Skip to main content

Hydrogen Sulfide and the Immune System

  • Chapter
  • First Online:
Advances in Hydrogen Sulfide Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1315))

Abstract

Hydrogen sulfide (H2S) is the “third gasotransmitter” recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuto JM, Vega VS, Works C, Lin J (2020) The chemical biology of hydrogen sulfide and related hydropersulfides: interactions with biologically relevant metals and metalloproteins. Curr Opin Chem Biol 55:52–58

    Article  CAS  PubMed  Google Scholar 

  2. Yang N, Liu Y, Li T, Tuo Q (2020) Role of hydrogen sulfide in chronic diseases. DNA Cell Biol 39:187–196

    Article  CAS  PubMed  Google Scholar 

  3. Bełtowski J (2019) Synthesis, metabolism, and signaling mechanisms of hydrogen sulfide: An overview. Methods Mol Biol 2007:1–8

    Article  PubMed  CAS  Google Scholar 

  4. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H2S Signalling through Persulfidation. Chem Rev 118:1253–1337

    Article  CAS  PubMed  Google Scholar 

  5. Kimura H (2020) Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 177:720–733

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signalling. Annu Rev Pharmacol Toxicol 51:169–187

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Shi C, Wang H, Gao C, Chang P, Chen X, Shan H, Zhang M, Tao L (2019) Hydrogen sulfide protects against cell damage through modulation of PI3K/Akt/Nrf2 signalling. Int J Biochem Cell Biol 117:105636

    Article  CAS  PubMed  Google Scholar 

  8. Abd Allah ESH, Ahmed MA, Makboul R, Abd El-Rahman MA (2020) Effects of hydrogen sulphide on oxidative stress, inflammatory cytokines, and vascular remodelling in l-NAME-induced hypertension. Clin Exp Pharmacol Physiol 47:650–659

    Article  CAS  PubMed  Google Scholar 

  9. Mys LA, Strutynska NA, Goshovska YV, Sagach VF (2019) Stimulation of the endogenous hydrogen sulfide synthesis suppresses oxidative-nitrosative stress and restores endothelial-dependent vasorelaxation in old rats. Can J Physiol Pharmacol 98(5):275–281

    Article  PubMed  CAS  Google Scholar 

  10. Pan LL, Qin M, Liu XH, Zhu YZ (2017) The role of hydrogen sulfide on cardiovascular homeostasis: An overview with update on immunomodulation. Front Pharmacol 8:686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. He JT, Li H, Yang L, Cheng KL (2019) Involvement of Endothelin-1, H2S and Nrf2 in beneficial effects of remote ischemic preconditioning in global cerebral ischemia-induced vascular dementia in mice. Cell Mol Neurobiol 39:671–686

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Zhang KY, Zhang P, Chen LX, Wang L, Xie M, Wang CY, Tang XQ (2014) Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1. PLoS One 9:e89856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li X, Zhuang YY, Wu L, Xie M, Gu HF, Wang B, Tang XQ (2020) Hydrogen sulfide ameliorates cognitive dysfunction in formaldehyde-exposed rats: involvement in the Upregulation of brain-derived Neurotrophic factor. Neuropsychobiology 79:119–130

    Article  CAS  PubMed  Google Scholar 

  14. Goren I, Köhler Y, Aglan A, Pfeilschifter J, Beck KF, Frank S (2019) Increase of cystathionine-γ-lyase (CSE) during late wound repair: hydrogen sulfide triggers cytokeratin 10 expression in keratinocytes. Nitric Oxide 87:31–42

    Article  CAS  PubMed  Google Scholar 

  15. Xu M, Hua Y, Qi Y, Meng G, Yang S (2019) Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement. Exp Dermatol 28:776–785

    Article  CAS  PubMed  Google Scholar 

  16. Gelaude A, Slaby S, Cailliau K, Marin M, Lescuyer-Rousseau A, Molinaro C, Nevoral J, Kučerová-Chrpová V, Sedmikova M, Petr J, Martoriati A, Bodart JF (2020) Hydrogen sulfide impairs meiosis resumption in Xenopus laevis oocytes. Cells 9:E237

    Article  PubMed  CAS  Google Scholar 

  17. Guan R, Cai Z, Wang J, Ding M, Li Z, Xu J, Li Y, Li J, Yao H, Liu W, Qian J, Deng B, Tang C, Sun D, Lu W (2019) Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging (Albany NY) 11:11844–11864

    Article  CAS  Google Scholar 

  18. Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR (2019) Selective Persulfide detection reveals evolutionarily conserved Antiaging effects of S-Sulfhydration. Cell Metab 30:1152–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Libiad M, Vitvitsky V, Bostelaar T, Bak DW, Lee HJ, Sakamoto N, Fearon E, Lyssiotis CA, Weerapana E, Banerjee R (2019) Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294:12077–12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maassen H, Hendriks KDW, Venema LH, Henning RH, Hofker SH, van Goor H, Leuvenink HGD, Coester AM (2019) Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One 14:e0225152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen F, Zhao CS, Shen MF, Wang Z, Chen G (2019) The role of hydrogen sulfide in gastric mucosal damage. Med Gas Res 9:88–92

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun H, Wu Z, Nie X, Bian JS (2020b) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10:1568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hancock J, Neill S (2019) Nitric oxide: its generation and interactions with other reactive signaling compounds. Plants (Basel) 8:41

    Article  CAS  Google Scholar 

  24. Marozkina N, Gaston B (2020) An update on Thiol signaling: S-Nitrosothiols, hydrogen sulfide and a putative role for thionitrous acid. Antioxidants 9:E225

    Article  PubMed  CAS  Google Scholar 

  25. Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798

    Article  CAS  PubMed  Google Scholar 

  27. Rose P, Moore PK, Whiteman M, Zhu YZ (2019) An appraisal of developments in allium sulfur chemistry: expanding the pharmacopeia of garlic. Molecules 24:E4006

    Article  PubMed  CAS  Google Scholar 

  28. Rose P, Moore PK, Zhu YZ (2018) Garlic and gaseous mediators. Trends Pharmacol Sci 39:624–663

    Article  CAS  PubMed  Google Scholar 

  29. Kabil O, Banerjee R (2012) Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism. J Biol Chem 287:44561–44567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landry AP, Ballou DP, Banerjee R (2018) Modulation of catalytic promiscuity during hydrogen sulfide oxidation. ACS Chem Biol 13:1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F (2018) Gasotransmitters and the immune system: mode of action and novel therapeutic targets. Eur J Pharmacol 834:92–102

    Article  CAS  PubMed  Google Scholar 

  32. Brostjan C, Oehler R (2020) The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov 6:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sendama W (2020) The effect of ageing on the resolution of inflammation. Ageing Res Rev 57:101000. https://doi.org/10.1016/j.arr.2019.101000

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rose P, Moore PK, Zhu YZ (2017) H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 74:1391–1412

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 292:L960–L971

    Article  CAS  PubMed  Google Scholar 

  37. Chi Q, Wang D, Hu X, Li S, Li S (2019) Hydrogen sulfide gas exposure induces Necroptosis and promotes inflammation through the MAPK/NF-κB pathway in broiler spleen. Oxidative Med Cell Longev 2019:8061823

    Article  CAS  Google Scholar 

  38. Hu X, Chi Q, Liu Q, Wang D, Zhang Y, Li S (2019) Atmospheric H2S triggers immune damage by activating the TLR-7/MyD88/NF-kappaB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237:124427

