Skip to main content

Green Hydrogels

  • Chapter
  • First Online:
Green Composites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Green hydrogels are incredibly useful in order to increase the yielding of corps in agricultural field, to cure the wounds in medical field and act as an eco-friendly. In this chapter, therefore, presented about the overview of green hydrogels right from fundamentals of hydrogels to applications of hydrogels in relation to environment, tissue engineering, cardiac, and dentistry, and also covered the types of hydrogels and mechanical properties of hydrogels in relation to agriculture purposes. Author found that the there is so much in hydrogels to do research and concluded with that sky is the limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coinlogitic. Hydrogel Consumption Market Analysis by Current Industry Status and Growth Opportunities. 2018. Available https://coinlogitic.com/hydrogel-consumption-market-research-report/51472/. Last accessed on 11 Oct 2018

  2. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  3. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  4. Van Noorden R (2014) Global scientific output doubles every nine years. Nature news blog

    Google Scholar 

  5. Chirani NA, Dembahri Z, Tokarski C, Rolando C (2011) Newely designed polyacrylamide gels for electrophoresis protein separation: synthesis and characterization. Polym Int 60:1024–1029

    Article  CAS  Google Scholar 

  6. Campccia D, Doherty P, Radice M et al (1998) Semisunthetic resorbable materials from hyaluronan esterfication. Biomaterials 19:2101–2127

    Article  Google Scholar 

  7. Seow WY, Hauser CAE (2014) Short to ultra short dehydrogels for biomedical uses. Mater Today 17:381–388

    Google Scholar 

  8. Lee SC, Kown IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical persepective. Adv Drug Delivery 65:17–20

    Google Scholar 

  9. Kopecek J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192

    Article  CAS  Google Scholar 

  10. Buwlada SJ, Boere KW et al (2014), Hydrogels in a historical perspective: From simple networks to smart materials. J Control Release 190:254–273

    Google Scholar 

  11. Yom-Tov O, Neufeld L, Slektar D (2014) A novel design of injectable porous hydrogels with in situ pore formation. Acta Biomater 10:4236–4246

    Article  CAS  Google Scholar 

  12. Abebe DG, Fuziwara T (2012) Controlled thermo responsive hydrogels by stereo complexed PLA-PEG-PLA prepared via hybrid micelles of premixed co polymers with different PEG lengths. Bio Macro Mol 13:1828–1836

    CAS  Google Scholar 

  13. Chung HJ, Lee Y, Park TG (2008) Thermo-sensitive and biodegradable hydrogels primarily based on stereocomplexed Pluronic multi-block copolymers for managed protein transport. J Control Release 127:22–30

    Article  CAS  Google Scholar 

  14. Kirakci K, Šícha V, Holub J, Kubát P, LangK (2014) Luminescent hydrogel particles organized by way of self-meeting of β-cyclodextrin polymer and octahedral molybdenum cluster complexes. Inorg Chem 53:13012–13018

    Google Scholar 

  15. Kono H, Teshirogi T (2015) Cyclodextrin-grafted chitosan hydrogels for managed drug delivery. Int J Biol Macromol 72:299–308

    Article  CAS  Google Scholar 

  16. Peppas NA (1987) Hydrogels in medicine and pharmacy, vol 21. CRC Press, p 184

    Google Scholar 

  17. Park K, Shalaby WSW, Park H (1993). Biodegradable hydrogels for drug delivery. Technomic

    Google Scholar 

  18. Harland RS, Prud’homme RK (1992) Polyelectrolyte gels: properties, preparation and application. American Chemical Society

    Google Scholar 

  19. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  CAS  Google Scholar 

  20. Sefton MV, May MH, Lahooti S, Babensee JE (2000) Making microencapsulation work: conformal coating, immobilization gels and in vivo overall performance. J Control Release 65:173–186. Griffith LG (2000) Polymeric biomaterials. Acta Mater 48:263–277

    Google Scholar 

  21. Okay O (2010) General properties of hydrogels. In: Gerlach G, Arndt KF (eds) Hydrogel sensors and actuators, engineering and technology. Springer Series on Chemical Sensors and Biosensors. Springer, Berlin

    Google Scholar 

  22. Byju AG, Kulkarni A, Gundiah N (2013) Mechanics of Gelatin and Elastin based hydrogels as Tissue Engineered Constructs. In: International conference on fracture

    Google Scholar 

  23. Mondal M, Trivedy K, Nirmal Kumar S (2007) The silk proteins, serin and fibroin in silkworm Bombyxmori. Caspian J Env Sci 5:63–76

    Google Scholar 

  24. Menard KP (2008) Dynamic mechanical analysis: a practical introduction, 2nd edn. CRC Press

    Google Scholar 

  25. Morrison FA, Understanding rheology. Oxford University Press

    Google Scholar 

  26. ASTM International (2004) F2540 Standard practice standard guide for assessing microstructure of polymeric scaffolds for use in tissue engineered medical products

    Google Scholar 

  27. Assarsson PG, King PA, Yen SN (1975) US Patent 3901236 A. Disposable absorbent articles containing hydrogel composites having improved fluid absorption efficiencies and processes for preparation

    Google Scholar 

  28. Gross JR, Mcfadden RT (1975) US Patent 3926891 A Method for making a crosslinkable aqueous solution which is useful to form soft, water-swellablepolyacrylate articles

    Google Scholar 

  29. Statista, The Statistics Portal. https://www.statista.com. Accessed Feb 2015

  30. Umachitra G, Bhaarathidhurai (2012) Disposable baby diaper—a threat to the health and environment. J Environ Sci Eng 54:447–452

    Google Scholar 

  31. Chalker-Scott L (2015) The myth of polyacrylamide hydrogels

    Google Scholar 

  32. Trinh T, Gardlik JM (1990) European Patent EP 0392608 A2. Solid consumer product compositions containing small particle cyclodextrin complexes

    Google Scholar 

  33. Subkowski T, Bollschweiler C, Wittenberg J, Siegel W, Pelzer R (2013) International Patent WO 1999004830 A1. Low molecular weight modulators of the cold-menthol receptor trpm8 and use thereof

    Google Scholar 

  34. Peppas NA, Peppas LB (1997) Controlled release of fragrances from polymers. J Appl Polym Sci 66:509–513

    Article  CAS  Google Scholar 

  35. NFPA Guidelines & Definitions. Oklahoma State University (2008). Accessed Feb 2015

    Google Scholar 

  36. Mondal S, Das S, Nandi AK (2020) A review on recent advances in polymer and peptide hydrogels. Soft Matter 16:1404–1454

    Article  CAS  Google Scholar 

  37. An SM, Ham H, Choi EJ, Shin MK et al (2014) Primary irritation index and safety zone of cosmetics: retrospective analysis of skin patch tests in 7440 Korean women during 12 years. Int J Cosmet Sci 36:62–67

    Google Scholar 

  38. https://phoenix-chem.com/ESW/Files/Pecogel_Brochure.pdf

  39. Lorenz DH (1994) US patent 5306504 A Skin adhesive hydrogel, its preparation and uses

    Google Scholar 

  40. Lee E, Kim B (2011) Smart delivery system for cosmetic ingredients using pH-sensitive polymer hydrogel particles. Korean J Chem Eng 28:1347–1350

    Article  CAS  Google Scholar 

  41. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  42. Rhee SM, You HJ, Han SK (2014) Injectable tissue-engineered soft tissue for tissue augmentation. J Korean Med Sci 29(Suppl 3):S170-175

    Article  CAS  Google Scholar 

  43. Pienaar WE, McWilliams S, Wilding LJ, Perera IT (2011) The imaging features of MACROLANE™ in breast augmentation. Clin Radiol 66:977–983

    Google Scholar 

  44. Yamaguchi S, Nagumo Y, Niwa K (2013) Efficacy and safety of Macrolane™ for breast enhancement: a 12-month follow-up study in Asian women. J Plast Surg Hand Surg 47:191–195

    Google Scholar 

  45. Joint United Nations Programme on HIV/AIDS. UNAIDS report on the global AIDS epidemic; https://www.unaids.org/globalreport,2010

  46. Wen Y, Collier JH (2015) Supramolecular peptide vaccines: tuning adaptive immunity. Curr Opin Immunol 35:73–79

    Google Scholar 

  47. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria—an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575

    Article  CAS  Google Scholar 

  48. Irani M, Ismail H, Ahmad Z, Fan M (2015) Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(II) from aqueous solutions. J Environ Sci 27:9–20

