Skip to main content

Phenolics as Plant Protective Companion Against Abiotic Stress

  • Chapter
  • First Online:
Plant Phenolics in Sustainable Agriculture

Abstract

Abiotic stress has become a major risk to food security and is predominantly the leading cause of extensive crop and agriculture produce loss worldwide. It has been estimated that about 50% of major agriculture produce is lost due to various abiotic stress factors. Plants perceive risk alarm by virtue of their receptors and activate protective mechanism to sustain against abiotic stresses. These protective mechanisms include accumulation of protective metabolites such as phenolics, terpenes and alkaloids, out of which phenolics play a vital role in the survival of the plant under various abiotic stresses. Enhanced synthesis of phenolics assures the survival, persistence, endurance and competitiveness of the plant against abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MB, Singh N, Shohael AM, Hahn EJ, Paek KY (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171(1):147–154

    Article  CAS  Google Scholar 

  • Amarowicz R, Weidner S, Wójtowicz I, Karmac M, Kosinska A, Rybarczyk A (2010) Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biotechnol 4:90–96

    Google Scholar 

  • Anasori P, Asghari G (2008) Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Res Pharm Sci 3:59–63

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aydinalp C, Marinova S (2009) The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulgarian J Agr Sci 15(4):347–350

    Google Scholar 

  • Bahler BD, Steffen KL, Orzolek MD (1991) Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. Hort Sci 26:736

    Google Scholar 

  • Balla K, Bencze S, Janda T, Veisz O (2009) Analysis of heat stress tolerance in winter wheat. Acta Agronomica Hungarica 57(4):437–444

    Article  Google Scholar 

  • Bartolo ME, Wallner SJ (1986) Cold hardiness and cellulase resistance induced by wounding. Plant Physiol Suppl 80:122

    Article  Google Scholar 

  • Bennet RJ, Breen C, Fey MV (1985) Aluminium induced changes in the morphology of the quiescent centre, proximal meristem and growth region of the root of Zea mays. S Afr J Bot 51(5):355–362

    Article  CAS  Google Scholar 

  • Bialonska D, Zobel AM, Kuras M, Tykarska T, Sawicka-Kapusta K (2007) Phenolic compounds and cell structure in bilberry leaves affected by emissions from a Zn–Pb smelter. Water Air Soil Pollut 181(1–4):123

    Article  CAS  Google Scholar 

  • Bourgou S, Kchouk ME, Bellila A, Marzouk B (2010) Effect of salinity on phenolic composition and biological activity of tunician Nigella sativa shoots and roots. C R Biol 331(1):48–55

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiol, Rockville, pp 1158–1203

    Google Scholar 

  • Cabello-Hurtado F, Durst F, Jorrin JV, Werck-Reichhart D (1998) Coumarins in Helianthus tuberosus: characterization, induced accumulation and biosynthesis. Phytochemistry 49(4):1029–1036

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chalker-Scott L, Fuchigami LH (2018) The role of phenolic compounds in plant stress responses. In: Low temperature stress physiology in crops. CRC Press, Boca Raton, pp 67–80

    Chapter  Google Scholar 

  • Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103

    CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194(4):541–549

    Article  CAS  Google Scholar 

  • Chutipaijit S, Cha-Um S, Sompornpailin K (2009) Differential accumulations of proline and flavonoids in indica rice varieties against salinity. Pak J Bot 41(5):2497–2506

    CAS  Google Scholar 

  • Ciriakova A (2009) Heavy metals in the vascular plants of Tatra Mountains. Oecologia Montana 18(1–2):23–26

    Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  CAS  PubMed  Google Scholar 

  • Commisso M, Toffali K, Strazzer P, Stocchero M, Ceoldo S, Baldan B, Levi M, Guzzo F (2016) Impact of phenylpropanoid compounds on heat stress tolerance in carrot cell cultures. Front Plant Sci 7:1439

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronin G, Lodge DM (2003) Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia 137:32–41

    Article  PubMed  Google Scholar 

  • Daiponmak W, Theerakulpisut P, Thanonkao P, Vanavichit A, Prathepha P (2010) Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Sci Asia 36:286–291

    Article  CAS  Google Scholar 

  • Danai-Tambhale S, Vinay KV, Shriram V (2011) Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress. J Stress Physiol Biochem 7(4):387–397

    Google Scholar 

  • De Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248

    Article  CAS  Google Scholar 

  • Del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9:289–300

    Article  PubMed  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138(2):157–165

    Article  CAS  Google Scholar 

  • Devlin WS, Gustine DL (1992) Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol 100(3):1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewick PM, Martin M (1979) Biosynthesis of pterocarpan and isoflavan phytoalexins in Medicago sativa: the biochemical interconversion of pterocarpans and 2′ hydroxyisoflavans. Phytochemistry 18(4):591–596

    Article  CAS  Google Scholar 

  • Doncheva S, Stoyanova Z (2007) Plant response to copper and zinc hydroxidesulphate and hydroxidecarbonate used as an alternative copper and zinc sources in mineral nutrition. Rom Agric Res (7–8):15–23

    Google Scholar 

  • Falcinelli B, Lutts S, Sileoni V, Marconi O, Perretti G, Quinet M, Benincasa P (2017) Germination under moderate salinity increases phenolic content and antioxidant activity in rapeseed (Brassica napus var oleifera del.) sprouts. Molecules 22:1–13

    Google Scholar 

  • Farid M, Shakoor MB, Ehsan S, Ali S, Zubair M, Hanif MS (2013) Morphological, physiological and biochemical responses of different plant species to Cd stress. Int J Chem Biochem Sci 3:53–60

    Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique HM (2015) Salt stress in maize: effects, resistance mechanisms and management: a review. Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Fatemeh S, Hasan EM, Vahid N (2018) Growth enhancement and salt tolerance of safflower by salicylic acid. Curr Plant Biol 13:16–22

    Article  Google Scholar 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2(4):191–206

    Article  Google Scholar 

  • Gagnon H, Ibrahim RK (1997) Effects of various elicitors on the accumulation and secretion of isoflavonoids in white lupin. Phytochemistry 44(8):1463–1467

    Article  CAS  Google Scholar 

  • Galli V, Borowski JM, Messias RS, Perin EC, Bamberg AL, Rombaldi CV (2016) Mild salt stress improves strawberry fruit quality. Food Sci Technol 73:693–699

    CAS  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 15:4324–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Jha M, Tuteja N (2015) DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J 2015:1–11

    Article  Google Scholar 

  • Gray DE, Pallardy SG, Garrett HE, Rottinghaus G (2003) Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots. Planta Med 69(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Griffith M, Huner NPA, Espelie KE, Kolattukudy PE (1985) Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves. Protoplasma 125(1–2):53–64

    Article  CAS  Google Scholar 

  • Guo ZJ, Nakagawara S, Sumitani K, Ohta Y (1993) Effect of intracellular glutathione level on the production of 6-methoxymellein in cultured carrot (Daucus carota) cells. Plant Physiol 102(1):45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical and molecular characterization. Int Gen Genomics 1:1–18

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatata MM, Abdel-Aal EA (2008) Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. Am Eurasian J Agric Environ Sci 4(6):655–669

    Google Scholar 

  • Hawley EL, Deeb RA, Kavanaugh MC, Jacobs JA (2004) Treatment technologies for chromium (VI). In: Chromium (VI) handbook. CRC Press, Boca Raton, pp 275–309

    Google Scholar 

  • He J, Giusti M (2010) Anthocyanins: natural colorants with health- promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  • Hernandez I, Alegre L, Munne-Bosch S (2006) Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants. Phytochemistry 67:1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Hichem H, Mounir D, Naucer EA (2009) Differential responses of two maize (zea mays l) varieties to salt stress: changes on polyphenol composition of foliage and oxidative damages. Ind Crop Prod 30:144–151

    Article  CAS  Google Scholar 

  • Hifney AF, El-Shazoly RM, Abdel-Baset R (2019) Co-deprivation of photosynthetic electron transport mineral pairs significantly enhanced antioxidant contents in a local isolate of Arthrospira (Spirulina) platensis. S Afr J Bot 121:1–6

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, Silva D, JAT & Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 872875:1–35

    Google Scholar 

  • Hosseini Z, Poorakbar L (2013) Zinc toxicity on antioxidative response in (Zea mays L.) at two different pH. J Stress Physiol Biochem 9(1):66–73