    Article  CAS  PubMed  Google Scholar 

  39. Tamizhselvi R, Moore P, Bhatia M (2008) Inhibition of hydrogen sulfide synthesis attenuates chemokine production and protects mice against acute pancreatitis and associated lung injury. Pancreas 36:e24–e31

    Article  CAS  PubMed  Google Scholar 

  40. Ang SF, Sio SW, Moochhala SM, MacAry PA, Bhatia M (2011) Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation. J Immunol 187:4778–4787

    Article  CAS  PubMed  Google Scholar 

  41. Wang P, Chen F, Wang W, Zhang X (2019b) Hydrogen sulfide attenuates high glucose-induced human retinal pigment epithelial cell inflammation by inhibiting ROS formation and NLRP3 Inflammasome activation. Mediat Inflamm 2019:8908960

    Article  Google Scholar 

  42. Ha C, Tian S, Sun K, Wang D, Lv J, Wang Y (2015) Hydrogen sulfide attenuates IL-1β-induced inflammatory signaling and dysfunction of osteoarthritic chondrocytes. Int J Mol Med 35:1657–1666

    Article  CAS  PubMed  Google Scholar 

  43. Kloesch B, Liszt M, Steiner G, Broll J (2012) Inhibitors of p38 and ERK1/2 MAPkinase and hydrogen sulphide block constitutive and IL-1beta-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2. Rheumatol Int 32:729–736

    Article  CAS  PubMed  Google Scholar 

  44. Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK (2007) Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42:706–719

    Article  PubMed  CAS  Google Scholar 

  45. Sidhapuriwala J, Li L, Sparatore A, Bhatia M, Moore PK (2007) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur J Pharmacol 569:149–154

    Article  CAS  PubMed  Google Scholar 

  46. Mulero MC, Huxford T, Ghosh G (2019a) NF-κB, IκB, and IKK: integral components of immune system signaling. Adv Exp Med Biol 1172:207–226

    Article  CAS  PubMed  Google Scholar 

  47. Mulero MC, Wang VY, Huxford T, Ghosh G (2019b) Genome reading by the NF-κB transcription factors. Nucleic Acids Res 47:9967–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bergqvist S, Alverdi V, Mengel B, Hoffmann A, Ghosh G, Komives EA (2009) Kinetic enhancement of NF-kappaBxDNA dissociation by IkappaBalpha. Proc Natl Acad Sci U S A 106:19328–19333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fusco AJ, Huang DB, Miller D, Wang VY, Vu D, Ghosh G (2009) NF-kappaB p52:RelB heterodimer recognizes two classes of kappaB sites with two distinct modes. EMBO Rep 10:152–159

    Article  CAS  PubMed  Google Scholar 

  50. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119

    Article  CAS  PubMed  Google Scholar 

  52. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu W, Chen J, Lin J, Liu D, Mo L, Pan W, Feng J, Wu W, Zheng D (2015) Exogenous H2S protects H9c2 cardiac cells against high glucose-induced injury and inflammation by inhibiting the activation of the NF-kappaB and IL-1beta pathways. Int J Mol Med 35:177–186

    Article  CAS  PubMed  Google Scholar 

  54. Zhang G, Lu D, Duan SF, Gao YR, Liu SY, Hong Y, Dong PZ, Chen YG, Li T, Wang DY, Cheng XS, He F, Wei JS, Li GY, Zhang QY, Wu DD, Ji XY (2018a) Hydrogen sulfide alleviates lipopolysaccharide-induced diaphragm dysfunction in rats by reducing apoptosis and inflammation through ROS/MAPK and TLR4/NF-kappaB signaling pathways. Oxidative Med Cell Longev 2018:9647809

    Article  Google Scholar 

  55. Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ (2011) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-kappaB pathway in rats. Brain Behav Immun 25:110–119

    Article  CAS  PubMed  Google Scholar 

  56. Tao L, Yu Q, Zhao P, Yang Q, Wang B, Yang Y, Kuai J, Ding Q (2019) Preconditioning with hydrogen sulfide ameliorates cerebral ischemia/reperfusion injury in a mouse model of transient middle cerebral artery occlusion. Chem Biol Interact 310:108738

    Article  CAS  PubMed  Google Scholar 

  57. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kakinohana M, Marutani E, Tokuda K, Kida K, Kosugi S, Kasamatsu S, Magliocca A, Ikeda K, Kai S, Sakaguchi M, Hirai S, Xian M, Kaneki M, Ichinose F (2019) Breathing hydrogen sulfide prevents delayed paraplegia in mice. Free Radic Biol Med 131:243–250

    Article  CAS  PubMed  Google Scholar 

  59. Wallace JL, Dicay M, McKnight W, Martin GR (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21:4070–4076

    Article  CAS  PubMed  Google Scholar 

  60. Fiorucci S, Orlandi S, Mencarelli A, Caliendo G, Santagada V, Distrutti E, Santucci L, Cirino G, Wallace J (2007) Enhanced activity of a hydrogen Sulphide-releasing derivative of Mesalamine (ATB-429) in a mouse model of colitis. Br J Pharmacol 150:996–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120

    Article  CAS  PubMed  Google Scholar 

  62. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2009) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

    Article  CAS  Google Scholar 

  63. Herrera B, Coimbra L, Ribeiro da Silva A, Teixeira S, Costa S, Wallace J, Spolidorio L, Muscara M (2015) The H2S-releasing naproxen derivative, ATB-346, inhibits alveolar bone loss and inflammation in rats with ligature-induced periodontitis. Med Gas Res. 5:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Yang CT, Lai ZZ, Zheng ZH, Kang JM, Xian M, Wang RY, Shi K, Meng FH, Li X, Chen L, Zhang H (2017) J Cell Mol Med 21:2441–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang C, Feng W, Peh M, Peh K, Dymock B, Moore P (2016b) A novel slow-releasing hydrogen sulfide donor, FW1256, exerts anti-inflammatory effects in mouse macrophages and in vivo. Pharmacol Res 113(Pt A):533–546

    Article  CAS  PubMed  Google Scholar 

  66. Zhou X, Feng Y, Zhan Z, Chen J (2014a) Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model. J Biol Chem 289:28827–28834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bazhanov N, Ivanciuc T, Wu H, Garofalo M, Kang J, Xian M, Casola A (2018) Thiol-activated hydrogen sulfide donors antiviral and anti-inflammatory activity in respiratory syncytial virus infection. Viruses 10:249

    Article  PubMed Central  CAS  Google Scholar 

  68. Wepler M, Merz T, Wachter U, Vogt J, Calzia E, Scheuerle A, Möller P, Gröger M, Kress S, Fink M, Lukaschewski B, Rumm G, Stahl B, Georgieff M, Huber-Lang M, Torregrossa R, Whiteman M, McCook O, Radermacher P, Hartmann C (2019) The mitochondria-targeted H2S-donor AP39 in a murine model of combined hemorrhagic shock and blunt chest trauma. Shock 52:230–239

    Article  CAS  PubMed  Google Scholar 

  69. Wang M, Tang W, Xin H, Zhu YZ (2016) S-Propargyl-cysteine, a novel hydrogen sulfide donor, inhibits inflammatory Hepcidin and relieves Anemia of inflammation by inhibiting IL-6/STAT3 pathway. PLoS One 11(9):e0163289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pan L, Liu XH, Zheng HM, Yang HB, Gong QH, Zhu YZ (2012) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuated tumor necrosis factor-alpha-induced inflammatory signaling and dysfunction in endothelial cells. Int J Cardiol 155:327–332

    Article  PubMed  Google Scholar 

  71. Akter F (2016) The role of hydrogen sulfide in burns. Burns 42:519–525

    Article  PubMed  Google Scholar 

  72. Esechie A, Kiss L, Olah G, Horváth EM, Hawkins H, Szabo C, Traber DL (2008) Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci (Lond) 115:91–97

    Article  CAS  Google Scholar 

  73. Zeng J, Lin X, Fan H, Li C (2013) Hydrogen sulfide attenuates the inflammatory response in a mouse burn injury model. Mol Med Rep 8:1204–1208

    Article  CAS  PubMed  Google Scholar 

  74. Ahmad A, Szabo C (2016) Both the H2S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H2S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacol Res 113(Pt A):348–355

    Article  CAS  PubMed  Google Scholar 

  75. Ahmad A, Druzhyna N, Szabo C (2017) Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn. Burns 43:1021–1033

    Article  PubMed  Google Scholar 

  76. Ahmad A, Druzhyna N, Szabo C (2019) Effect of 3-mercaptopyruvate sulfurtransferase deficiency on the development of multiorgan failure, inflammation, and wound healing in mice subjected to burn injury. J Burn Care Res 40:148–156

    Article  PubMed  Google Scholar 

  77. Zhang J, Sio SW, Moochhala S, Bhatia M (2010) Role of hydrogen sulfide in severe burn injury-induced inflammation in mice. Mol Med 16:417–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sio S, Puthia M, Lu J, Moochhala S, Bhatia M (2008) The neuropeptide substance P is a critical mediator of burn-induced acute lung injury. J Immunol 180:8333–8341

    Article  CAS  PubMed  Google Scholar 

  79. Burguera EF, Vela-Anero Á, Gato-Calvo L, Vaamonde-García C, Meijide-Faílde R, Blanco FJ (2019) Hydrogen sulfide biosynthesis is impaired in the osteoarthritic joint. Int J Biometeorol 64:997–1010. https://doi.org/10.1007/s00484-019-01823-w

    Article  PubMed  Google Scholar 

  80. Muniraj N, Stamp LK, Badiei A, Hegde A, Cameron V, Bhatia M (2017) Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int J Rheum Dis 20:182–189

    Article  CAS  PubMed  Google Scholar 

  81. Sunzini F, De Stefano S, Chimenti M, Melino S (2020) Hydrogen sulfide as potential regulatory gasotransmitter in arthritic diseases. Int J Mol Sci 21:E1180

    Article  PubMed  CAS  Google Scholar 

  82. Dief AE, Mostafa DK, Sharara GM, Zeitoun TH (2015) Hydrogen sulfide releasing naproxen offers better anti-inflammatory and chondroprotective effect relative to naproxen in a rat model of zymosan induced arthritis. Eur Rev Med Pharmacol Sci 19:1537–1546

    CAS  PubMed  Google Scholar 

  83. Nasi S, Ehirchiou D, Chatzianastasiou A, Nagahara N, Papapetropoulos A, Bertrand J, Cirino G, So A, Busso N (2020) The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway against experimental osteoarthritis. Arthritis Res Ther 22:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pan LP, Cao YP, Wen LC, Chai WB, DU JB, Jin HF, Liu J, Yang X, Meng ZC, Liu H, Cui YP, Wang R, Wu H, Zhou XT, Li X, Li ZY, Talatibaike M (2016) Hydrogen sulfide in cartilage and its inhibitory effect on matrix metalloproteinase 13 expression in chondrocytes induced by interlukin-1β. Beijing Da Xue Xue Bao 48:194–202

    CAS  PubMed  Google Scholar 

  85. Burguera EF, Vela-Anero A, Magalhães J, Meijide-Faílde R, Blanco FJ (2014) Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthr Cartil 22:1026–1035

    Article  CAS  Google Scholar 

  86. Kaur S, Schwartz AL, Miller TW, Roberts DD (2015) CD47-dependent regulation of H2S biosynthesis and signaling in T cells. Methods Enzymol 555:145–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kloesch B, Liszt M, Broell J (2010) H2S transiently blocks IL-6 expression in rheumatoid arthritic fibroblast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell Biol Int 34:477–484

    Article  CAS  PubMed  Google Scholar 

  88. Vela-Anero Á, Hermida-Gómez T, Gato-Calvo L, Vaamonde-García C, Díaz-Prado S, Meijide-Faílde R, Blanco F, Burguera E (2017) Long-term effects of hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro. Nitric Oxide 70:42–50

    Article  CAS  PubMed  Google Scholar 

  89. Aytekin K, Erhan S, Erişgin Z, Esenyel CZ, Takır S (2019) Intra-articular injection of hydrogen sulfide decreased the progression of gonarthrosis. Can J Physiol Pharmacol 97:47–54

    Article  CAS  PubMed  Google Scholar 

  90. Wu WJ, Jia WW, Liu XH, Pan LL, Zhang QY, Yang D, Shen XY, Liu L, Zhu YZ (2016) S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biol 10:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sieghart D, Liszt M, Wanivenhaus A, Bröll H, Kiener H, Klösch B, Steiner G (2015) Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J Cell Mol Med 19:187–197

    Article  CAS  PubMed  Google Scholar 

  92. Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JP, Winyard PG, Whiteman M (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16:896–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, Moore PK, Whiteman M (2013b) The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med 17:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ekundi-Valentim E, Mesquita FP, Santos KT, de Paula MA, Florenzano J, Zanoni CI, Rodrigues L, de Nucci G, Teixeira SA, Ferreira HH, Wallace JL, Costa SK, Muscará MN (2013) A comparative study on the anti-inflammatory effects of single oral doses of naproxen and its hydrogen sulfide (H2S)-releasing derivative ATB-346 in rats with carrageenan-induced synovitis. Med Gas Res. 3:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wu D, Zhong P, Wang J, Wang H (2019a) Exogenous hydrogen sulfide mitigates LPS + ATP-induced inflammation by inhibiting NLRP3 inflammasome activation and promoting autophagy in L02 cells. Mol Cell Biochem 457(1–2):145–156

    Article  CAS  PubMed  Google Scholar 

  96. Wu W, Qin M, Jia W, Huang Z, Li Z, Yang D, Huang M, Xiao C, Long F, Mao J, Moore PK, Liu X, Zhu YZ (2018) Cystathionine-gamma-lyase ameliorates the histone demethylase JMJD3-mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol 2018:694–705

    Google Scholar 

  97. Andruski B, McCafferty DM, Ignacy T, Millen B, McDougall JJ (2008) Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis. Am J Physiol Regul Integr Comp Physiol 295:R814–R820

    Article  CAS  PubMed  Google Scholar 

  98. Cecconi M, Evans L, Levy M, Rhodes A (2018) Sepsis and septic shock. Lancet 392:75–87

    Article  PubMed  Google Scholar 

  99. Rhee C, Klompas M (2020) Sepsis trends: increasing incidence and decreasing mortality, or changing denominator? J Thorac Dis 12(Suppl 1):S89–S100