    Article  CAS  Google Scholar 

  49. Yan H, Dai J, Yang Z, Yang H, Cheng R (2011) Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. ChemEng J 174:586–594

    CAS  Google Scholar 

  50. Ahmad H, Nurunnabi M, Rahman MM, Kumar K et al (2014) Magnetically doped multi stimuli-responsive hydrogel microspheres with IPN structure and application in dye removal. Colloids Surf Physicochem Eng Asp. 459:39–47

    Article  CAS  Google Scholar 

  51. Wang X, Ye G, Wang X (2014) Hydrogel diffraction gratings functionalized with crown ether for heavy metal ion detection. Sens Actuators B Chem 193:413–419

    Article  CAS  Google Scholar 

  52. Arcadio PS, Gregoria AS (2003) Physical–chemical treatment of water and wastewater. IWA Publishing, CRC Press

    Google Scholar 

  53. Panpanit S, Visvanathan C (2001) The role of bentonite in UF flux enhancement mechanisms for oil/water emulsion. J Membr Sci 184:59–68

    Article  CAS  Google Scholar 

  54. Hadi M, Viraraghavan T (1999) Removal of oil from water by bentonite organo-clay. In: Hazardous & industrial wastes—proceedings of the mid-Atlantic industrial & hazardous Waste, pp 187–196

    Google Scholar 

  55. Qiu Z, Zhang Y, Fang Y (1995) Removal of oil from concentrated wastewater by attapulgite and coagulant. Water Qual Res J 30:89–99

    Article  CAS  Google Scholar 

  56. Sokker HH, El-Sawy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190:359–365

    Article  CAS  Google Scholar 

  57. Heginbothom M, Fitzgerald TC, Wade WG (1990) Comparison of solid media for cultivation of anaerobes. J Clin Pathol 43:253–256

    Article  CAS  Google Scholar 

  58. Smith A (2012) History of the agar plate. Laboratory News

    Google Scholar 

  59. Cover TL (2012) Perspectives on methodology for in vitro culture of Helicobacter pylori. Methods Mol Biol 921:11–15

    Article  CAS  Google Scholar 

  60. Morales A, Jalel L, Patricia G (2020) Assessment of green approaches for the synthesis of physically crosslinked lignin hydrogels. J Ind Eng Chem 81:475–487

    Article  CAS  Google Scholar 

  61. Murray PR (1978) Growth of clinical isolates of anaerobic bacteria on agar media: effects of media composition, storage conditions, and reduction under anaerobic conditions. J Clin Microbiol 8:708–714

    Article  CAS  Google Scholar 

  62. Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E et al (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843

    Article  CAS  Google Scholar 

  63. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077

    Article  CAS  Google Scholar 

  64. Rogowska-Wrzesinska A, Le Bihan MC, Thaysen-Andersen M, Roepstorff P (2013) 2D gels still have a niche in proteomics. J Proteomics 88:4–13

    Article  CAS  Google Scholar 

  65. Chirani NA, Dembahri Z, Tokarski C, Rolando C, Benmouna M (2011) Newly designed polyacrylamide/dextran gels for electrophoresis protein separation: synthesis and characterization. Polym Int 60:1024–1029

    Article  CAS  Google Scholar 

  66. Suh KS, Mutoh M, Gerdes M, Yuspa SH (2005) CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. J Investig Dermatol Symp Proc 10:105–109

    Article  CAS  Google Scholar 

  67. Greaser ML, Warren CM (2012) Protein electrophoresis in agarose gels for separating high molecular weight proteins. Methods Mol Biol 869:111–118

    Article  CAS  Google Scholar 

  68. Greppi GF, Roncada P (2005) La componente proteica del latte caprino. In: Pulina G (ed) L’alimentazione della capra da latte. Avenue Media Publisher, pp 71–99

    Google Scholar 

  69. Wang J, Ugaz VM (2006) Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis. Electrophoresis 27:3349–3358

    Article  CAS  Google Scholar 

  70. Righetti PG, Gelfi C (1997) Electrophoresis gel media: the state of the art. J Chromatogr B Biomed Sci Appl 699:63–75

    Article  CAS  Google Scholar 

  71. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  CAS  Google Scholar 

  72. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  CAS  Google Scholar 

  73. Kim SJ, Yoon SG, Kim SI (2004) Synthesis and characterization of interpenetration polymer network hydrogels composed of alginate and poly(diallyldimethylammonium chloride). J Appl Polym Sci 91:3705–3709

