Skip to main content

“Network Target” Theory and Network Pharmacology

  • Chapter
  • First Online:
Network Pharmacology

Abstract

In the biomedical big data and artificial intelligence era, pioneering interdisciplinary information science research, life science, and medicine are represented by a complex biological network which has attracted increasing attention from researchers. Complex biological network includes qualitative and quantitative description of the relationship between tissues, cells, and molecules in an organism. It lays the foundation for constructing complex biological systems, and is also an important bridge connecting information science, life science, and medicine. Network pharmacology has two distinct characteristics regarding current scientific and technological background. Firstly, it promotes the moving from “reductionism” to “system-based theory”, which is widely considered as “the next generation medicine research mode.” Secondly, the accumulation of modern biomedical big data and the development of artificial intelligence as well as other computing methods provide an important driving force for the development of network pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greene JA, Loscalzo J. Putting the patient back together - social medicine, network medicine, and the limits of reductionism. N Engl J Med. 2017;377(25):2493–9.

    Article  Google Scholar 

  2. Wang RS, Maron BA, Loscalzo J. Systems medicine: evolution of systems biology from bench to bedside. Wiley Interdiscip Rev Syst Biol Med. 2015;7(4):141–61.

    Article  Google Scholar 

  3. Barabasi AL. Network medicine—from obesity to the “diseasome”. N Engl J Med. 2007;357(4):404–7.

    Article  CAS  Google Scholar 

  4. Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1.

    Article  CAS  Google Scholar 

  5. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.

    Article  CAS  Google Scholar 

  6. Apsel B, Blair JA, Gonzalez B, et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol. 2008;4(11):691–9.

    Article  CAS  Google Scholar 

  7. Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics. 2009;25(19):2466–72.

    Article  CAS  Google Scholar 

  8. Pan J. New paradigm for drug discovery based on network pharmacology. Chin J New Drugs Clin Rem. 2009;28(10):721–726 (in Chinese) [潘家祜. 基于网络药理学的药物研发新模式. 中国新药与临床杂志. 2009;28(10):721–726].

    Google Scholar 

  9. Li S. Possible relationship between TCM syndromes and molecular network regulation mechanism. Scientific and technological progress and social and economic development in the 21st century (volume I), Beijing, China Science and Technology Press. 1999. p. 442 (in Chinese) [李梢. 中医证候与分子网络调节机制的可能关联. 面向21世纪的科技进步与社会经济发展(上册), 北京, 中国科学技术出版社,1999:442].

    Google Scholar 

  10. Li S, Wang Y, Ji L, et al. A discussion and case study of complexities in traditional Chinese medicine. J Syst Simul. 2002;14(11):1429-1432 (in Chinese) [李梢,王永炎, 季梁, 等. 复杂系统意义下的中医药学及其案例研究. 系统仿真学报. 2002;14(11):1429-1432].

    Google Scholar 

  11. Li S. Framework and practice of network-based studies for Chinese herbal formula. J Chin Integr Med. 2007;5(5):489–493 (in Chinese) [李梢. 基于生物网络调控的方剂研究模式与实践. 中西医结合学报. 2007;5(5):489–493].

    Google Scholar 

  12. Li S, Zhang ZQ, Wu LJ, et al. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol. 2007;1(1):51–60.

    Article  Google Scholar 

  13. Li S. Network target: a starting point for traditional Chinese medicine network pharmacology. Chin J Chin Mater Med. 2011;36(15):2017-2020 (in Chinese) [李梢. 网络靶标:中药方剂网络药理学研究的一个切入点. 中国中药杂志. 2011;36(15):2017-2020].

    Google Scholar 

  14. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20.

    Article  Google Scholar 

  15. Chien TW, Kan WC, Wang HY, et al. Using choropleth maps to show the most cited articles and authors on the topic of traditional Chinese medicine from 2013 to 2017 in Pubmed Central. Chin Tradit Med J. 2018;1(1):1–6.

    Google Scholar 

  16. Xi D, Bao T, Chen Q, et al. State of the science: cancer complementary and alternative medicine therapeutics research—NCI Strategic Workshop Highlights of Discussion Report. J Natl Cancer Inst Monogr. 2017;(52):lgx003.

    Google Scholar 

  17. Guo YC, Nie Q, Maclean AL, et al. Multiscale modeling of inflammation-induced tumorigenesis reveals competing oncogenic and oncoprotective roles for inflammation. Cancer Res. 2017;77(22):6429–41.

    Article  CAS  Google Scholar 

  18. Li S. Mapping ancient remedies: applying a network approach to traditional Chinese medicine. Science. 2015;350(6262 Suppl):S72–4.

    Google Scholar 

  19. Roth BL, Sheffler DJ, Hroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3(4):353–9.

    Article  CAS  Google Scholar 

  20. Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33:D514–7.

    Article  CAS  Google Scholar 

  21. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 2013;41(D1):D991–5.

    Article  CAS  Google Scholar 

  22. Wu XB, Jiang R, Zhang MQ, et al. Network-based global inference of human disease genes. Mol Syst Biol. 2008;4:189.

    Article  Google Scholar 

  23. Zhao SW, Li S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One. 2010;5(7):e11764.

    Article  Google Scholar 

  24. Zhao SW, Li S. A co-module approach for elucidating drug-disease associations and revealing their molecular basis. Bioinformatics. 2012;28(7):955–61.

    Article  CAS  Google Scholar 

  25. Zhang YD, Chen LJ, Li S. CIPHER-SC: disease-gene association inference using graph convolution on a context-aware network with single-cell data. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2020.3017547.

  26. Li S, Zhang B, Zhang NB. Network target for screening synergistic drug combinations with application to traditional Chinese medicine [J]. BMC Syst Biol. 2011;5(Suppl 1):S10.

    Article  Google Scholar 

  27. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    Article  CAS  Google Scholar 

  28. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    Article  CAS  Google Scholar 

  29. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.

    Article  CAS  Google Scholar 

  30. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics A J Integr Biol. 2012;16(5):284–7.

    Article  CAS  Google Scholar 

  31. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.

    Article  Google Scholar 

  32. Barabasi AL, Gullbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.

    Article  CAS  Google Scholar 

  33. Zhang T, Brazhnik P, Tyson JJ. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle. 2007;6(1):85–94.

    Article  Google Scholar 

  34. Bian YM, He XB, Jing YK, et al. Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacologica Sinica. 2019;40(3):374–86.

    Article  CAS  Google Scholar 

  35. Sun Y, Sheng Z, Ma C, et al. Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat Commun. 2015;6:8481.

    Article  CAS  Google Scholar 

  36. Xu H, Zhang Y, Lei Y, et al. A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of Dragon’s Blood Tablet in Colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology. PLoS One. 2014;9(7):e101432.

    Article  Google Scholar 

  37. Li S, Zhang B, Jiang D, et al. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics. 2010;11(Suppl 11):1–12.

    CAS  Google Scholar 

  38. Li S. Network pharmacology evaluation method guidance-draft. World J Tradit Chin Med 2021;7(1):146–154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, S., Ding, Q., Wang, X. (2021). “Network Target” Theory and Network Pharmacology. In: Li, S. (eds) Network Pharmacology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0753-0_1

Download citation

Publish with us

Policies and ethics