Skip to main content

Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications

  • Chapter
  • First Online:
Exoskeleton Robots for Rehabilitation and Healthcare Devices

Abstract

Robot-assisted rehabilitation and assistance devices are emerging as a new possibility to help individuals with motor impairment for recovering or compensating lost motor control. In this context, The AGoRA (Development of an Adaptable Robotic Platform for Gait Rehabilitation and Assistance) Project is focused on the development on a novel and affordable robotic platform to provide physical and cognitive support in rehabilitation scenarios. This project combines biomechatronic exoskeletons with a smart walker for mobility assistance and gait rehabilitation. This chapter reviews key concepts developed into The AGoRA project, such as: biomecatronic design, sensor interfaces, control strategies for exoskeletons and smart walkers and some examples performing trials with non-pathological and pathological users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Health Service UK. Physiotherapy, 2018

    Google Scholar 

  2. M. Martins, A. Frizera-Neto, C.P. Santos, R. Ceres, Review and classification of human gait training and rehabilitation devices, in Assistive Technology Research Series, ed. by IOS Press, chapter Everyday T (IOS Press Ebook, 2011), pp. 774 – 781

    Google Scholar 

  3. J.H. Carr, R.B. Shepherd, Stroke Rehabilitation - Guidelines for Exercise and Training to Optimize Motor Skill, 1st edn. (Butterworth-Heinemann, Oxford, 2003)

    Google Scholar 

  4. H. Bateni, B.E. Maki, Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch. Phys. Med. Rehabil. 86(1), 134–145 (2005)

    Article  Google Scholar 

  5. M.M. Martins, C.P. Santos, A. Frizera-Neto, R. Ceres, Assistive mobility devices focusing on smart walkers: classification and review. Robot. Auton. Syst. 60(4), 548–562 (2012)

    Article  Google Scholar 

  6. C. Werner, P. Ullrich, M. Geravand, A. Peer, J.M. Bauer, K. Hauer, A systematic review of study results reported for the evaluation of robotic rollators from the perspective of users. Disabil. Rehabil.: Assist. Technol. 13(1), 31–39 (2018)

    Google Scholar 

  7. A. Pennycott, D. Wyss, H. Vallery, V. Klamroth-Marganska, R. Riener, Towards more effective robotic gait training for stroke rehabilitation: a review. J. NeuroEngineering Rehabil. 9(1), 65 (2012)

    Article  Google Scholar 

  8. J.L. Pons, Emerging Therapies in Neurorehabilitation II, vol. 10 (2016)

    Google Scholar 

  9. A.T. Asbeck, S.M.M. De Rossi, K.G. Holt, C.J. Walsh, A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 34(6), 744–762 (2015)

    Article  Google Scholar 

  10. M.B. Popovic, Biomechatronics (Academic, Cambridge, 2019)

    Google Scholar 

  11. D. Simonetti, N.L. Tagliamonte, L. Zollo, D. Accoto, E. Guglielmelli, Biomechatronic Design Criteria of Systems for Robot-Mediated Rehabilitation Therapy (Elsevier Ltd., London, 2018)

    Book  Google Scholar 

  12. D.S. Pieringer, M. Grimmer, M.F. Russold, R. Riener, Review of the actuators of active knee prostheses and their target design outputs for activities of daily living, in IEEE International Conference on Rehabilitation Robotics, pp. 1246–1253 (2017)

    Google Scholar 

  13. A. Chiri, M. Cempini, S.M.M. De Rossi, T. Lenzi, F. Giovacchini, N. Vitiello, M.C. Carrozza, On the design of ergonomic wearable robotic devices for motion assistance and rehabilitation, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 6124–6127

    Google Scholar 

  14. A. Schiele, F.C.T. van der Helm, Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006)

    Article  Google Scholar 

  15. J.C. Perry, J. Rosen, S. Burns, Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)

    Article  Google Scholar 

  16. P. Corke, Robotics, Vision and Control, vol. 73, Springer Tracts in Advanced Robotics (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  17. S. Toochinda, W. Wannasuphoprasit, Design and development of an assistive hand device for enhancing compatibility and comfortability, pp. 1–6 (2018)

    Google Scholar 

  18. L. Saccares, I. Sarakoglou, N.G. Tsagarakis, It-knee: an exoskeleton with ideal torque transmission interface for ergonomic power augmentation, in IEEE International Conference on Intelligent Robots and Systems (2016), pp. 780–786

    Google Scholar 

  19. S.K. Banala, S.H. Kim, S.K. Agrawal, J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), in 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 17 (IEEE, 2008), pp. 653–658

