Skip to main content

Fiberless Optogenetics

  • Chapter
  • First Online:
Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

Optogenetics, which relies on the use of photons to manipulate cellular and subcellular processes, has emerged as an important tool that has transformed several fields including neuroscience. Improvement of optogenetic topographies, together with integration with complementary tools such as electrophysiology, imaging, anatomical and behavioral analysis, facilitated this transformation. However, an inherent challenge associated with optogenetic manipulation of neurons in living organisms, such as rodents, is the requirement for implanting light-delivering optical fibers. This is partly because the current repertoires of light-sensitive opsins are activated only by visible light, which cannot effectively penetrate biological tissues. Insertion of optical fibers and subsequent photo-stimulation inherently damages brain tissue, and fiber tethering can constrain animal behavior. To overcome these technical limitations, we and other research groups recently developed minimally invasive “fiberless optogenetics,” which uses particles that can emit visible light through up-conversion luminescence in response to irradiation with tissue-penetrating near-infrared light. Fiberless optogenetics also offers the opportunity to control neural function over longer time frames in freely behaving animals. In this chapter, we discuss the development of fiberless optogenetics and its application in neuroscience and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR1:

Anion channelrhodopsin-1

AuNP:

Gold nanoparticle

C1V1:

ChR1/VChR1 chimera

ChR:

Channelrhodopsin

ChR2:

Channelrhodopsin-2

CNT:

Carbon nanotube

GlyR:

Glycine receptor

IR:

Infrared

LED:

Light-emitting diode

LMP:

Lanthanide micro-particle

NIR:

Near-infrared

Opto-CRAC:

Near-infrared-stimulable optogenetic platform using the Ca2+ release-activated Ca2+

PL:

Photoluminescence

QD:

Quantum dot

UCNP:

Up-conversion nanoparticle

References

  • Allen BD, Singer AC, Boyden ES (2015) Principles of designing interpretable optogenetic behavior experiments. Learn Mem 22:232–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  • Arrenberg AB, Stainier DYR, Baier H, Huisken J (2010) Optogenetic Control of Cardiac Function. Science 330:971

    Article  CAS  PubMed  Google Scholar 

  • Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–173

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-de-Souza João L, Treger Jeremy S, Dang B, Kent Stephen BH, Pepperberg David R, Bezanilla F (2015) Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86:207–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ (2018) Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359:679

    Article  CAS  PubMed  Google Scholar 

  • Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442

    Article  CAS  PubMed  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Lu L, Shi Z, Wang D, Li L, Li X, Ren Y, Liu C, Cheng D, Kim H, Giebink NC, Wang X, Yin L, Zhao L, Luo M, Sheng X (2018) Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc Natl Acad Sci 115:6632

    Article  CAS  PubMed  Google Scholar 

  • Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30:475–521

    Article  CAS  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Spudich JL (2016) Proteomonas sulcata ACR1: a fast anion channelrhodopsin. Photochem Photobiol 92:257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Hata A, Miyata T, Hirase H (2014) Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics 1:011002

    Article  PubMed  PubMed Central  Google Scholar 

  • He L, Zhang Y, Ma G, Tan P, Li Z, Zang S, Wu X, Jing J, Fang S, Zhou L, Wang Y, Huang Y, Hogan PG, Han G, Zhou Y (2015) Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. elife 4:e10024

    Article  PubMed  PubMed Central  Google Scholar 

  • Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16:2102–2105

    Article  CAS  Google Scholar 

  • Hososhima S, Yuasa H, Ishizuka T, Hoque MR, Yamashita T, Yamanaka A, Sugano E, Tomita H, Yawo H (2015) Near-infrared (NIR) up-conversion optogenetics. Sci Rep 5:16533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Dou Q, Loh XJ (2016) Nanomaterial mediated optogenetics: opportunities and challenges. RSC Adv 6:60896–60906

    Article  CAS  Google Scholar 

  • Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH (2015) Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 6:8264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70:124–127

    Article  PubMed  Google Scholar 

  • Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A (2019) REM sleep–active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 365:1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsmeier S, Heeger P, Terakawa M, Kalies S, Heisterkamp A, Ripken T, Heinemann D (2018) Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells. Sci Rep 8:6533

    Article  PubMed  PubMed Central  Google Scholar 

  • Josselyn SA (2018) The past, present and future of light-gated ion channels and optogenetics. elife 7:e42367

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim TI et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch C, Segev I (2000) The role of single neurons in information processing. Nat Neurosci 3(Suppl):1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Kwon KY, Lee HM, Ghovanloo M, Weber A, Li W (2015) Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front Syst Neurosci 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang L, Teh DBL, Dinh N-D, Chen W, Chen Q, Wu Y, Chowdhury S, Yamanaka A, Sum TC, Chen C-H, Thakor NV, All AH, Liu X (2019) Upconversion amplification through dielectric superlensing modulation. Nat Commun 10:1391

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Wang Y, Chen X, Yang R, Wang Z, Feng J, Wang H, Lai KWC, He J, Wang F, Shi P (2017) Multiplexed optogenetic stimulation of neurons with spectrum-selective upconversion nanoparticles. Adv Healthc Mater 6:17

    Google Scholar 

  • Lin X, Chen X, Zhang W, Sun T, Fang P, Liao Q, Chen X, He J, Liu M, Wang F, Shi P (2018) Core-shell-shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition. Nano Lett 18:948–956