    Article  CAS  Google Scholar 

  74. Zhou M, Smith AM, Das AK, Hodson NW, Collins RF et al (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530

    Article  CAS  Google Scholar 

  75. Yang C, Li D, Liu Z, Hong G, Zhang J et al (2012) Responsive small molecular hydrogels based on adamantane-peptides for cell culture. J Phys Chem B 116:633–638

    Article  CAS  Google Scholar 

  76. Wang H, Yang Z (2012) Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery. Nanoscale 4:5259–5267

    Article  CAS  Google Scholar 

  77. Kaivosoja E, Barreto G, Levón K, Virtanen S, Ainola M et al (2012) Chemical and physical properties of regenerative medicine materials controlling stem cell fate. Ann Med 44:635–650

    Article  CAS  Google Scholar 

  78. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    Article  CAS  Google Scholar 

  79. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    Article  CAS  Google Scholar 

  80. Tanzi MC, Bianchi A, Farè S, Mantero S, Raimondi MT et al (2013) Gruppo Nazionale di Bioingegneria n°32: Approccio Integrato per la Medicina Rigenerativa. PàtronEditore

    Google Scholar 

  81. Weiss P (1934) In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J Exp Zool 69:393–448

    Article  Google Scholar 

  82. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1991) Cell guidance by ultrafine topography in vitro. J Cell Sci 99:73–77

    Article  Google Scholar 

  83. Saito AC, Matsui TS, Ohishi T, Sato M, Deguchi S (2014) Contact guidance of smooth muscle cells is associated with tension- mediated adhesion maturation. Exp Cell Res 327:1–11

    Article  CAS  Google Scholar 

  84. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M et al (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci U S A 96:3104–3107

    Article  CAS  Google Scholar 

  85. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P et al (2000) Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51:164–171

    Article  CAS  Google Scholar 

  86. Massia SP, Stark J, Letbetter DS (2000) Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 21:2253–2261

    Article  CAS  Google Scholar 

  87. Holland NB, Qiu Y, Ruegsegger M, Marchant RE (1998) Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392:799–801

    Article  CAS  Google Scholar 

  88. Liu Y, Chan-Park MB (2010) A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31:1158–1170

    Article  CAS  Google Scholar 

  89. Ward AG, Courts A (1997) The science and technology of gelatin, vol 66. Academic Press, pp 373–374

    Google Scholar 

  90. Liu HJ, Hu YH, Wang HM, Wang JY, Kong DL et al (2011) Soft Matter 7:5430–5436

    Google Scholar 

  91. Type A & B Process Definition (2009) Vyse Gelatin Company. https://www.vyse.com/. Accessed Feb 2015

  92. Das S, Pati F, Choi YJ, Rijal G, Shim JH et al (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  Google Scholar 

  93. Ignatova M, Manolova N, Rashkov I (2013) Electrospun antibacterial chitosan-based fibers. Macromol Biosci 13:860–872

    Google Scholar 

  94. Jiang T, Deng M, James R, Nair LS, Laurencin CT (2014) Micro- and nanofabrication of chitosan structures for regenerative engineering. Acta Biomater 10:1632–1645

    Article  CAS  Google Scholar 

  95. Chen T, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841

    Article  CAS  Google Scholar 

  96. Tezel A, Fredrickson GH (2008) The science of hyaluronic acid dermal fillers. J Cosmet Laser Ther 10:35–42

    Google Scholar 

  97. Lam J, Truong NF, Segura T (2014) Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater 10:1571–1580

    Article  CAS  Google Scholar 

  98. West DC, Kumar S (1989) Hyaluronan and angiogenesis. Ciba Found Symp 143:187–201

    CAS  Google Scholar 

  99. Tempel C, Gilead A, Neeman M (2000) Hyaluronic acid as an anti-angiogenic shield in the preovulatory rat follicle. Biol Reprod 63:134–140

    Article  CAS  Google Scholar 

  100. Slevin M, West D, Kumar P, Rooney P, Kumar S (2004) Hyaluronan

    Google Scholar 

  101. Angiogenesis and malignant disease. Int J Cancer 109:793–794

    Google Scholar 

  102. Kisiel M, Martino MM, Ventura M, Hubbell JA, Hilborn J et al (2013) Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials 34:704–712

