET. Glob. J. Researches Eng. Electr. Electron. Eng. (2011)

    Google Scholar 

  24. Carusone, T.C., Johns, D.A., Martin, K.W.: Analog Integrated Circuit Design, 2nd edn. John Wiley & Sons, Inc. (2012). ISBN 978-0-470-77010-8

    Google Scholar 

Download references

Acknowledgements

I thankfully acknowledge Ni2 Logic Design, Pune, for providing the licensed tool for implementation of Fin-FET fdesigns.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jagtap, S.M., Gond, V.J. (2021). “Device Design of 30 and 10 nm Triple Gate Single Finger Fin-FET for on Current (ION) and off Current (IOFF) Measurement”. In: Satapathy, S.C., Bhateja, V., Favorskaya, M.N., Adilakshmi, T. (eds) Smart Computing Techniques and Applications. Smart Innovation, Systems and Technologies, vol 224. Springer, Singapore. https://doi.org/10.1007/978-981-16-1502-3_80

Download citation

Publish with us

Policies and ethics