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bee N, White R, Petros AJ (2017) Hydrogen sulfide in exhaled gases from ventilated septic neonates and children: a preliminary report. Pediatr Crit Care Med 18:e327–e332

    Article  PubMed  Google Scholar 

  101. Košir M, Podbregar M (2017) Advances in the diagnosis of Sepsis: hydrogen sulfide as a prognostic marker of septic shock severity. EJIFCC 28:134–141

    PubMed  PubMed Central  Google Scholar 

  102. Qiu H, Chen X, Luo Z, Zhao L, Zhang T, Yang N, Long X, Xie H, Liu J, Xu W (2018a) Inhibition of endogenous hydrogen sulfide production exacerbates the inflammatory response during urine-derived sepsis-induced kidney injury. Exp Ther Med 16:2851–2858

    PubMed  PubMed Central  Google Scholar 

  103. Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C (2005) Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Badiei A, Chambers ST, Gaddam RR, Bhatia M (2016) Cystathionine-γ-lyase gene silencing with siRNA in monocytes/macrophages attenuates inflammation in cecal ligation and puncture-induced sepsis in the mouse. J Biosci 41:87–95

    Article  CAS  PubMed  Google Scholar 

  105. Gaddam RR, Chambers S, Fraser R, Cogger VC, Le Couteur DG, Ishii I, Bhatia M (2019) Cystathionine-Gamma-Lyase-derived hydrogen sulfide-regulated substance p modulates liver sieve fenestrations in caecal ligation and puncture-induced sepsis. Int J Mol Sci 20:E3191

    Article  PubMed  CAS  Google Scholar 

  106. Faller S, Zimmermann KK, Strosing KM, Engelstaedter H, Buerkle H, Schmidt R, Spassov SG, Hoetzel A (2012) Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice. Med Gas Res 2:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yan Y, Chen C, Zhou H, Gao H, Chen L, Chen L, Gao L, Zhao R, Sun Y (2013) Endogenous hydrogen sulfide formation mediates the liver damage in endotoxemic rats. Res Vet Sci 94:590–595

    Article  CAS  PubMed  Google Scholar 

  108. Bekpinar S, Develi-Is S, Unlucerci Y, Kusku-Kiraz Z, Uysal M, Gurdol F (2013) Modulation of arginine and asymmetric dimethylarginine concentrations in liver and plasma by exogenous hydrogen sulfide in LPS-induced endotoxemia. Can J Physiol Pharmacol 91:1071–1075

    Article  CAS  PubMed  Google Scholar 

  109. Fernández RA, Soriano RN, Francescato HD, Sabino JP, Coimbra TM, Branco LG (2016) Cryogenic role of central endogenous hydrogen sulfide in the rat model of endotoxic shock. Brain Res 1650:218–223

    Article  PubMed  CAS  Google Scholar 

  110. Tian F, Ling Y, Chen Y, Wang Z (2017) Effects of CCK-8 and Cystathionine γ-Lyase/hydrogen sulfide system on acute lung injury in rats. Inflammation 40:174–183

    Article  CAS  PubMed  Google Scholar 

  111. Wang C, Duan GL, Liu YJ, Yu Q, Tang XL, Zhao W, Li XH, Zhu XY, Ni X (2015) Overproduction of nitric oxide by endothelial cells and macrophages contributes to mitochondrial oxidative stress in adrenocortical cells and adrenal insufficiency during endotoxemia. Free Radic Biol Med 83:31–34

    Article  CAS  PubMed  Google Scholar 

  112. Ahmad A, Druzhyna N, Szabo C (2016) Delayed treatment with sodium hydrosulfide improves regional blood flow and alleviates cecal ligation and puncture (CLP)-induced septic shock. Shock 46:183–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu J, Li J, Tian P, Guli B, Weng G, Li L, Cheng Q (2019) H2S attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Exp Ther Med 17:4064–4072

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen S, Bu D, Ma Y, Zhu J, Sun L, Zuo S, Ma J, Li T, Chen Z, Zheng Y, Wang X, Pan Y, Wang P, Liu Y (2016) GYY4137 ameliorates intestinal barrier injury in a mouse model of endotoxemia. Biochem Pharmacol 118:59–56

    Article  CAS  PubMed  Google Scholar 

  115. Jiang L, Jiang Q, Yang S, Huang S, Han X, Duan J, Pan S, Zhao M, Guo S (2019) GYY4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm Pharmacol Ther 54:77–86

    Article  CAS  PubMed  Google Scholar 

  116. Merz T, Stenzel T, Nußbaum B, Wepler M, Szabo C, Wang R, Radermacher P, McCook O (2017) Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H2S-producing enzyme cystathionine-γ-lyase in the porcine coronary artery. Intensive Care Med Exp 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nubaum BL, Vogt J, Wachter U, McCook O, Wepler M, Matallo J, Calzia E, Gröger M, Georgieff M, Wood ME, Whiteman M, Radermacher P, Hafner S (2017) Metabolic, cardiac, and renal effects of the slow hydrogen sulfide-releasing molecule GYY4137 during resuscitated septic shock in swine with pre-existing coronary artery disease. Shock 48:175–184

    Article  CAS  Google Scholar 

  118. Chen X, Xu W, Wang Y, Luo H, Quan S, Zhou J, Yang N, Zhang T, Wu L, Liu J, Long X, Zhu N, Xie H, Luo Z (2014) Hydrogen sulfide reduces kidney injury due to urinary-derived sepsis by inhibiting NF-κB expression, decreasing TNF-α levels and increasing IL-10 levels. Exp Ther Med 8:464–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li X, Cheng Q, Li J, He Y, Tian P, Xu C (2017) Significance of hydrogen sulfide in sepsis-induced myocardial injury in rats. Exp Ther Med 14:2153–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang C, Du J, Du S, Liu Y, Li D, Zhu X, Ni X (2018) Endogenous H2S resists mitochondria-mediated apoptosis in the adrenal glands via ATP5A1 S-sulfhydration in male mice. Mol Cell Endocrinol 474:65–73

    Article  CAS  PubMed  Google Scholar 

  121. Goslar T, Marš T, Podbregar M (2011) Total plasma sulfide as a marker of shock severity in nonsurgical adult patients. Shock 36:350–355

    Article  CAS  PubMed  Google Scholar 

  122. Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu X, Tian D, Wu Y (2018) Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxidative Med Cell Longev 2018:6717212

    Google Scholar 

  123. Bazhanov N, Ansar M, Ivanciuc T, Garofalo RP, Casola A (2017) Hydrogen sulfide: a novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am J Respir Cell Mol Biol 57:403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M (2020) Nitric oxide and hydrogen sulfide: a nice pair in the respiratory system. Curr Med Chem 27(42):7136–7148. https://doi.org/10.2174/0929867327666200310120550

    Article  CAS  PubMed  Google Scholar 

  125. Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK (2015) Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio 6:e00767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Park SJ, Kim TH, Lee SH, Ryu HY, Hong KH, Jung JY, Hwang GH, Lee SH (2013) Expression levels of endogenous hydrogen sulfide are altered in patients with allergic rhinitis. Laryngoscope 123:557–563