    Google Scholar 

  20. A. Zoss, H. Kazerooni, A. Chu, On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX), in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2005), pp. 3132–3139

    Google Scholar 

  21. H. Kawamoto, S. Lee, S. Kanbe, Y. Sankai, Power assist method for HAL-3 using EMG-based feedback controller (2004), pp. 1648–1653

    Google Scholar 

  22. D. Accoto, F. Sergi, N.L. Tagliamonte, G. Carpino, A. Sudano, E. Guglielmelli, Robomorphism: a nonanthropomorphic wearable robot. IEEE Robot. Autom. Mag. 21(4), 45–55 (2014)

    Article  Google Scholar 

  23. G. Chen, C.K. Chan, Z. Guo, H. Yu, A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit.Al Rev. Biomed. Eng. 41(4–5), 343–363 (2013)

    Google Scholar 

  24. M. Del Carmen, J.G.-V. Sanchez-Villamañan, D. Torricelli, J.C. Moreno, J.L. Pons, Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J. NeuroEngineering Rehabil. 16(1), 55 (2019)

    Article  Google Scholar 

  25. M.B. Naf, K. Junius, M. Rossini, C. Rodriguez-Guerrero, B. Vanderborght, D. Lefeber, Misalignment compensation for full human-exoskeleton kinematic compatibility: state of the art and evaluation. Appl. Mech. Rev. 70(5), 1–19 (2018)

    Article  Google Scholar 

  26. M.B. Näf, A.S. Koopman, S. Baltrusch, C. Rodriguez-Guerrero, B. Vanderborght, D. Lefeber, Passive back support exoskeleton improves range of motion using flexible beams. Front. Robot. AI, 5, 1–16 (2018)

    Google Scholar 

  27. K. Langlois, M. Moltedo, T. Bacek, C. Rodriguez-Guerrero, B. Vanderborght, D. Lefeber, Design and development of customized physical interfaces to reduce relative motion between the user and a powered ankle foot exoskeleton, in 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), vol. 2018-August (IEEE, 2018), pp. 1083–1088

    Google Scholar 

  28. A.H.A. Stienen, E.E.G. Hekman, F.C.T. van der Helm, H. van der Kooij, Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Robot. 25(3), 628–633 (2009)

    Article  Google Scholar 

  29. A. Gams, T. Petric, T. Debevec, J. Babic, Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans. Biomed. Eng. 60(6), 1636–1644 (2013)

    Article  Google Scholar 

  30. M.D. Sanchez Manchola, L.J. Arciniegas Mayag, M. Munera, C.A. Cifuentes Garcia, Impedance-based backdrivability recovery of a lower-limb exoskeleton for knee rehabilitation, in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC) (IEEE, 2019), pp. 1–6

    Google Scholar 

  31. M. Islam, E.T. Hsiao-Wecksler, Detection of gait modes using an artificial neural network during walking with a powered ankle-foot orthosis. J. Biophys. (Hindawi Publishing Corporation : Online) 2016, 7984157 (2016)

    Google Scholar 

  32. M. Cempini, S.M.M. De Rossi, T. Lenzi, N. Vitiello, M.C. Carrozza, Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method. IEEE Trans. Robot. 29(1), 236–250 (2013)

    Article  Google Scholar 

  33. J. Beil, C. Marquardt, T. Asfour, Self-aligning exoskeleton hip joint: kinematic design with five revolute, three prismatic and one ball joint, in IEEE International Conference on Rehabilitation Robotics (2017), pp. 1349–1355

    Google Scholar 

  34. V. Grosu, C. Rodriguez-Guerrero, S. Grosu, B. Vanderborght, D. Lefeber, Design of smart modular variable stiffness actuators for robotic-assistive devices. IEEE/ASME Trans. Mechatron. 22(4), 1777–1785 (2017)

    Article  Google Scholar 

  35. K. Schmidt, J.E. Duarte, M. Grimmer, A. Sancho-Puchades, H. Wei, C.S. Easthope, R. Riener, The myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers. Front. Neurorobotics 11, 1–16 (2017)

    Article  Google Scholar 

  36. F. El Zahraa Wehbi, W. Huo, Y. Amirat, M. El Rafei, M. Khalil, S. Mohammed, Active impedance control of a knee-joint orthosis during swing phase, in IEEE International Conference on Rehabilitation Robotics (2017), pp. 435–440

    Google Scholar 

  37. E.H.F. Van Asseldonk, J.F. Veneman, R. Ekkelenkamp, J.H. Buurke, F.C.T. Van Der Helm, H. Van Der Kooij, The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 360–370 (2008)