    Article  CAS  Google Scholar 

  103. Shu XZ, Liu Y, Palumbo F, Prestwich GD (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24:3825–3834

    Article  CAS  Google Scholar 

  104. Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51:681–689

    Article  CAS  Google Scholar 

  105. McKenna BA, Nicholson TM, Wehr JB, Menzies NW (2010) Effects of Ca, Cu, Al and La on pectin gel strength: implications for plant cell walls. Carbohydr Res 345:1174–1179

    Article  CAS  Google Scholar 

  106. Munarin F, Guerreiro SG, Grellier MA, Tanzi MC, Barbosa MA et al (2011) Pectin-based injectable biomaterials for bone tissue engineering. Biomacromol 12:568–577

    Article  CAS  Google Scholar 

  107. Brandt KA, Goldman SA, Inglin TA (1988) US Patent RE32649 E. Hydrogel-forming polymer compositions for use in absorbent structures

    Google Scholar 

  108. Jang J, Seol YJ, Kim HJ, Kundu J, Kim SW et al (2014) Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. J Mech Behav Biomed Mater 37:69–77

    Article  CAS  Google Scholar 

  109. Guillaume O, Daly A, Lennon K, Gansau J, Buckley SF et al (2014) Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-β3 supplementation and oxygen culture conditions. Acta Biomater 10:1985–1995

    Article  CAS  Google Scholar 

  110. Shteyer E, Ben Ya’acov A, Zolotaryova L, Sinai A, Lichtenstein Y et al (2014) Reduced liver cell death using an alginate scaffold bandage: a novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomater. 10:3209–3216

    Article  CAS  Google Scholar 

  111. Ziv K, Nuhn H, Ben-Haim Y, Sasportas LS, Kempen PJ et al (2014) A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials 35:3736–3743

    Article  CAS  Google Scholar 

  112. Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3:1269

    Article  CAS  Google Scholar 

  113. Douezan S, Dumond J, Brochard-Wyart F (2012) Wetting trasitions of cellular aggregates induced by substrate rigidity. Soft Matter 8:4578–4583

    Article  CAS  Google Scholar 

  114. Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol Chapter 10: Unit 10

    Google Scholar 

  115. Kawagishi E, Nakakura-Ohshima K, Nomura S, Ohshima H (2006) Pulpal responses to cavity preparation in aged rat molars. Cell Tissue Res 326:111–122

    Article  CAS  Google Scholar 

  116. Nakashima M, Iohara K, Zheng L (2006) Gene therapy for dentin regeneration with bone morphogenetic proteins. Curr Gene Ther 6:551–560

    Article  CAS  Google Scholar 

  117. Madan AK, Kramer B (2005) Immunolocalization of fibroblast growth factor-2 (FGF-2) in the developing root and supporting structures of the murine tooth. J Mol Histol 36:171–178

    Article  CAS  Google Scholar 

  118. Annabi B, Naud E, Lee YT, Eliopoulos N, Galipeau J (2004) Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J Cell Biochem 91:1146–1158

    Article  CAS  Google Scholar 

  119. Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 12:77–88

    Article  CAS  Google Scholar 

  120. Nakayama J, Fujioka H, Nagura I, Kokubu T, Makino T et al (2009) The effect of fibroblast growth factor-2 on autologous osteochondral transplantation. Int Orthop 33:275–280

    Article  Google Scholar 

  121. Nakahara T, Nakamura T, Kobayashi E, Inoue M, Shigeno K (2003) Novel approach to regeneration of periodontal tissues based on in-situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng 9:153–162

    Article  CAS  Google Scholar 

  122. Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27

    Article  CAS  Google Scholar 

  123. Lee YH, Chang JJ, Yanga MC, Chienc CT, Lai WF (2012) Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohyd Polym 88:809–819

    Article  CAS  Google Scholar 

  124. Jiang LY, Luo Y (2013) Guided assembly of endothelial cells on hydrogel matrices patterned with microgrooves: a basic model for micro vessel engineering. Soft Matter 9:1113–1121

    Article  CAS  Google Scholar 

  125. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Viswanath Allamraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allamraju, K.V. (2021). Green Hydrogels. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_8

Download citation

Publish with us

Policies and ethics