    Article  CAS  PubMed  Google Scholar 

  127. Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:3205–3211

    Article  CAS  PubMed  Google Scholar 

  128. He Y, Liu S, Zhang Z, Liao C, Lin F, Yao W, Chen Y (2017) Imbalance of endogenous hydrogen sulfide and Homocysteine in chronic obstructive pulmonary disease combined with cardiovascular disease. Front Pharmacol 8:624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sun Y, Wang X, Chen Y, Zhu R, Liao C (2013) Exhaled hydrogen sulfide in patients with chronic obstructive pulmonary disease and its correlation with exhaled nitric oxide. Chin Med J 126:3240–3244

    CAS  PubMed  Google Scholar 

  130. Zhang J, Wang X, Chen Y, Yao W (2015) Exhaled hydrogen sulfide predicts airway inflammation phenotype in COPD. Respir Care 60:251–258

    Article  PubMed  Google Scholar 

  131. Sun Y, Wang K, Li M, He W, Chang J, Liao CC, Lin F, Qi Y, Wang R, Chen Y (2015) Metabolic changes of H2S in smokers and patients of COPD which might involve in inflammation, oxidative stress and steroid sensitivity. Sci Rep 5:14971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen YH, Yao WZ, Gao JZ, Geng B, Wang PP, Tang CS (2009a) Serum hydrogen sulfide as a novel marker predicting bacterial involvement in patients with community-acquired lower respiratory tract infections. Respirology 14:746–752

    Article  PubMed  Google Scholar 

  133. Li F, Zhang P, Zhang M, Liang L, Sun X, Li M, Tang Y, Bao A, Gong J, Zhang J, Adcock I, Chung KF, Zhou X (2016a) Hydrogen sulfide prevents and partially reverses ozone-induced features of lung inflammation and emphysema in mice. Am J Respir Cell Mol Biol 55:72–81

    Article  CAS  PubMed  Google Scholar 

  134. Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai Y, Liao Y, Li M, Ni X, Hou Y, Qi Y, Chen Y (2017) Hydrogen sulfide inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front Pharmacol 8:675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ding HB, Liu K, Huang JF, Wu DW, Chen JY, Chen QS (2018) Protective effect of exogenous hydrogen sulfide on pulmonary artery endothelial cells by suppressing endoplasmic reticulum stress in a rat model of chronic obstructive pulmonary disease. Biomed Pharmacother 105:734–741

    Article  CAS  PubMed  Google Scholar 

  136. Perry MM, Tildy B, Papi A, Casolari P, Caramori G, Rempel KL, Halayko AJ, Adcock I, Chung KF (2018) The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide. Respir Res 19:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Guan R, Wang J, Cai Z, Li Z, Wang L, Li Y, Xu J, Li D, Yao H, Liu W, Deng B, Lu W (2020a) Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol 28:101356

    Article  CAS  PubMed  Google Scholar 

  138. Guan R, Wang J, Li D, Li Z, Liu H, Ding M, Cai Z, Liang X, Yang Q, Long Z, Chen L, Liu W, Sun D, Yao H, Lu W (2020b) Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1α/MAPK signaling pathway. Int Immunopharmacol 81:105979

    Article  CAS  PubMed  Google Scholar 

  139. Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009b) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45:117–123

    Article  CAS  PubMed  Google Scholar 

  140. Chung KF (2014) Hydrogen sulfide as a potential biomarker of asthma. Expert Rev Respir Med 8:5–13

    Article  CAS  PubMed  Google Scholar 

  141. Zhang G, Wang P, Yang G, Cao Q, Wang R (2013) The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am J Pathol 182:1188–1195

    Article  CAS  PubMed  Google Scholar 

  142. Wang C, Zou W, Liang XY, Jiang ZS, Li X, Wei HJ, Tang YY, Zhang P, Tang XQ (2017a) Hydrogen sulfide prevents homocysteine-induced endoplasmic reticulum stress in PC12 cells by upregulating SIRT-1. Mol Med Rep 16:3587–3593

    Article  CAS  PubMed  Google Scholar 

  143. Mendes JA, Ribeiro MC, Reis Filho GJMV, Rocha T, Muscará MN, Costa SKP, Ferreira HHA (2019) Hydrogen sulfide inhibits apoptosis and protects the bronchial epithelium in an allergic inflammation mice model. Int Immunopharmacol 73:435–441

    Article  CAS  PubMed  Google Scholar 

  144. Li Z, Polhemus DJ, Lefer DJ (2018) Evolution of hydrogen sulfide therapeutics to treat cardiovascular disease. Circ Res 123(5):590–600

    Article  CAS  PubMed  Google Scholar 

  145. Donnarumma E, Trivedi RK, Lefer DJ (2017) Protective actions of H2S in acute myocardial infarction and heart failure. Compr Physiol 7:583–602

    Article  PubMed  Google Scholar 

  146. Yurinskaya MM, Krasnov GS, Kulikova DA, Zatsepina OG, Vinokurov MG, Chuvakova LN, Rezvykh AP, Funikov SY, Morozov AV, Evgen’ev MB (2020) H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res 69:481–495

    Article  CAS  PubMed  Google Scholar 

  147. Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhoták Š, Meng QH, Wang R (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534

    Article  CAS  PubMed  Google Scholar 

  148. Wang Q, Liu H, Mu Q, Rose P, Zhu YZ (2009b) S-propargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway. J Cardiovasc Pharmacol 54:139–146

    Article  CAS  PubMed  Google Scholar 

  149. Pan L, Liu XH, Gong QH, Zhu YZ (2011) S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids 41:205–215

    Article  CAS  PubMed  Google Scholar 

  150. Feng S, Chen S, Yu W, Zhang D, Zhang C, Tang C, Du J, Jin H (2017) H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension. Lab Investig 97:268–278

    Article  CAS  PubMed  Google Scholar 

  151. Gong D, Cheng HP, Xie W, Zhang M, Liu D, Lan G, Huang C, Zhao ZW, Chen LY, Yao F, Tan YL, Li L, Xia XD, Zheng XL, Wang ZB, Tang CK (2016) Cystathionine γ-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway. Biochem Biophys Res Commun 470:107–116

    Article  CAS  PubMed  Google Scholar 

  152. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang X, Wang F, You SJ, Cao Y, Cao LD, Han Q, Liu C, Hu L (2013) Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 25:2255–2262

    Article  CAS  PubMed  Google Scholar 

  154. Yao Y, Zhang X, Chen HP, Li L, Xie W, Lan G, Zhao ZW, Zheng XL, Wang ZB, Tang CK (2016) MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine γ-lyase in THP-1 macrophages. Atherosclerosis 250:122–132

    Article  CAS  PubMed  Google Scholar 

  155. Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu M, Liu J, Chen SX, Bu D, Tang C, Jin H (2014) Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway. J Biol Chem 289:9741–9753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gao L, Xu Z, Yin Z, Chen K, Wang C, Zhang H (2015) Association of hydrogen sulfide with alterations of monocyte chemokine receptors, CCR2 and CX3CR1 in patients with coronary artery disease. Inflamm Res 64:627–635

    Article  CAS  PubMed  Google Scholar 

  157. Libby P (2013) Mechanisms of acute coronary syndromes. N Engl J Med 369:883–884

    CAS  PubMed  Google Scholar 

  158. Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, Zandi E, Chen W, Zhou Y, Shi S (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 Demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shirazi LF, Bissett J, Romeo F, Mehta JL (2017) Role of inflammation in heart failure. Curr Atheroscler Rep 19:2

    Article  CAS  Google Scholar 

  161. Pan L, Liu XH, Shen YQ, Wang NZ, Xu J, Wu D, Xiong QH, Deng HY, Huang GY, Zhu YZ (2013) Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol 168:3770–3778

    Article  PubMed  Google Scholar 

  162. Wu T, Li H, Wu B, Zhang L, Wu SW, Wang JN, Zhang YE (2017) Hydrogen sulfide reduces recruitment of CD11b+gr-1+ cells in mice with myocardial infarction. Cell Transplant 26:753–764

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kolluru GK, Bir SC, Yuan S, Shen X, Pardue S, Wang R, Kevil CG (2015) Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc Res 107:590–600

    Article  PubMed  PubMed Central  Google Scholar 

  164. Miao L, Xin X, Xin H, Shen X, Zhu YZ (2016) Hydrogen sulfide recruits macrophage migration by integrin β1-Src-FAK/Pyk2-Rac pathway in myocardial infarction. Sci Rep 6:22363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mishra PK, Tyagi N, Sen U, Givvimani S, Tyagi SC (2010) H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. Am J Physiol Heart Circ Physiol 298:H451–H456

    Article  CAS  PubMed  Google Scholar 

  166. Polhemus D, Kondo K, Bhushan S, Bir SC, Kevil CG, Murohara T, Lefer DJ, Calvert JW (2013) Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circ Heart Fail 6:1077–1086

    Article  CAS  PubMed  Google Scholar 

  167. Coggins M, Rosenzweig A (2012) The fire within: cardiac inflammatory signaling in health and disease. Circ Res 110:116–125

    Article  CAS  PubMed  Google Scholar 

  168. Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13:193–209

    Article  CAS  PubMed  Google Scholar 

  169. Qiu Y, Wu Y, Meng M, Luo M, Zhao H, Sun H, Gao S (2018b) GYY4137 protects against myocardial ischemia/reperfusion injury via activation of the PHLPP-1/Akt/Nrf2 signaling pathway in diabetic mice. J Surg Res 225:29–39

    Article  CAS  PubMed  Google Scholar 

  170. Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D, Tang X, Ren Y, Tang C, Du J (2009a) Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 29:173–179

    Article  CAS  PubMed  Google Scholar 

  171. Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell B, Yin C, Ockaili R, Vigneshwar N, Mukhopadhyay N, Kukreja R, Abbate A, Salloum F (2014) Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet 7:311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bai YD, Yang YR, Mu XP, Lin G, Wang YP, Jin S, Chen Y, Wang MJ, Zhu YC (2018) Hydrogen sulfide alleviates acute myocardial ischemia injury by modulating autophagy and inflammation response under oxidative stress. Oxidative Med Cell Longev 2018:3402809

    Article  CAS  Google Scholar 

  173. Jeddi S, Gheibi S, Kashfi K, Carlström M, Ghasemi A (2020) Dose-dependent effects of long-term administration of hydrogen sulfide on myocardial ischemia-reperfusion injury in male wistar rats: modulation of RKIP, NF-κB, and oxidative stress. Int J Mol Sci 21:E1415

    Article  PubMed  CAS  Google Scholar 

  174. Zhang J, Yu J, Chen Y, Liu L, Xu M, Sun L, Luo H, Wang Y, Meng G (2018b) Exogenous hydrogen sulfide supplement attenuates isoproterenol-induced myocardial hypertrophy in a Sirtuin 3-dependent manner. Oxidative Med Cell Longev 2018:9396089

    Article  Google Scholar 

  175. Zhao HL, Wu BQ, Luo Y, Zhang WY, Hao YL, Liang JJ, Fang F, Liu W, Chen XH (2018) Exogenous hydrogen sulfide ameliorates high glucose-induced myocardial injury & inflammation via the CIRP-MAPK signaling pathway in H9c2 cardiac cells. Life Sci 208:315–324

    Article  CAS  PubMed  Google Scholar 

  176. Hu Y, Li R, Yang H, Luo H, Chen Z (2015) Sirtuin 6 is essential for sodium sulfide-mediated cytoprotective effect in ischemia/reperfusion-stimulated brain endothelial cells. J Stroke Cerebrovasc Dis 24:601–609

    Article  PubMed  Google Scholar 

  177. Lin Z, Altaf N, Li C, Chen M, Pan L, Wang D, Xie L, Zheng Y, Fu H, Han Y, Ji Y (2018) Hydrogen sulfide attenuates oxidative stress-induced NLRP3 inflammasome activation via S-sulfhydrating c-Jun at Cys269 in macrophages. Biochim Biophys Acta Mol basis Dis 1864(9 Pt B):2890–2900

    Article  CAS  PubMed  Google Scholar 

  178. Sanokawa-Akakura R, Akakura S, Tabibzadeh S (2016) Replicative senescence in human fibroblasts Is delayed by hydrogen sulfide in a NAMPT/SIRT1 dependent manner. PLoS One 11:e0164710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Suo R, Zhao Z, Tang Z, Ren Z, Liu X, Liu LS, Wang Z, Tang CK, Wei DH, Jiang Z (2013) Hydrogen sulfide prevents H2O2-induced senescence in human umbilical vein endothelial cells through SIRT1 activation. Mol Med Rep 7:1865–1870

    Article  CAS  PubMed  Google Scholar 

  180. Wang P, Wu L, Ju Y, Fu M, Shuang T, Qian Z, Wang R (2017b) Age-dependent allergic asthma development and Cystathionine gamma-Lyase deficiency. Antioxid Redox Signal 27:931–944

    Article  CAS  PubMed  Google Scholar 

  181. Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y, Wang Y, Liu G, Moore PK, Wang X, Wang H, Zhang Z, Yu Y, Ferro A, Huang Z, Ji Y (2016b) Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes 65:3171–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ahmed HH, Taha FM, Omar HS, Elwi HM, Abdelnasser M (2019) Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy. Mol Cell Biochem 457:1–9

    Article  CAS  PubMed  Google Scholar 

  183. Hou CL, Wang MJ, Sun C, Huang Y, Jin S, Mu XP, Chen Y, Zhu YC (2016) Protective effects of hydrogen sulfide in the ageing kidney. Oxidative Med Cell Longev 2016:7570489

    Article  Google Scholar 

  184. Hu MZ, Zhou B, Mao HY, Sheng Q, Du B, Chen JL, Pang QF, Ji Y (2016) Exogenous hydrogen sulfide Postconditioning protects isolated rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1α signaling pathway. Int Heart J 57:477–482

    Article  CAS  PubMed  Google Scholar 

  185. Sun Y, Tian Z, Liu N, Zhang L, Gao Z, Sun X, Yu M, Wu J, Yang F, Zhao Y, Ren H, Chen H, Zhao D, Wang Y, Dong S, Xu C, Lu F, Zhang W (2018) Exogenous H2S switches cardiac energy substrate metabolism by regulating SIRT3 expression in db/db mice. J Mol Med (Berl) 96:281–299

    Article  CAS  Google Scholar 

  186. Xin H, Wang M, Tang W, Shen Z, Miao L, Wu W, Li C, Wang X, Xin X, Zhu YZ (2016) Hydrogen sulfide attenuates inflammatory Hepcidin by reducing IL-6 secretion and promoting SIRT1-mediated STAT3 Deacetylation. Antioxid Redox Signal 24:70–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Li L, Li M, Li Y, Sun W, Wang Y, Bai S, Li H, Wu B, Yang G, Wang R, Wu L, Li H, Xu C (2016b) Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell Biosci 6:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. You J, Shi X, Liang H, Ye J, Wang L, Han H, Fang H, Kang H, Wang T (2017) Cystathionine- γ-Lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget 8:65677–65686

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cao L, Cao X, Zhou Y, Nagpure BV, Wu ZY, Hu LF, Yang Y, Sethi G, Moore PK, Bian JS (2018) Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1-42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav Immun 73:603–614

    Article  CAS  PubMed  Google Scholar 

  190. Yang D, Li T, Li Y, Zhang S, Li W, Liang H, Xing Z, Du L, He J, Kuang C, Yang Q (2019) H2S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma. J Exp Clin Cancer Res 38:88

    Article  PubMed  PubMed Central  Google Scholar 

  191. Fouad AA, Hafez HM, Hamouda A (2020) Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum Exp Toxicol 39:77–85

    Article  CAS  PubMed  Google Scholar 

  192. Weber G, Pushpakumar S, Sen U (2017) Hydrogen sulfide alleviates hypertensive kidney dysfunction through an epigenetic mechanism. Am J Physiol Heart Circ Physiol 312:H874–H885

    Article  PubMed  PubMed Central  Google Scholar 

  193. Christgen S, Kanneganti TD (2020) Inflammasomes and the fine line between defense and disease. Curr Opin Immunol 62:39–44

    Article  CAS  PubMed  Google Scholar 

  194. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:E3328

    Article  PubMed  CAS  Google Scholar 

  195. Grebe A, Hoss F, Latz E (2018) NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 122:1722–1740

    Article  CAS  PubMed  Google Scholar 

  196. Huang Z, Zhuang X, Xie C, Hu X, Dong X, Guo Y, Li S, Liao X (2016a) Exogenous hydrogen sulfide attenuates high glucose-induced Cardiotoxicity by inhibiting NLRP3 Inflammasome activation by suppressing TLR4/NF-κB pathway in H9c2 cells. Cell Physiol Biochem 40:1578–1590

    Article  CAS  PubMed  Google Scholar 

  197. Zhao H, Pan P, Yang Y, Ge H, Chen W, Qu J, Shi J, Cui G, Liu X, Feng H, Chen Y (2017) Endogenous hydrogen sulphide attenuates NLRP3 inflammasome-mediated neuroinflammation by suppressing the P2X7 receptor after intracerebral haemorrhage in rats. J Neuroinflammation 14:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A, Martinon F, Busso N (2018) Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem 293:2546–2557

    Article  CAS  PubMed  Google Scholar 

  199. Luo ZL, Ren JD, Huang Z, Wang T, Xiang K, Cheng L, Tang LJ (2017) The role of exogenous hydrogen sulfide in free fatty acids induced inflammation in macrophages. Cell Physiol Biochem 42:1635–1644

    Article  CAS  PubMed  Google Scholar 

  200. Wu W, Qin M, Jia W, Huang Z, Li Z, Yang D, Huang M, Xiao C, Long F, Mao J, Moore PK, Liu X, Zhu YZ (2019b) Cystathionine-γ-lyase ameliorates the histone demethylase JMJD3-mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol 16:694–705

    Article  CAS  PubMed  Google Scholar 

  201. Qin M, Long F, Wu W, Yang D, Huang M, Xiao C, Chen X, Liu X, Zhu YZ (2019) Hydrogen sulfide protects against DSS-induced colitis by inhibiting NLRP3 inflammasome. Free Radic Biol Med 137:99–109

    Article  CAS  PubMed  Google Scholar 

  202. Li J, Teng X, Jin S, Dong J, Guo Q, Tian D, Wu Y (2019) Hydrogen sulfide improves endothelial dysfunction by inhibiting the vicious cycle of NLRP3 inflammasome and oxidative stress in spontaneously hypertensive rats. J Hypertens 37:1633–1643

    Article  CAS  PubMed  Google Scholar 

  203. Hu TX, Zhang NN, Ruan Y, Tan QY, Wang J (2020a) Hydrogen sulfide modulates high glucose-induced NLRP3 inflammasome activation in 3T3-L1 adipocytes. Exp Ther Med 19:771–776

    CAS  PubMed  Google Scholar 

  204. Zhou Y, Zhu X, Wang X, Peng Y, Du J, Yin H, Yang H, Ni X, Zhang W (2020) H2S alleviates renal injury and fibrosis in response to unilateral ureteral obstruction by regulating macrophage infiltration via inhibition of NLRP3 signalling. Exp Cell Res 387:111779

    Article  CAS  PubMed  Google Scholar 

  205. Zheng Q, Pan L, Ji Y (2019) H2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res 34:94–102

    PubMed  Google Scholar 

  206. Liu Z, Wang X, Li L, Wei G, Zhao M (2020) Hydrogen sulfide protects against Paraquat-induced acute liver injury in rats by regulating oxidative stress, mitochondrial function, and inflammation. Oxidative Med Cell Longev 2020:6325378

    Google Scholar 

  207. Wang Y, Li J, Qin Y, Liu Q, Liao Z, Xiao X (2020) Exogenous hydrogen sulfide alleviates-induced intracellular inflammation in HepG2 cells. Exp Clin Endocrinol Diabetes 128:137–143

    Article  CAS  PubMed  Google Scholar 

  208. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383. https://doi.org/10.1038/s41580-020-0230-3

    Article  CAS  PubMed  Google Scholar 

  209. Bolduc JA, Collins JA, Loeser RF (2019) Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 132:73–82

    Article  CAS  PubMed  Google Scholar 

  210. Franchina DG, Dostert C, Brenner D (2018) Reactive oxygen species: involvement in T cell signalling and metabolism. Trends Immunol 39:489–502

    Article  CAS  PubMed  Google Scholar 

  211. Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224:242–253

    Article  CAS  PubMed  Google Scholar 

  212. Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Grman M, Misak A, Jacob C, Tomaskova Z, Bertova A, Burkholz T, Docolomansky P, Habala L, Ondrias K (2013) Low molecular thiols, pH and O2 modulate H2S-induced S-nitrosoglutathione decomposition - •NO release. Gen Physiol Biophys 32:429–441

    Article  CAS  PubMed  Google Scholar 

  214. Tomaskova Z, Cacanyiova S, Benco A, Kristek F, Dugovicova L, Hrbac J, Ondrias K (2009) Lipids modulate H(2)S/HS(−) induced NO release from S-nitrosoglutathione. Biochem Biophys Res Commun 390:1241–1244

    Article  CAS  PubMed  Google Scholar 

  215. Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543

    Article  CAS  PubMed  Google Scholar 

  216. Al-Magableh MR, Kemp-Harper BK, Ng HH, Miller AA, Hart JL (2014) Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro. Naunyn Schmiedeberg’s Arch Pharmacol 387:67–74

    Article  CAS  Google Scholar 

  217. Hoffmann H (1977) Kinetics and mechanism of oxidation of hydrogen sulfide by hydrogen peroxide in acidic solution. Environ Sci Technol 11:61–66

    Article  CAS  Google Scholar 

  218. Lu M, Hua LF, Hu G, Bian JS (2008) Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Rad Biol Med 45:1705–1713

    Article  CAS  PubMed  Google Scholar 

  219. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem 90:765–768

    Article  CAS  PubMed  Google Scholar 

  220. Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798

    Article  CAS  PubMed  Google Scholar 

  221. Olas B (2017) Hydrogen sulfide as a "double-faced" compound: one with pro- and antioxidant effect. Adv Clin Chem 78:187–196