    Google Scholar 

  38. S. Hussain, P.K. Jamwal, M.H. Ghayesh, S.Q. Xie, Assist-as-needed control of an intrinsically compliant robotic gait training orthosis. IEEE Trans. Industr. Electron. 64(2), 1675–1685 (2017)

    Article  Google Scholar 

  39. J. Schuy, A. Burkl, P. Beckerle, S. Rinderknecht, A new device to measure load and motion in lower limb prosthesis - tested on different prosthetic feet, in 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014, pp. 187–192

    Google Scholar 

  40. M. Molinari, M. Masciullo, F. Tamburella, N.L. Tagliamonte, I. Pisotta, J.L. Pons, Exoskeletons for over-ground gait training in spinal cord injury. Biosyst. Biorobotics 19, 253–265 (2018)

    Article  Google Scholar 

  41. S. Hussain, S.Q. Xie, P.K. Jamwal, Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans. Cybern. 43(3), 1025–1034 (2013)

    Article  Google Scholar 

  42. M. Dzahir, S. Yamamoto, Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 3(2), 120–148 (2014)

    Article  Google Scholar 

  43. M. Sanchez-Manchola, D. Gomez-Vargas, D. Casas-Bocanegra, M. Munera, C.A. Cifuentes. Development of a robotic lower-limb exoskeleton for gait rehabilitation: AGoRA exoskeleton, in 2018 IEEE ANDESCON (IEEE, 2018), pp. 1–6

    Google Scholar 

  44. Z. Taha, A.P.P. Abdul Majeed, A.F. Zainal Abidin, M.A. Hashem Ali, I.M. Khairuddin, A. Deboucha, M.Y. Wong Paul Tze, A hybrid active force control of a lower limb exoskeleton for gait rehabilitation. Biomedizinische Technik 63(4), 491–500 (2018)

    Google Scholar 

  45. A.L. Jutinico, J.C. Jaimes, F.M. Escalante, J.C. Perez-Ibarra, M.H. Terra, A.A.G. Siqueira, Impedance control for robotic rehabilitation: a robust markovian approach. Front. Neurorobotics 11, 1–16 (2017)

    Google Scholar 

  46. G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, A. Goswami, Active-impedance control of a lower-limb assistive exoskeleton, in 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, 00(c) (2007), pp. 188–195

    Google Scholar 

  47. N. Hogan, Impedance control: an approach to manipulation, in 1984 American Control Conference, (1984), pp. 304–313

    Google Scholar 

  48. S. Jezernik, G. Colombo, M. Morari, Rehabilitation with a 4-DOF robotic orthosis. Robot. Autom. 20(3), 574–582 (2004)

    Google Scholar 

  49. X. Li, Y. Pan, G. Chen, H. Yu, Multi-modal control scheme for rehabilitation robotic exoskeletons. Int. J. Robot. Res., 1–19 (2017)

    Google Scholar 

  50. W. Huo, S. Mohammed, Y. Amirat, K. Kong, Fast gait mode detection and assistive torque control of an exoskeletal robotic orthosis for walking assistance. IEEE Trans. Rob. 34(4), 1035–1052 (2018)

    Google Scholar 

  51. C. Bayón, S. Lerma, O. Ramírez, J.I. Serrano, M.D. Del Castillo, R. Raya, I. Martínez, Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population: short report. J. NeuroEngineering Rehabil., 1–6 (2016)

    Google Scholar 

  52. A.J. Del-Ama, A.D. Koutsou, J.C. Moreno, A. De-los Reyes, A. Gil-Agudo, J.L. Pons, Review of hybrid exoskeletons to restore gait following spinal cord injury. J. Rehabil. Res. Dev. 49(4), 497 (2012)

    Google Scholar 

  53. A.C. Villa-Parra, D. Delisle-Rodriguez, J. Souza Lima, A. Frizera-Neto, T. Bastos, Knee impedance modulation to control an active orthosis using insole sensors. Sensors (Switzerland) 17(12) (2017)

    Google Scholar 

  54. C.L. Brockett, G.J. Chapman, Biomechanics of the ankle. Orthop. Trauma 30(3), 232–238 (2016)

    Google Scholar 

  55. C.H. Soo, J.M. Donelan, Mechanics and energetics of step-to-step transitions isolated from human walking. J. Exp. Biol. 213(24), 4265–4271 (2010)

    Google Scholar 

  56. K.P. Cote, M.E. Brunet, B.M. Gansneder, S.J. Shultz, Effects of pronated and supinated foot postures on static and dynamic postural stability. J. Athl. Train. 40(1), 41–46 (2005)