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn ME, Thompson KR, Deisseroth K, Delp SL (2010) Orderly recruitment of motor units under optical control in vivo. Nat Med 16:1161–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugo K, Miao X, Rieke F, Lin LY (2012) Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots. Biomed Opt Express 3:447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara T, Yanagida T, Kawaguchi N, Nakano T, Yoshimoto J, Tsunoda SP, Horigane S-I, Ueda S, Takemoto-Kimura S, Kandori H, Yamanaka A, Yamashita T (2019) Remote control of neural function by X-ray-induced scintillation. bioRxiv:798702

    Google Scholar 

  • McCall JG, Kim TI, Shin G, Huang X, Jung YH, Al-Hasani R, Omenetto FG, Bruchas MR, Rogers JA (2013) Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 8:2413–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister M (2016) Physical limits to magnetogenetics. elife 5:e17210

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Chowdhury S, Yamashita T, Matsubara T, Yawo H, Yuasa H, Yamanaka A (2019) Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles. Cell Rep 26:1033–1043.e1035

    Article  CAS  PubMed  Google Scholar 

  • Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, Ferenczi EA, Tanabe Y, Deisseroth K, Delp SL, Poon AS (2015) Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 12:969–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan H, Wang H, Yu J, Huang X, Hao Y, Zhang C, Ji W, Yang M, Gong X, Wu X, Chang J (2019) Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem. Biomaterials 199:22–31

    Article  CAS  PubMed  Google Scholar 

  • Pansare V, Hejazi S, Faenza W, Prud’homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers. Chem Mater 24:812–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao P, Wang L, Cheng Y, Wang X, Li H, Zheng G, Li Z, Jiang C, Zhou Q, Huang C (2020) Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. Biomed Opt Express 11:1401–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland CE, Susumu K, Stewart MH, Oh E, Mäkinen AJ, O’Shaughnessy TJ, Kushto G, Wolak MA, Erickson JS, Efros L, Huston AL, Delehanty JB (2015) Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes. Nano Lett 15:6848–6854

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Ito M, Nagase M, Sugimura YK, Takahashi Y, Watabe AM, Kato F (2015) The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice. Mol Brain 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah S, Liu JJ, Pasquale N, Lai J, McGowan H, Pang ZP, Lee KB (2015) Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale 7:16571–16577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Tashiro S (2018) Estimation of the effects of medical diagnostic radiation exposure based on DNA damage. J Radiat Res 59:ii121–ii129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar S, van Veggel FC, Raudsepp M (2005) Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+−doped LaF3 nanoparticles. J Am Chem Soc 127:12464–12465

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom PJ, Nelson SB (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12:305–314

    Article  CAS  PubMed  Google Scholar 

  • Spudich JL, Yang CS, Jung KH, Spudich EN (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    Article  CAS  PubMed  Google Scholar 

  • Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM (2015) Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med 21:92–98

    Article  CAS  PubMed  Google Scholar 

  • Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X, Nectow AR, Sauer J, Dyke JP, Dordick JS, Friedman JM (2016) Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee BC, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae WG, Wang H, Mei P, Chou HH, Cui B, Deisseroth K, Ng TN, Bao Z (2015) A skin-inspired organic digital mechanoreceptor. Science 350:313–316

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES (2011) A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8:046021

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler MA, Smith CJ, Ottolini M, Barker BS, Purohit AM, Grippo RM, Gaykema RP, Spano AJ, Beenhakker MP, Kucenas S, Patel MK, Deppmann CD, Guler AD (2016) Genetically targeted magnetic control of the nervous system. Nat Neurosci 19:756–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, Zhang Z, Li D, Fan W, Duan C, Chan EM, Lois C, Xiang Y, Han G (2016) Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10:1060–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav K, Chou AC, Ulaganathan RK, Gao HD, Lee HM, Pan CY, Chen YT (2017) Targeted and efficient activation of channelrhodopsins expressed in living cells via specifically-bound upconversion nanoparticles. Nanoscale 9:9457–9466

    Article  CAS  PubMed  Google Scholar 

  • Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011a) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011b) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K (2011) The microbial opsin family of optogenetic tools. Cell 147:1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Trudeau MC (2015) Handbook of ion channels. CRC Press, Boca Raton

    Book  Google Scholar 

  • Zheng Q, Zhu H, Chen S-C, Tang C, Ma E, Chen X (2013) Frequency-upconverted stimulated emission by simultaneous five-photon absorption. Nat Photonics 7:234–239

    Article  CAS  Google Scholar 

  • Zheng B, Wang H, Pan H, Liang C, Ji W, Zhao L, Chen H, Gong X, Wu X, Chang J (2017) Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy. ACS Nano 11:11898–11907

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115:395–465

    Article  CAS  PubMed  Google Scholar 

  • Zonios G, Bykowski J, Kollias N (2001) Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Investig Dermatol 117:1452–1457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST) (JPMJCR1656) to A.Y., KAKENHI grants (26293046, 26640041, 16H01271, 17H05563, 18H05124, 18KK0223, and 18H02523) to A.Y., and Grant-in-Aid for Scientific Research from Bangladesh Medical Research Council (BMRC/HPNSP-569(1-60)) to S.C.

Declaration of Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Yamanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, S., Yamanaka, A. (2021). Fiberless Optogenetics. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_26

Download citation

Publish with us

Policies and ethics