    Google Scholar 

  • Isshiki R, Galis I, Tanakamaru S (2014) Farinose flavonoids are associated with high freezing tolerance in fairy primrose (Primula malacoides) plants. J Integr Plant Biol 56(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Izaguirre-Mayoral ML, Sinclair TR (2005) Soybean genotypic difference in growth, nutrient accumulation and ultrastructure in response to manganese and iron supply in solution culture. Ann Bot 96(1):149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain R, Shrivastava AK, Solomon S, Yadav RL (2007) Low temperature stress-induced biochemical changes affect stubble bud sprouting in sugarcane (Saccharum spp. hybrid). Plant Growth Regul 53(1):17–23

    Article  CAS  Google Scholar 

  • Janas KM, Cvikrova M, PaÅ‚agiewicz A, Szafranska K, Posmyk MM (2002) Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci 163(2):369–373

    Article  CAS  Google Scholar 

  • Janas KM, ZieliÅ„ska-Tomaszewska J, Rybaczek D, Maszewski J, Posmyk MM, Amarowicz R, KosiÅ„ska A (2010) The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. J Plant Physiol 167(4):270–276

    Article  CAS  PubMed  Google Scholar 

  • Jini D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24(2):97–108

    Article  Google Scholar 

  • Kasuga J, Hashidoko Y, Nishioka A, Yoshiba M, Arakawa K, Fujikawa S (2008) Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity. Plant Cell Environ 31(9):1335–1348

    Article  CAS  PubMed  Google Scholar 

  • Kattab H (2007) Role of glutathione & polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline condition. Aust J Basic Appl Sci 1(3):323–334

    CAS  Google Scholar 

  • Khaled T, Fadhila T, Moulay B, Leila AA, Amel E, Jose MM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Khan MR, Khan MM (2010) Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Aust J Basic Appl Sci 4(6):1036–1046

    CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1–2):197–207

    Article  CAS  PubMed  Google Scholar 

  • Khan TA, Mazid, Mohammad F (2011) Status of secondary plant products under abiotic stress: an overview. J Stress Physiol Biochem 7(2):75–98

    Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid induce abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S, Chul Chang S (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol Plant 121(2):182–186

    Article  CAS  PubMed  Google Scholar 

  • Kisa D, Elmastas M, Ozturk L, Kayir O (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem 59(6):813–820

    Article  CAS  Google Scholar 

  • Kokubun T, Harborne JB (1994) A survey of phytoalexin induction in leaves of the Rosaceae by copper ions. Zeitschrift fur Naturforschung C 49(9–10):628–634

    Article  Google Scholar 

  • Kondo N, Kawashima M (2000) Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and Antioxidative enzymes. J Plant Res 113:311–317

    Article  CAS  Google Scholar 

  • Kovacik J, Klejdus B (2014) Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chem 142:334–341

    Article  CAS  PubMed  Google Scholar 

  • Kovacik J, Klejdus B, Backor M (2009) Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J Plant Physiol 166(13):1460–1464

    Article  CAS  PubMed  Google Scholar 

  • Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N (2012) Light quality affects flavonoid biosynthesis in young berries of cabernet sauvignon grape. Phytochemistry 78:54–64

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Agrawal SB, Singh S, Dubey NK (2009) Supplemental ultraviolet-B induced changes in essential oil composition and total phenolics of Acorus calamus L (sweet flag). Ecotox Environ Safe 72(7):2013–2019

    Article  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Lattanzio V (2013) Phenolic compound: introduction. Nat Prod:1543–1580

    Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Oh MM (2015) Short-term low temperature increases phenolic antioxidant levels in kale. Hortic Environ Biotechnol 56(5):588–596

    Article  CAS  Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang X, Wang D, Zou Z, Lianga Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crop Prod 33:84–88

    Article  CAS  Google Scholar 

  • Lo Piero AR, Puglisi I, Rapisarda P, Petrone G (2005) Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53(23):9083–9088

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52(6):1526–1533

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278

    Article  CAS  PubMed  Google Scholar 

  • Marinelli F, Di Gregorio S, Ronchi VN (1991) Phytoalexin production and cell death in elicited carrot cell suspension cultures. Plant Sci 77(2):261–266

    Article  CAS  Google Scholar 

  • Marquez-Garcia B, Fernandez-Recamales M, Cordoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. Environ Exp Bot 75(1):159–166

    Article  CAS  Google Scholar 

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838

    Article  PubMed  PubMed Central  Google Scholar 

  • Minh LT, Minh TN, Khang DT, Thu Ha PT, Tuyen PT, Quan NV, Xuan TD (2016) Effects of salinity stress on growth and phenolics of rice (Oryza sativa L). Int Lett Nat Sci 57:1–10

    Google Scholar 

  • Mirshekali H, Hadi HASHEM, Amirnia R, Khodaverdiloo H (2012) Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). Int J Agric 2(3):247–254

    Google Scholar 

  • Misra N, Misra R, Mariam A, Yusuf K, Yusuf L (2014) Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus roseus grown under salinity stress. Afr J Tradit Complement 11(5):118–125

    Article  CAS  Google Scholar 

  • Moesta P, Grisebach H (1980) Effects of biotic and abiotic elicitors on phytoalexin metabolism in soybean. Nature 286(5774):710

    Article  CAS  Google Scholar 

  • Mohamed AA, Amina AA (2008) Alterations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under sea water stress. Am Euras J Sci Res 3(2):139–146

    Google Scholar 

  • Nasu K, Shiraishi T, Yoshioka H, Hori N, Ichinose Y, Yamada T, Oku H (1992) An endogenous suppressor of the defense response in Pisum sativum. Plant Cell Physiol 33(5):617–626

    CAS  Google Scholar 

  • Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Bio 2(4):969–974

    CAS  Google Scholar 

  • Nogues S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obara N, Hasegawa M, Kodama O (2002) Induced volatiles in elicitor-treated and rice blast fungus-inoculated rice leaves. Biosci Biotechnol Biochem 66(12):2549–2559

    Article  CAS  PubMed  Google Scholar 

  • Oh MM, Carey EE, Rajashekar CB (2009) Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol Biochnol 47(7):578–583

    Article  CAS  Google Scholar 

  • Olien CR, Smith MN (1997) Ice adhesions in relation to freeze stress. Plant Physiol 60:499–503

    Article  Google Scholar 

  • Omer C, Jolita R, Kadir ET, Zydrunas S, Cuneyt C, Dursun K, Mehmat SO (2017) The effect of salt and drought stress on phenolic accumulation in greenhouse-grown hypericum pruinatum. Ital J Agron 12(918):271–275

    Google Scholar 

  • Owolabi IO, Yupanqui CT, Siripongvutikorn S (2018) Enhancing secondary metabolites (emphasis on phenolics and antioxidants) in plants through elicitation and metabolomics. Pak J Nutr 17:411–420

    Article  CAS  Google Scholar 

  • Padda MS, Picha DH (2008) Effect of low temperature storage on phenolic composition and antioxidant activity of sweet potatoes. Postharvest Biol Technol 47(2):176–180

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Paroschy JH, Meiering AG, Peterson RL, Hostetter G, Neff A (1980) Mechanical winter injury in grapevine trunks. Am J Enol Vitic 31(3):227–232

    Google Scholar 

  • Parry AD, Tiller SA, Edwards R (1994) The effects of heavy metals and root immersion on isoflavonoid metabolism in alfalfa (Medicago sativa L). Plant Physiol 106(1):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennycooke JC, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia× hybrida). Environ Exp Bot 53(2):225–232

    Article  CAS  Google Scholar 

  • Perez-Ilzarbe J, Hernandez T, Estrella I, Vendrell M (1997) Cold storage of apples (cv. Granny Smith) and changes in phenolic compounds. Zeitschrift fur Lebensmitteluntersuchung und-Forschung A 204(1):52–55

    Article  CAS  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Safe 72(2):596–602

    Article  CAS  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  • Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167(5):1159–1169

    Article  CAS  Google Scholar 

  • Rakwal R, Tamogami S, Kodama O (1996) Role of jasmonic acid as a signaling molecule in copper chloride-elicited rice phytoalexin production. Biosci Biotechnol Biochem 60(6):1046–1048

    Article  CAS  Google Scholar 

  • Rana S, Bhushan S (2016) Apple phenolics as nutraceuticals: assessment, analysis and application. J Food Sci Technol 53(4):1727–1738

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Rebey B, Bourgou S, Marzouk B, Ml F, Ksouris R (2017) Salinity impact on seed yield, polyphenols composition and antioxidant activity of fennel (Foeniculum vulgare mill) extracts. CSIEA 3:2610–2619