    Google Scholar 

  57. J. Perry, Gait Analysis: Normal and Pathological Function (SLACK Incorporated, Thorofare, 1992)

    Google Scholar 

  58. L. Renfrew, A.C. Lord, A.K. McFadyen, D. Rafferty, R. Hunter, R. Bowers, P. Mattison, O. Moseley, L. Paul, A comparison of the initial orthotic effects of functional electrical stimulation and ankle-foot orthoses on the speed and oxygen cost of gait in multiple sclerosis. J. Rehabil. Assist. Technol. Eng. 5, 205566831875507 (2018)

    Google Scholar 

  59. J.L. Burpee, M.D. Lewek, Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke. Clin. Biomech. 30(10), 1102–1107 (2015)

    Google Scholar 

  60. C.J. Wutzke, G.S. Sawicki, M.D. Lewek, The influence of a unilateral fixed ankle on metabolic and mechanical demands during walking in unimpaired young adults. J. Biomech. 45(14), 2405–2410 (2012)

    Google Scholar 

  61. J. Jiang, K.-M. Lee, J. Ji, Review of anatomy-based ankle—foot robotics for mind, motor and motion recovery following stroke: design considerations and needs. Int. J. Intell. Robot. Appl. 2(3), 267–282 (2018)

    Google Scholar 

  62. M. Moltedo, T. Baček, T. Verstraten, C. Rodriguez-Guerrero, B. Vanderborght, D. Lefeber, REVIEW Open Access Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking. J. NeuroEngineering Rehabil. 15, 86 (2018)

    Article  Google Scholar 

  63. A.H. Weerasingha, W.P.K. Withanage, A.D.K.H. Pragnathilaka, R.K.P.S. Ranaweera, R.A.R.C. Gopura, Powered ankle exoskeletons: existent designs and control systems. Proc. Int. Conf. Artif. Life Robot. 23, 76–83 (2018)

    Google Scholar 

  64. J. Casas, A. Leal-Junior, C.R. Díaz, A. Frizera, M. Múnera, C.A. Cifuentes, Large-range polymer optical-fiber strain-gauge sensor for elastic tendons in wearable assistive robots. Materials 12(9), 1443 (2019)

    Google Scholar 

  65. J.L. Pons, Wearable Robots: Biomechatronic Exoskeletons (Wiley, Madrid, 2008)

    Book  Google Scholar 

  66. P.K. Jamwal, S. Hussain, S.Q. Xie, Review on design and control aspects of ankle rehabilitation robots. Disabil. Rehabil.: Assist. Technol. 10(2), 93–101 (2013)

    Google Scholar 

  67. L. Marchal-Crespo, D.J. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury. J. NeuroEngineering Rehabil. 6(1), 20 (2009)

    Google Scholar 

  68. Y.M. Khalid, D. Gouwanda, S. Parasuraman, A review on the mechanical design elements of ankle rehabilitation robot. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 229(6), 452–463 (2015)

    Google Scholar 

  69. F.W. Van Hook, D. Demonbreun, B.D. Weiss, Ambulatory devices for chronic gait disorders in the elderly. Am. Fam. Physician 67(8), 1717–1724 (2003)

    Google Scholar 

  70. R. Constantinescu, C. Leonard, C. Deeley, R. Kurlan, Assistive devices for gait in Parkinson’s disease. Park. Relat. Disord. 13(3), 133–138 (2007)

    Google Scholar 

  71. S.D. Sierra, M. Garzón, M. Múnera, C.A. Cifuentes, Human—robot—environment interaction interface for smart walker assisted gait: AGoRA walker. Sensors 19(13), 2897 (2019)

    Google Scholar 

  72. C.A. Cifuentes, A. Frizera, Human-Robot Interaction Strategies for Walker-Assisted Locomotion, vol. 115, Springer Tracts in Advanced Robotics (Springer International Publishing, Cham, 2016)

    Google Scholar 

  73. M. Amboni, P. Barone, J.M. Hausdorff, Cognitive contributions to gait and falls: evidence and implications. Mov. Disord. 28(11), 1520–1533 (2013)

    Google Scholar 

  74. M. Montero-Odasso, J. Verghese, O. Beauchet, J.M. Hausdorff, Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J. Am. Geriatr. Soc. 60(11), 2127–2136 (2012)

    Google Scholar 

  75. W.M. Scheidegger, R.C. de Mello, S.D. Sierra, M.F. Jimenez, M.C. Munera, C.A. Cifuentes, A. Frizera-Neto, A novel multimodal cognitive interaction for walker-assisted rehabilitation therapies, in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), (IEEE, 2019), pp. 905–910