    Article  CAS  PubMed  Google Scholar 

  222. Misak A, Kurakova L, Goffa E, Brezova V, Grman M, Ondriasova E, Chovanec M, Ondrias K (2019) Sulfide (Na2S) and polysulfide (Na2S2) interacting with doxycycline produce/scavenge superoxide and hydroxyl radicals and induce/inhibit DNA cleavage. Molecules 24:E1148

    Article  PubMed  CAS  Google Scholar 

  223. Lee H, Lee D, Mariappan M, Feliers D, Ghosh-Choudhury G, Abboud H, Gorin Y, Kasinath S (2017) Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. J Biol Chem 292:5665–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sun W, Liu F, Chen Y, Zhu YC (2012) Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem Biophys Res Commun 421:164–169

    Article  CAS  PubMed  Google Scholar 

  225. Olson KR (2018) H2S and polysulfide metabolism: conventional and unconventional pathways. Biochem Pharmacol 149:77–90

    Article  CAS  PubMed  Google Scholar 

  226. Misak A, Grman M, Bacova Z, Rezuchova I, Hudecova S, Ondriasova E, Krizanova O, Brezova V, Chovanec M, Ondrias K (2018) Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2. Nitric Oxide 76:136–151

    Article  CAS  PubMed  Google Scholar 

  227. Olson KR, Gao Y, DeLeon ER, Arif M, Arif F, Arora N, Straub KD (2017) Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol 12:325–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Olson KR, Gao Y (2019) Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 135:1–14

    Article  CAS  PubMed  Google Scholar 

  229. Olson KR, Gao Y, Arif F, Arora K, Patel S, DeLeon ER, Sutton TR, Feelisch M, Cortese-Krott MM, Straub KD (2018) Metabolism of hydrogen sulfide (H2S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biol 15:74–85

    Article  CAS  PubMed  Google Scholar 

  230. Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12(1):5–23

    Article  CAS  PubMed  Google Scholar 

  231. Wenzel P, Kossmann S, Münzel T, Daiber A (2017) Redox regulation of cardiovascular inflammation - Immunomodulatory function of mitochondrial and Nox-derived reactive oxygen and nitrogen species. Free Radic Biol Med 109:48–60

    Article  CAS  PubMed  Google Scholar 

  232. Von Leden R, Yauger Y, Khayrullina G, Byrnes K (2017) Central nervous system injury and Nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets. J Neurotrauma 34:755–764

    Article  Google Scholar 

  233. Smallwood M, Nissim A, Knight A, Whiteman M, Haigh R, Winyard P (2018) Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 125:3–14

    Article  CAS  PubMed  Google Scholar 

  234. Baird L, Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 40(13):e00099. https://doi.org/10.1128/MCB.00099-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ganster F, Burban M, de la Bourdonnaye M, Fizanne L, Douay O, Loufrani L, Mercat A, Calès P, Radermacher P, Henrion D, Asfar P, Meziani F (2010) Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats. Crit Care 14:R165. https://doi.org/10.1186/cc9257

    Article  PubMed  PubMed Central  Google Scholar 

  236. Francis RC, Vaporidi K, Bloch KD, Ichinose F, Zapol WM (2011) Protective and detrimental effects of sodium sulfide and hydrogen sulfide in murine ventilator-induced lung injury. Anesthesiology 115(5):1012–1021

    Article  CAS  PubMed  Google Scholar 

  237. Li H, Zhang ZR, Zhang QX, Qin ZC, He DM, Chen JS (2013a) Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. Eur J Appl Physiol 113:1555–1563

    Article  CAS  PubMed  Google Scholar 

  238. Peake BF, Nicholson CK, Lambert JP, Hood RL, Amin H, Amin S, Calvert JW (2013) Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. Am J Physiol Heart Circ Physiol 304:H1215–H1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Shirozu K, Tokuda K, Marutani E, Lefer D, Wang R, Ichinose F (2014) Cystathionine γ-lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxid Redox Signal 20:204–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F (2014) Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112

    Article  CAS  PubMed  Google Scholar 

  241. Zhou X, An G, Lu X (2015b) Hydrogen sulfide attenuates the development of diabetic cardiomyopathy. Clin Sci 128(5):325–335

    Article  CAS  Google Scholar 

  242. Zhou X, Zhao L, Mao J, Huang J, Chen J (2015a) Antioxidant effects of hydrogen sulfide on left ventricular remodeling in smoking rats are mediated via PI3K/Akt-dependent activation of Nrf2. Toxicol Sci 144:197–203

    Article  CAS  PubMed  Google Scholar 

  243. Islam KN, Polhemus DJ, Donnarumma E, Brewster LP, Lefer DJ (2015) Hydrogen sulfide levels and nuclear factor-Erythroid 2-related factor 2 (NRF2) activity are attenuated in the setting of critical limb ischemia (CLI). J Am Heart Assoc 4(5):e001986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Lohninger L, Tomasova L, Praschberger M, Hintersteininger M, Erker T, Gmeiner BM, Laggner H (2015) Hydrogen sulphide induces HIF-1α and Nrf2 in THP-1 macrophages. Biochimie 112:187–195

    Article  CAS  PubMed  Google Scholar 

  245. Benedetti F, Curreli S, Krishnan S, Davinelli S, Cocchi F, Scapagnini G, Gallo RC, Zella D (2017) Anti-inflammatory effects of H2S during acute bacterial infection: a review. J Transl Med 15:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Hu X, Zeng W, You X, Ding W, Liu P, Chen L, Zeng Y, Zhu C (2020b) Exogenous hydrogen sulfide regulates Mycoplasma pneumoniae lipid-associated membrane proteins to induce expression of Heme Oxygenase-1 and Proinflammatory cytokines. Inflammation 43(3):847–856. https://doi.org/10.1007/s10753-019-01170-3

    Article  CAS  PubMed  Google Scholar 

  247. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919

    Article  CAS  PubMed  Google Scholar 

  248. Guo C, Liang F, Shah Masood W, Yan X (2014) Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 s-sulfhydration, MAPK dependent anti-apoptosis and NF-κB dependent anti-inflammation pathway. Eur J Pharmacol 725:70–78

    Article  CAS  PubMed  Google Scholar 

  249. Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y, Xiao Y, Gu Y, Shao Y, Park CM, Xian M, Huang Y, Ferro A, Wang R, Moore PK, Wang H, Ji Y (2016a) SIRT3 mediates the antioxidant effect of hydrogen sulfide in endothelial cells. Antioxid Redox Signal 24(6):329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Meng W, Pei Z, Feng Y, Zhao J, Chen Y, Shi W, Xu Q, Lin F, Sun M, Xiao K (2017) Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation. Sci Rep 7:9433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Tocmo R, Parkin K (2019) S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 143:164–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rose, P., Zhu, YZ., Moore, P.K. (2021). Hydrogen Sulfide and the Immune System. In: Zhu, YC. (eds) Advances in Hydrogen Sulfide Biology. Advances in Experimental Medicine and Biology, vol 1315. Springer, Singapore. https://doi.org/10.1007/978-981-16-0991-6_5

Download citation

Publish with us

Policies and ethics