    Google Scholar 

  • Regvar M, Bukovnik U, Likar M, Kreft I (2012) UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Open Life Sci 7:275–283

    Article  CAS  Google Scholar 

  • Rellan-Alvarez R, Ortega-Villasante C, Alvarez-Fernandez A, Del Campo FF, Hernandez LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279(1–2):41–50

    Article  CAS  Google Scholar 

  • Rezai K, Farboodnia T (2008) Manganese toxicity effects on chlorophyll content and antioxidant enzymes in pea plant (Pisum sativum L. cv Qazvin). Agric J 3(6):454–458

    CAS  Google Scholar 

  • Rezazadeh A, Ghasemnezhad A, Barani M, Telmadarrehei T (2012) Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L) leaves. Res J Med Plant 6(3):245–252

    Article  CAS  Google Scholar 

  • Rivera-Pastrana DM, Yahia EM, González-Aguilar GA (2010) Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J Sci Food Agric 90(14):2358–2365

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160(2):315–321

    Article  CAS  PubMed  Google Scholar 

  • Rouxel T, Kollmann A, Boulidard L, Mithen R (1991) Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassicaceae. Planta 184(2):271–278

    Article  CAS  PubMed  Google Scholar 

  • Rozita KA, Sahebali B, Fariborz ZN, Shahin O (2018) Effect of selenium application on phenylalanine ammonia-lyase (pal) activity, phenol leakage and total phenolic content in garlic (allium sativum L.) under nacl stress. Inform Process Agric 5:339–344

    Google Scholar 

  • Saiema R, Asiya H, Azooz MM, Muneeb R, Siddhiqi OT, Parvaiz A (2013) Salt stress: causes, type and responses of plant. In: Ecophysiology and responses of plant under salt stress. Springer, New York, pp 1–25

    Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51(342):81–88

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Schubert TS (1992) Manganese toxicity of plants in Florida, vol 353. Florida Department of Agriculture and Consumer Services Division of Plant Industry, Gainesville

    Google Scholar 

  • Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127(3):887–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutzendubel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus canescens roots. Plant Physiol Biochem 40(6–8):577–584

    Article  CAS  Google Scholar 

  • Selmar D, Kleinwächter M (2013) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crop Prod 42:558–566

    Article  CAS  Google Scholar 

  • Semid WM, Taha RS, Abdelhamid MT, Rady MT (2014) Foliar applied α-tocopherol enhances salt tolerance in Vicia faba L. S Afr J Bot 95:24–31

    Article  CAS  Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Gupta NK, Gupta S, Hasegawa H (2005) Effect of salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotype. Photosynthetica 43(4):609–613

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 217037:1–26

    Google Scholar 

  • Shemet SA, Fedenko VS (2005) Accumulation of phenolic compounds in maize seedlings under toxic cadmium influence. Fiziologiia i biokhimiia kul'turnykh rastenii 37(6):505

    CAS  Google Scholar 

  • Singh Y, Malik CP (2017) Phenols and their antioxidant activity in Brassica juncea seedlings growing under HgCl2 stress. J Microbiol Biotechnol Res 1(4):124–130

    Google Scholar 

  • Solecka D, Boudet AM, Kacperska A (1999) Phenylpropanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiol Biochem 37(6):491–496

    Article  CAS  Google Scholar 

  • Sonar BA, Desai NM, Gaikwad DK, Chavan PD (2011) Assessment of salinity-induced antioxidative defense system in colubrina asiatica brong. J Stress Physiol Biochem 7(3):193–200

    Google Scholar 

  • Steiner F, Zoz T, Junior ASP, Castagnara DD, Dranski JAL (2012) Effects of aluminum on plant growth and nutrient uptake in young physic nut plants. Semina: Ciencias Agrarias 33(5):1779–1788

    CAS  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    Article  CAS  PubMed  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42(4):481–486

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, StrzaÅ‚ka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35(4):985–999

    Article  CAS  Google Scholar 

  • Taulavuori K, Pyysalo A, Taulavuori E, Julkunen-Tiitto E (2018) Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ Exp Bot 3414:1–18

    Google Scholar 

  • Tebayashi SI, Ishihara A, Iwamura H (2001) Elicitor-induced changes in isoflavonoid metabolism in red clover roots. J Exp Bot 52(357):681–689

    Article  CAS  PubMed  Google Scholar 

  • Tounekti T, Vadel AM, Ennajeh M, Khemira H, Bosch SM (2011) Ionic interactions and salinity affect monoterpene and phenolic diterpene composition in rosemary (rosmarinus officinalis). Plant Nutr Soil Sci 00:1–11

    Google Scholar 

  • Truta E, Gherghel D, Bara ICI, Vochita GV (2013) Zinc-induced genotoxic effects in root meristems of barley seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(1):150–156

    Article  CAS  Google Scholar 

  • Tsonev T, Lidon FJC (2012) Zinc in plants--an overview. Emirates J Food Agric 24(4):322–334

    Google Scholar 

  • Uleberg E, Rohloff J, Jaakola L, Trost K, Junttila O, Haggman H, Martinussen I (2012) Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L). J Agric Food Chem 60:10406–10414

    Article  CAS  PubMed  Google Scholar 

  • Valifard V, Mohsenzadeh S, Kholdebarin B, Rowshan V (2014) Effect of salt stress on volatile compound, total phenolic compound and antioxidant activities of Salvia mirzayanii. South African J Bot 93:92–97

    Article  CAS  Google Scholar 

  • Valifard M, Mohsenzadeh S, Kholdebarin B (2017) Salinity effects on phenolic content and antioxidant activity of salvia macrosiphon. Iran J Sci Technol 41:295–300

    Article  Google Scholar 

  • Valko MMHCM, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Vantuyl JM, Vangroenestijin JE, Toxopeus SJ (1985) Low light intensity and flower bud abortion in Asiatic hybrid lilies. I Genetic variation among cultivars and progenies of a DTALLEL cross. Euphytica 34:83–92

    Article  Google Scholar 

  • Vardar F, Unal M (2007) Aluminum toxicity and resistance in higher plants. Adv Mol Bio 1:1–12

    Google Scholar 

  • Vassilev A, Nikolova A, Koleva L, Lidon F (2011) Effects of excess Zn on growth and photosynthetic performance of young bean plants. J Phytology 3(6):58–62

    CAS  Google Scholar 

  • Veersham C (2004) In elicitation: medicinal plant biotechnology. CBS Publisher, pp 270–293

    Google Scholar 

  • Weidner S, Karolak M, Karamac M, Kosinska A, Amarowicz R (2009) Phenolic compounds and properties of antioxidants in grapevine roots [Vitis vinifera L.] under drought stress followed by recovery. Acta Soc Bot Pol 78(2):97–103

    Article  CAS  Google Scholar 

  • Xu YBD, Wang G, Cao F, Zhu C, Wang G, Yousry A (2014) Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L). Nanjing Forestry Univ 30:51–54

    CAS  Google Scholar 

  • Yan K, Zhao S, Bian L, Chen X (2017) Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. Plant Physiol Biochem 112:326–334

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Pei W, Mian W, Maomao S, Zhenxin U, Runqiang Y (2019) GABA mediates phenolic compound accumulation and the antioxidant system enhancement in germinating Hulless Barley under Nacl stress. Food Chem 270:593–601

    Article  CAS  Google Scholar 

  • Yang L, Wen K, Ruan X, Zhao Y, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:276

    Article  CAS  Google Scholar 

  • Yoshikawa M (1978) Diverse modes of action of biotic and abiotic phytoalexin elicitors. Nature 275(5680):546

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430

    Article  CAS  PubMed  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Ser Bot 47(2):157–164

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Song J, Wang H, Feng G (2010) Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia. J Plant Eco 3(4):259–267

    Article  Google Scholar 

  • Zhang X, Wei J, Tian J, Li N, Jia L, Shen W, Cui J (2019) Enhanced anthocyanin accumulation of immature radish microgreens by hydrogen-rich water under short wavelength light. Sci Hortic 247:75–85

    Article  CAS  Google Scholar 

  • Zornoza P, Vazquez S, Esteban E, Fernández-Pascual M, Carpena R (2002) Cadmium-stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiol Biochem 40(12):1003–1009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M. et al. (2020). Phenolics as Plant Protective Companion Against Abiotic Stress. In: Lone, R., Shuab, R., Kamili, A. (eds) Plant Phenolics in Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_12

Download citation

Publish with us

Policies and ethics