    Google Scholar 

  76. J.-M. Belda-Lois, S. Mena-del Horno, I. Bermejo-bosch, J.C. Moreno, J.L. Pons, D. Farina, M. Iosa, M. Molinari, F. Tamburella, A. Ramos, A. Caria, T. Solis-escalante, C. Brunner, M. Rea, Rehabilitation of gait after stroke: a top down approach. J. NeuroEngineering Rehabil. 66 (2011)

    Google Scholar 

  77. T. Mikolajczyk, I. Ciobanu, D.I. Badea, A. Iliescu, S. Pizzamiglio, T. Schauer, T. Seel, P.L. Seiciu, D.L. Turner, M. Berteanu, Advanced technology for gait rehabilitation: an overview. Adv. Mech. Eng. 10(7), 1–19 (2018)

    Google Scholar 

  78. L.R. Sheffler, J. Chae, Technological advances in interventions to enhance poststroke gait. Phys. Med. Rehabil. Clin. N. Am. 24(2), 305–323 (2013)

    Google Scholar 

  79. S.L. Chaparro-Cárdenas, A.A. Lozano-Guzmán, J.A. Ramirez-Bautista, A. Hernández-Zavala, A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil.: Assist. Technol. 0(0), 1–15 (2018)

    Google Scholar 

  80. A. Frizera, J. Gallego, E. Rocon de Lima, A. Abellanas, J. Pons, R. Ceres, Online cadence estimation through force interaction in walker assisted gait, in ISSNIP Biosignals and Biorobotics Conference 2010 (Vitória, 2010), pp. 1 – 5

    Google Scholar 

  81. M.F. Jiménez, M. Monllor, A. Frizera, T. Bastos, F. Roberti, R. Carelli, Admittance controller with spatial modulation for assisted locomotion using a smart walker. J. Intell. Robot. Syst., 1 (2018)

    Google Scholar 

  82. A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J.T. Matthews, J. Dunbar-Jacob, S. Thrun, A robotic walker that provides guidance, in 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1 (2003), pp.25–30

    Google Scholar 

  83. A. Wachaja, P. Agarwal, M. Zink, M.R. Adame, K. Möller, W. Burgard, Navigating blind people with walking impairments using a smart walker. Auton. Robot. 41, 555–573 (2017)

    Google Scholar 

  84. M. Martins, C. Santos, A. Frizera, R. Ceres, A review of the functionalities of smart walkers. Med. Eng. Phys. 37(10), 917–928 (2015)

    Article  Google Scholar 

  85. M. Belas Dos Santos, C. Barros de Oliveira, A. Dos Santos, C. Garabello Pires, Vi. Dylewski, R.M. Arida, A comparative study of conventional physiotherapy versus robot-assisted gait training associated to physiotherapy in individuals with ataxia after stroke. Behav. Neurol. 2018, 2892065 (2018)

    Google Scholar 

  86. L.F. Aycardi, C.A. Cifuentes, M. Múnera, C. Bayón, O. Ramírez, S. Lerma, A. Frizera, E. Rocon, Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. NeuroEngineering Rehabil. 16(1), 15 (2019)

    Google Scholar 

  87. S.D. Sierra, M.F. Jimenez, M.C. Munera, A. Frizera-Neto, C.A. Cifuentes, Remote-operated multimodal interface for therapists during walker-assisted gait rehabilitation: a preliminary assessment, in 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (IEEE, 2019), pp. 528–529

    Google Scholar 

  88. M. Martins, C. Santos, E. Seabra, A. Frizera, R. Ceres, Design, implementation and testing of a new user interface for a smart walker, in 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (IEEE, 2014), pp. 217–222

    Google Scholar 

  89. S.D. Sierra, M.F. Jimenez, M.C. Munera, T. Bastos, A. Frizera-Neto, C.A. Cifuentes, A therapist helping hand for walker-assisted gait rehabilitation: a pre-clinical assessment, in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC) (IEEE, 2019), pp. 1–6

    Google Scholar 

  90. R.C. Mello, S.D. Sierra, M. Munera, C.A. Cifuentes, M.R.N. Ribeiro, A. Frizera-Neto, Cloud robotics experimentation testbeds: a cloud-based navigation case study, in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC) (IEEE, 2019), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Sierra .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sierra, S., Arciniegas, L., Ballen-Moreno, F., Gomez-Vargas, D., Munera, M., Cifuentes, C.A. (2020). Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In: Exoskeleton Robots for Rehabilitation and Healthcare Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4732-4_5

Download citation

Publish with us

Policies and ethics