Skip to main content

A Systematic Review of Risk Factors and Risk Assessment Models for Breast Cancer

  • Conference paper
  • First Online:
Mobile Radio Communications and 5G Networks

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 140))

Abstract

Breast cancer is the utmost frequently occurring as well as the most common reason for cancer-related deaths among women community worldwide. In Indian females, breast cancer ranks with the highest rate as 25.8 out of 100,000 with the mortality rate of 12.7 per 100,000 women. Early detection and accurate diagnose will facilitate the clinicians to fight against this deadly disease worldwide. To differentiate between the patients at higher risk and lower risk of breast cancer, various risk factors and risk analysis models have been developed. Machine learning-based models help in the categorization of high-risk and low-risk patients. Once categorized properly, high-risk patients require more surveillance, prophylactic count, and other preventive measures like chemoprevention or surgery. Patients with low risk should also be kept under surveillance to minimize the probability to turn in high-risk patients. In this paper, the authors have identified the key risk factors for breast cancer. The authors have done a systematic review of different risk assessment models for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Health Observatory (2018). Geneva: sWorld Health Organization; https://www.who.int/gho/database/en

  2. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Reinier GS Meester, Afsaneh Barzi, Ahmedin Jemal (2017) Colorectal cancer statistics. CA: A Cancer J Clin 67(3):177–193

    Google Scholar 

  3. Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM (2004) Ductal carcinoma in situ of the breast. N Eng J Med 350(14):1430–1441

    Article  Google Scholar 

  4. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093

    Article  Google Scholar 

  5. Breast Cancer Facts and Figures (2019–2020), https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019–2020.pdf

    Google Scholar 

  6. Tryggvadottir L, Sigvaldason H, Olafsdottir GH, Jonasson JG, Jonsson T, Tulinius H, Eyfjörd JE (2006) Population-based study of changing breast cancer risk in Icelandic BRCA2 mutation carriers 1920–2000. J Natl Cancer Inst 98(2):116–122

    Article  Google Scholar 

  7. Evans DG, Shenton A, Woodward E, Lalloo F, Howell A, Maher ER (2008) Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a clinical cancer genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer 8(1):1–9

    Article  Google Scholar 

  8. Calle EE, Heath CW, Miracle-McMahill HL, Coates RJ, Liff JM, Franceschi S, Talamini R (1996) Breast cancer and hormonal contraceptives: further results: Collaborative group on hormonal factors in breast cancer. Contraception 54(3):1–106

    Google Scholar 

  9. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA A Cancer J Clin 58(2):71–96

    Article  Google Scholar 

  10. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G (2006) Race, breast cancer subtypes, and survival in the carolina breast cancer study. JAMA 295(21):2492–2502

    Article  Google Scholar 

  11. Jones LA, Chilton JA (2002) Impact of breast cancer on African American women: priority areas for research in the next decade. Am J Public Health 92(4):539–542

    Article  Google Scholar 

  12. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236

    Article  Google Scholar 

  13. Dupont WD, Parl FF, Hartmann WH, Brinton LA, Winfield AC, Worrell JA, Schuyler PA, Plummer WD (1993) Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer 71(4):1258–1265

    Article  Google Scholar 

  14. Marchbanks PA, McDonald JA, Wilson HG, Folger SG, Mandel MG, Daling JR, Bernstein L (2002) Oral contraceptives and the risk of breast cancer. N Engl J Med 346(26):2025–2032

    Article  Google Scholar 

  15. Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15(1):36–47

    Article  Google Scholar 

  16. Thiebaut AC (2007) Victor kipnis: dietary fat underreporting and risk estimation. Public health nutrition 10(2):212–213

    Article  Google Scholar 

  17. Dhahri H, Al Maghayreh E, Mahmood A, Elkilani W, Faisal Nagi M (2019) Automated breast cancer diagnosis based on machine learning algorithms. J Healthc Eng

    Google Scholar 

  18. Amir E, Freedman OC, Seruga B, Evans DG (2010) Assessing women at high risk of breast cancer: a review of risk assessment models. JNCI J Natl Cancer Inst 102(10): s680–691

    Google Scholar 

  19. Alghunaim S, Al-Baity HH (2019) On the scalability of machine-learning algorithms for breast cancer prediction in big data context. IEEE Access 7:91535–s91546

    Google Scholar 

  20. Cintolo-Gonzalez JA, Braun D, Blackford AL, Mazzola E, Acar A, Plichta JK, Griffin M, Hughes KSHughes (2017) Breast cancer risk models: a comprehensive overview of existing models, validation, and clinical applications. Breast Cancer Res Treat 164(2):263–284

    Google Scholar 

  21. Tirona MT, Sehgal R, Ballester O (2010) Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools. Cancer Invest 28(7):743–750

    Article  Google Scholar 

  22. Ming C, Viassolo V, Probst-Hensch N, Chappuis PO, Dinov ID, Katapodi MC (2019) Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Breast Cancer Res 21(1):75

    Article  Google Scholar 

  23. Berry DA, Iversen ES Jr, Gudbjartsson DF, Hiller EH, Garber JE, Peshkin BN, Lerman C (2002) BRCAPRO validation, the sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 20(11):2701–2712

    Article  Google Scholar 

  24. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92(20):1651–1656

    Article  Google Scholar 

  25. Agarap AFM (2018) On breast cancer detection: an application of machine learning algorithms on the wisconsin diagnostic dataset. In: Proceedings of the 2nd international conference on machine learning and soft computing pp 5–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, D., Kumar, R., Jain, A. (2021). A Systematic Review of Risk Factors and Risk Assessment Models for Breast Cancer. In: Marriwala, N., Tripathi, C.C., Kumar, D., Jain, S. (eds) Mobile Radio Communications and 5G Networks. Lecture Notes in Networks and Systems, vol 140. Springer, Singapore. https://doi.org/10.1007/978-981-15-7130-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7130-5_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7129-9

  • Online ISBN: 978-981-15-7130-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics