Skip to main content

NIR Optics and Measurement Methods

  • Chapter
  • First Online:
Near-Infrared Spectroscopy

Abstract

What type of components does a NIR spectrometer consist of? How do these parts determine the performance of the instruments? The measurement targets of NIR spectroscopy span a wide variety from transparent liquids to opaque solid samples, and as described in Chap. 8, the NIR spectrometers are characterized by a wide variety of device specifications and shapes. Consequently, what are the criteria for choosing a spectrometer? In the first half of this chapter (9.1), the basics of the optics that comprise the NIR spectrometer, such as the light source, spectroscopic element, and detector, are explained. This will allow the reader to understand the specifications, that control the functions of the spectrometer. Next, in the latter half of this chapter (9.2), the measurement method is explained for each sample form, namely liquid, solid, and paste. The most characteristic feature of NIR spectroscopy is the use of diffuse reflected light, and the “interactance” method, which is a unique application. It can be inferred that diffuse reflectance method contributes to the expansion of the range of sample forms that are measurable by NIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970). https://doi.org/10.1103/PhysRevLett.24.592

    Article  CAS  Google Scholar 

  2. J. Fraunhoffer, Kurtzer Bericht von the Resultaten neuerer Versuche über die Gesetze des Lichtes, und die Theorie derselbem. Ann D Phys 74, 337–378 (1823)

    Article  Google Scholar 

  3. C. Palmer, Diffraction Grating Handbook, 7th edn. (Newport Corporation, Irvine CA, 2014)

    Google Scholar 

  4. P.B. Fellgett, On the ultimate sensitivity and practical performance of radiation detectors. J. Opt. Soc. Am. 39, 970–976 (1949). https://doi.org/10.1364/JOSA.39.000970

    Article  CAS  PubMed  Google Scholar 

  5. P.R. Griffiths, H.J. Sloane, R.W. Hannah, Interferometers versus monochromators: Separating the optical and digital advantages. Appl. Spectrosc. 31(6), 485 (1977). https://doi.org/10.1366/000370277774464048

    Article  Google Scholar 

  6. P. Connes, How light is analyzed, in Laser and Light, ed. by A. Schawlow (Freeman, San Francisco CA, 1969), p. 35

    Google Scholar 

  7. J. Antila et al., MEMS- and MOEMS-based near-infrared spectrometers, in Encyclopedia of Analytical Chemistry ed. by R.A. Meyers (Wiley Online, 2014)

    Google Scholar 

  8. Y.M. Sabry, D. Khalil, T. Bourouina, Monolithic silicon-micromachined free—space optical interferometers onchip. Laser Photonics Rev. 9(1), 1–24 (2015). https://doi.org/10.1002/lpor.201400069

    Article  CAS  Google Scholar 

  9. T. Kääriäinen, P. Jaanson, A. Vaigu, R. Mannila, A. Manninen, Active hyperspectral sensor based on MEMS Fabry-Pérot interferometer. Sensors 19(9), 2192 (2019). https://doi.org/10.3390/s19092192

    Article  CAS  Google Scholar 

  10. N. Saito, S. Wada, H. Tashiro, Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser. J. Opt. Soc. Am. B 18(9), 1288–1296 (2001). https://doi.org/10.1364/JOSAB.18.001288

    Article  CAS  Google Scholar 

  11. A. Rogalski, History of infrared detectors. Opto-Electron Rev. 20(3), 279–308 (2012). https://doi.org/10.2478/s11772-012-0037-7

    Article  Google Scholar 

  12. P. William, Sampling, sample pretreatment, and sample selection, in Handbook of Near-infrared Analysis, ed. by D.A. Burns, E.W. Ciurczak (CRC Press, New York, 2007), pp. 267–296

    Google Scholar 

  13. S. Kawano, Sampling and sample presentation, in Near-infrared spectroscopy-principles, instrumentations, applications, ed. by H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise (Wiley-VCH, Weinheim, 2002), pp. 115–124

    Google Scholar 

  14. Y. Ozaki, J. Berry, Sampling techniques in near-infrared transmission spectroscopy, in Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, West Sussex, 2002), pp. 953–959

    Google Scholar 

  15. A. Ikehata, T. Itoh, Y. Ozaki, Surface plasmon resonance near-infrared spectroscopy. Anal. Chem. 76(21), 6461–6469 (2004). https://doi.org/10.1021/ac049003a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akifumi Ikehata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikehata, A. (2021). NIR Optics and Measurement Methods. In: Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B. (eds) Near-Infrared Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8648-4_9

Download citation

Publish with us

Policies and ethics