Skip to main content

Memristive Computational Amplifiers and Equation Solvers

  • Conference paper
  • First Online:
Modelling, Simulation and Intelligent Computing (MoSICom 2020)

Abstract

Computational amplifiers are extremely useful for generating waveforms and solving numerous equations. In this work, memristive computational amplifier circuits were developed on spice simulator platform for the generation of step, pulse, exponential, and parabolic signals. On one side, decaying characteristics have been obtained based on the controlled decrement (or increment) in the memristance when the memristor is connected in the output (or input) loop of the amplifier. On the other side, rising characteristics were generated through exchanging the polarity of the input applied signal. These characteristics were further employed to solve exponential, linear, and parabolic equations. External voltage signals and internal circuit resistances were utilized to control the signal parameters such as rise time, fall time, delay, and amplitude. In the proposed circuits, the extension or reduction in the range of the generated signals was made possible through adjusting the external bias voltages. This work paves the way for futuristic low power, improved latency, and reduced on-chip area-based computational memristive amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua LO (1971) Memristor—the missing circuit element. IEEE Trans Circ Theory 18(5):507–519. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80–83. https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  3. Williams RS (2014) How we found the missing memristor. In: Memristors and memristive systems. Springer, New York, pp 3–16. https://doi.org/10.1007/978-1-4614-9068-5_1

  4. Raj PMP, Subramaniam A, Priya S, Banerjee S, Kundu S (2019) Programming of memristive artificial synaptic crossbar network using PWM techniques. J Circ Syst Comput 28(12):S0218126619502013. https://doi.org/10.1142/S0218126619502013

  5. Chua L (2011) Resistance switching memories are memristors. Appl Phys A 102(4):765–783. https://doi.org/10.1007/s00339-011-6264-9

    Article  MATH  Google Scholar 

  6. Raj PMP, Ranjan Kalita A, Hudait MK, Priya S, Kundu S (2018) Nonlinear DC equivalent circuits for ferroelectric memristor and its FSM application. Integr Ferroelectr 192(1):16–27. https://doi.org/10.1080/10584587.2018.1521667

  7. Kvatinsky S, Belousov D, Liman S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC (2014) MAGIC—memristor-aided logic. IEEE Trans Circ Syst II Express Briefs 61(11):895–899. https://doi.org/10.1109/TCSII.2014.2357292

  8. Yakopcic C, Taha TM, Subramanyam G, Pino RE (2013) Generalized memristive device SPICE model and its application in circuit design. IEEE Trans Comput Des Integr Circ Syst 32(8):1201–1214. https://doi.org/10.1109/TCAD.2013.2252057

  9. Alibart F, Gao L, Hoskins BD, Strukov DB (2012) High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23(7):075201. https://doi.org/10.1088/0957-4484/23/7/075201

    Article  Google Scholar 

  10. Shin S, Kim K, Kang S-M (2009) Memristor-based fine resolution programmable resistance and its applications. In: 2009 International conference on communications, circuits and systems. IEEE, pp 948–951. https://doi.org/10.1109/ICCCAS.2009.5250376

  11. Zamarreño-Ramos C, Camuñas-Mesa LA, Pérez-Carrasco JA, Masquelier T, Serrano-Gotarredona T, Linares-Barranco B (2011) On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front Neurosci 5:26. https://doi.org/10.3389/fnins.2011.00026

    Article  Google Scholar 

  12. Merrikh-Bayat F, Bagheri Shouraki S, Merrikh-Bayat F (2014) Memristive fuzzy edge detector. J Real-Time Image Process 9(3):479–489. https://doi.org/10.1007/s11554-012-0254-9

    Article  Google Scholar 

  13. Pershin YV, Di Ventra M (2010) Practical approach to programmable analog circuits with memristors. IEEE Trans Circ Syst I Regul Pap 57(8):1857–1864. https://doi.org/10.1109/TCSI.2009.2038539

  14. Mahvash M, Parker, AC (2010) A memristor SPICE model for designing memristor circuits. In: 2010 53rd IEEE international midwest symposium on circuits and systems. IEEE, pp 989–992. https://doi.org/10.1109/MWSCAS.2010.5548803

  15. Biolek Z, Biolek D, Biolková V (2009) Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2):210–214

    MATH  Google Scholar 

  16. Kvatinsky S, Ramadan M, Friedman EG, Kolodny A (2015) VTEAM: a general model for voltage-controlled memristors. IEEE Trans Circ Syst II Express Briefs 62(8):786–790. https://doi.org/10.1109/TCSII.2015.2433536

  17. Shin S, Kim K, Kang S-M (2011) Memristor applications for programmable analog ICs. IEEE Trans Nanotechnol 10(2):266–274. https://doi.org/10.1109/TNANO.2009.2038610

    Article  Google Scholar 

  18. Yu Q, Qin Z, Yu J, Mao Y (2009) Transmission characteristics study of memristors based Op-Amp circuits. In: 2009 International conference on communications, circuits and systems. IEEE, pp 974–977. https://doi.org/10.1109/ICCCAS.2009.5250356

  19. Bickerstaff K, Swartzlander EE (2010) Memristor-based arithmetic. In: 2010 Conference record of the forty fourth Asilomar conference on signals, systems and computers. IEEE, pp 1173–1177. https://doi.org/10.1109/ACSSC.2010.5757715

  20. Merrikh-Bayat F, Shouraki SB (2011) Memristor-based circuits for performing basic arithmetic operations. Procedia Comput Sci 3:128–132. https://doi.org/10.1016/J.PROCS.2010.12.022

    Article  Google Scholar 

  21. Mouttet B (2009) Proposal for memristors in signal processing. Presented at the nano-net, pp 11–13. https://doi.org/10.1007/978-3-642-02427-6_3

  22. Xu K-D, Zhang YH, Wang L, Yuan MQ, Fan Y, Joines WT, Liu QH (2014) Two memristor SPICE models and their applications in microwave devices. IEEE Trans Nanotechnol 13(3):607–616. https://doi.org/10.1109/TNANO.2014.2314126

  23. Li L, Chew ZJ (2012) Printed circuit board based memristor in adaptive lowpass filter. Electron Lett 48(25):1610–1611. https://doi.org/10.1049/el.2012.2918

    Article  Google Scholar 

  24. Driscoll T, Quinn J, Klein S, Kim HT, Kim BJ, Pershin YV, Di Ventra M, Basov DN (2010) Memristive adaptive filters. Appl Phys Lett 97(9):093502. https://doi.org/10.1063/1.3485060

    Article  Google Scholar 

  25. Knag P, Lu W, Zhang Z (2014) A native stochastic computing architecture enabled by memristors. IEEE Trans Nanotechnol 13(2):283–293. https://doi.org/10.1109/TNANO.2014.2300342

    Article  Google Scholar 

  26. Yilmaz Y, Mazumder P (2017) A drift-tolerant read/write scheme for multilevel memristor memory. IEEE Trans Nanotechnol 16(6):1016–1027. https://doi.org/10.1109/TNANO.2017.2741504

    Article  Google Scholar 

  27. Zidan MA, Fahmy HAH, Hussain MM, Salama KN (2013) Memristor-based memory: the sneak paths problem and solutions. Microelectr J 44(2):176–183. https://doi.org/10.1016/j.mejo.2012.10.001

    Article  Google Scholar 

  28. Jo K-H, Jung C-M, Min K-S, Kang S-M (2010) Self-adaptive write circuit for low-power and variation-tolerant memristors. IEEE Trans Nanotechnol 9(6):675–678. https://doi.org/10.1109/TNANO.2010.2052108

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors P. M. P. Raj acknowledges UGC, Govt. of India, for Ph.D. fellowship support through NET JRF (3509/(OBC) (NET-JAN 2017)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michael Preetam Raj, P., Kalita, A.R., Kundu, S. (2020). Memristive Computational Amplifiers and Equation Solvers. In: Goel, N., Hasan, S., Kalaichelvi, V. (eds) Modelling, Simulation and Intelligent Computing. MoSICom 2020. Lecture Notes in Electrical Engineering, vol 659. Springer, Singapore. https://doi.org/10.1007/978-981-15-4775-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4775-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4774-4

  • Online ISBN: 978-981-15-4775-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics