Skip to main content

Role of Microbiotic Factors Against the Soil-Borne Phytopathogens

  • Chapter
  • First Online:
Phytobiomes: Current Insights and Future Vistas

Abstract

Phytopathogenic association with beneficial microbiotic factors influences rhizospheric soil as well as plant growth parameters. Rhizospheric microbiotic factors check nutrients to supplement the lethal sensitivity against soilborne phytopathogens. All microbes besides harming plant growth are also able to reduce or check infection or disease caused by phytopathogens. Each microorganism showed specific antagonistic mechanisms against specific phytopathogens. This chapter discussed the importance of nematodes belonging to order Aphelenchida and Tylenchida which proved to be good management model organisms to inhibit or kill phytopathogens just like plant growth, promoting bacteria and fungi. Beneficial microbes protect plants from a greater extension of damage and induced plant vigor, growth, and development. Besides the beneficial role of microbiotic factors interacting with plants against soilborne phytopathogens present in soil ecology, it canĀ also helps to develop products for agricultural biotechnology, biofertilizers, plant strengtheners, phytostimulation, and biopesticides. This chapter appraises the importance of microbiota factors and their mechanisms against soilborne phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Jiang D, Fu YP (2017) Trichoderma Spp. as Antagonist of Rhizoctonia solani. J Plant Pathol Microbiol 8(3). https://doi.org/10.4172/2157-7471.100040

  • Abdallah AB, Jabnoun KRH, Mejdoub TB, Daami RM (2015) Soil-borne and compost-borne Aspergillus species for biologically controlling post-harvest diseases of potatoes incited by Fusarium sambucinum and Phytophthora erythroseptica. J Plant Pathol Microbiol 6:313. https://doi.org/10.4172/2157-7471.1000313

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Abdel-Aziz Shadia M (2013) Extracellular metabolites produced by a novel strain, bacillus alvei NRC-14: 5. Multiple plant-growth promoting properties. J Basic Appl Sci Res 3(1):670ā€“682

    Google ScholarĀ 

  • Abed H, Rouag N, Mouatassem D, Rouabhi A (2016) Screening for Pseudomonas and Bacillus antagonistic rhizobacteria strains for the biocontrol of Fusarium wilt of chickpea. Eur J Soil Sci 5(3):182ā€“191. https://doi.org/10.18393/ejss.2016.3.182-191

    ArticleĀ  Google ScholarĀ 

  • Agrios NA (2005) Plant Pathology, 3rd edn. Academic Press, USA, pp 220ā€“222

    Google ScholarĀ 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1ā€“20

    Google ScholarĀ 

  • Ahemad M, Khan MS, Zaidi A, Wani PA (2009) Remediation of herbicides contaminated soil using microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova Science Publishers, New York

    Google ScholarĀ 

  • Ahmed E, Holmstrom SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196ā€“208

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Al-Hetar MY, Abidin Z, Sariah M, Wong MY (2011) Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. J Appl Polym Sci 120(4):2434ā€“2439. https://doi.org/10.1002/app.33455

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ali A, Muhammad MTM, Sijam K, Siddiqui Y (2010) Potential of chitosan coating in delaying the postharvest anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II papaya. Int J Food Sci Technol 45(10):2134ā€“2140. https://doi.org/10.1111/j.1365-2621.2010.02389

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ali MA, Shahzadi M, Zahoor A, Dababat AA, Toktay H, Bakhsh A, Nawaz AM, Hongjie (2019) Resistance to cereal cyst nematodes in wheat and barley: an emphasis on classical and modern approaches. Int J Mol Sci 20(2):432. https://doi.org/10.3390/ijms20020432

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Aliashkevich A, Alvarez L, Cava F (2018) New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00683

  • Al-Mekhlafi N, Karem A, Abdullah YQ, Farhan AM, Saeed MA (2019) Efficacy of native Trichoderma spp. in controlling Fusarium wilt of tomato plants in green house, Yemen. Clin Biotechnol Microbiol 4(1)

    Google ScholarĀ 

  • Al-Naemi FA, Ahmed TA, Nishad R, Radwan O (2016) Antagonistic effects of Trichoderma harzianum isolates against Ceratocystis radicicola: pioneering a biocontrol strategy against black scorch disease in date palm trees. J Phytopathol 164(7ā€“8):433ā€“570

    Google ScholarĀ 

  • Alonso LM, Kleiner D, Ortega E (2008) Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates. Mycorrhiza 18(4):197ā€“204

    Google ScholarĀ 

  • Andres E, Boer H, Koivula A, Samain E, Driguez H, Armand S, Cottaz S (2017) Engineering chitinases for the synthesis of chitin oligosaccharides: catalytic amino acid mutations convert the GHfamily 18 glycoside hydrolases into transglycosylases. J Mol Catal B Enzym 74:89ā€“96

    Google ScholarĀ 

  • Andrey YM (2018) Yeasts of the soilĀ ā€“ obscure but precious. Yeast, published by John Wiley & Sons, Ltd, 35:369ā€“378. https://doi.org/10.1002/yea.3310

  • Anoop K, Suseela BR, Shiva KN (2017) A survey on the in cadence of rhizome rot disease in major turmeric growing tracts of Sount India and isolation of associated organisms. Indian J Adv Plant Res (IJAPR) 1(16):17ā€“23

    Google ScholarĀ 

  • Arora NK, Khare E, Ji Hoon O, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24(4):581ā€“585

    Google ScholarĀ 

  • Awad HM, El-Enshasy HA, Hanapi SZ, Hamed ER, Rosidi B (2014) A new chitinase-producer strain Streptomyces glauciniger WICC-A03: isolation and identification as a biocontrol agent for plants phytopathogenic fungi. Nat Prod Res 28(24):2273ā€“2277

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Babeva I, Belyanin AI (1966) Yeasts of the rhizosphere. Microbiologiya. Bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719ā€“725

    Google ScholarĀ 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:513ā€“521

    CASĀ  Google ScholarĀ 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606. https://doi.org/10.3389/fmicb.2018.01606

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Basnayake S, Birch RG (1995) A gene from Alcaligenes denitrificans that confers albicidin resistance by reversible antibiotic binding. Article Microbiol 141(3):551ā€“560. https://doi.org/10.1099/13500872-141-3-551

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bauermeister A, Amador IR, Pretti CP, Giese EC, Oliveira AL, Alves da CMA et al (2015) Ī²-(1ā†’3)-Glucanolytic yeasts from Brazilian grape microbiota: production and characterization of Ī²-Glucanolytic enzymes by Aureobasidium pullulans 1WA1 cultivated on fungal mycelium. J Agric Food Chem 63(1):269ā€“278

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Beneduzi A, Ambrosini A, Passaglia MPL (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 (suppl)):1044ā€“1051

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Benyagoub M, Rhlid RB, BĆØlanger RR (1996) Purification and characterization of new fatty acids with antibiotic activity produced by Sporothrix flocculosa. J Chem Ecol 22:405ā€“413

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Berg G (2009) Plantā€“microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11ā€“18. https://doi.org/10.1007/s00253-009-2092-7

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Berg G, Opelt K, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250ā€“261

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bhattacharjee R, Dey U (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8(17):1749ā€“1762. https://doi.org/10.5897/AJMR2013.6356

    ArticleĀ  Google ScholarĀ 

  • Bhattacharya A (2013) Fungicidal potential of chitosan against phytopathogenic Fusarium solani. J Exp Biol Agric Sci 1(4):259ā€“263

    Google ScholarĀ 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327ā€“1350

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brewer MT, Larkin RP (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot 24(11):939ā€“950

    Google ScholarĀ 

  • Brien OPA (2017) Biological control of plant diseases. Australas Plant Pathol 46:293ā€“304

    Google ScholarĀ 

  • Bubici G, Kaushal M, Prigigallo IM, Carmen GLC, Jesus MB (2019) Biological control agents against Fusarium wilt of Banana. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00616

  • Camacho E, Chrissian C, Cordero RJB, Liporagi LL, Stark RE, Casadevall A (2017) N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture. Microbiology 163:1540ā€“1556. https://doi.org/10.1099/mic.0.000552

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann DJ, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8:4360. https://doi.org/10.1038/s41598-018-22782-z

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cetintas R, Kusek M, Fateh SA (2018) Effect of some plant growth-promoting rhizobacteria strains on root-knot nematode, Meloidogyne incognita, on tomatoes. Egypt J Biol Pest Control 28:7

    Google ScholarĀ 

  • Chang PK, Hua SS, Sarreal SB et al (2015) Suppression of aflatoxin biosynthesis in Aspergillus flavus by 2-phenylethanol is associated with stimulated growth and decreased degradation of branched-chain amino acids. Toxins (Basel) 7:3887ā€“3902

    CASĀ  Google ScholarĀ 

  • Chang KF, Hwang SF, Ahmed HU, Strelkov SE, Harding MW, Conner RL, McLaren DL, Gossen BD, Turnbull GD (2018) Disease reaction to Rhizoctonia solani and yield losses in soybean. Can J Plant Sci 98(1):115ā€“124

    CASĀ  Google ScholarĀ 

  • Chatterton S, Punja KZ (2009) Chitinase and Ī²-1,3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulate against fungal plant pathogens. Can J Microbiol 55(4):356ā€“367. https://doi.org/10.1139/W08-156

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Choudhury SR, Traquair JA, Jarvis WR (1994) 4-Methyl-7,11- heptadecadienal and 4-methyl-7,11-heptadecadienoic acids: new antibiotics from Sporothrix flocculosa and Sporothrix rugulosa. J Nat Prod 57:700ā€“704

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. Am Phytopathol Soc:539

    Google ScholarĀ 

  • Coria ML, Mendoza JL, Hernandez S, Nieto S (2016) Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+-ATPase. Mol Plant-Microbe Interact 29:797ā€“806

    Google ScholarĀ 

  • Cornejo CHA, Rodriguez ML, Penagos CC, Bucio LJ (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579ā€“1592

    Google ScholarĀ 

  • Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol 211:1065ā€“1076. https://doi.org/10.1111/nph.13957

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier M-A, Rohr R, Comte G, MoĆ«nne-Loccoz Y, Prigent-Combaret C (2011) The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol pseudomonas fluorescens F113 on azospirillum brasilense phytostimulators. Microbiology 157(6):1694ā€“1705

    CASĀ  PubMedĀ  Google ScholarĀ 

  • de Zelicourt A, Synek L, Saad MM, Alzubaidy H, Jalal R, Xie Y et al (2018) Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2,keto-4-methylthiobutyric acid production. PLoS Genet 14(3):e1007273

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Deshmukh P, Shinde S (2016) Beneficial role of rhizosphere Mycoflora in the field of agriculture: an overview. Int J Sci Res (IJSR) 5(8):529ā€“533

    Google ScholarĀ 

  • Druzhinina IS, Seidl SV, Herrera EA, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749ā€“759. https://doi.org/10.1038/nrmicro2637

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Duffy BK (2001) Competition. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. John Wiley & Sons, Inc., New York, pp 243ā€“244

    Google ScholarĀ 

  • Elhady A, Gine A, Topalovic O, Jacquiod S, Sorensen SJ, Sorribas FJ, Heuer H (2017) Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS One 12(5):e0177145

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • El-Mehalawy AA, Hassanein NM, Khater HM, Karam E-DEA, Youssef YA (2004) Influence of maize root colonization by the rhizosphere actinomycetes and yeast fungi on plant growth and on the biological control of late wilt disease. Int J Agric Biol 6:599ā€“605

    Google ScholarĀ 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69ā€“75

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Emani C, Garcıa JM, Lopata FE, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321ā€“336

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Escudero N, Ferreira SR, Lopez MF, Naranjo OMA, Marin OA, Thornton CR, Lopez LLV (2015) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572ā€“585. https://doi.org/10.1016/j.funbio.2015.12.005

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Evidente A, Cabras A, Maddau L (2003) Viridepyronone, a new antifungal 6-Substituted 2H-Pyran-2-one produced by trichoderma viride. J Agric Food Chem 51(24):6957ā€“6960

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferreira SM, Formey D, Torres M, Wendy A, Padilla AE, Tromas A, Sohlenkamp C, KĆ”tia RF, Schwan E, Mario SF (2018) Compounds released by the biocontrol yeast Hanseniaspora opuntiae protect plants against Corynespora cassiicola and Botrytis cinerea. Microbiolology. https://doi.org/10.3389/fmicb.2018.01596

  • Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT et al (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata lab. Fungal Biol 120(3):433ā€“448

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Garcia LGS, Guedes GM, da Silva MLQ, Castelo BDSCM, Sidrim JJC, de Cordeiro RA, Rocha MFG, Vieira RS, Brilhante RSN (2018) Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydr Polym 195:662ā€“669. https://doi.org/10.1016/j.carbpol.2018.04.091

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gebarowska E, Pytlarz KM, Nofer J, Łyczko J, Adamski M, Szumny A (2019) The effect of Trichoderma spp. on the composition of volatile secondary metabolites and biometric parameters of coriander (Coriandrum sativum L.). J Food Qual. https://doi.org/10.1155/2019/5687032

  • Geisen S, Mitchell AD, Edward SA, Bonkowski M, Dunthorn M, Ekelund F, Fernandez DL, Jousset A, Krashevska V, Singer D, Spiegel WF, Walochnik J, Lara E (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42:293ā€“323. https://doi.org/10.1093/femsre/fuy006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ghazalibiglar H et al (2016) Biological control of Fusarium wilt of tomato by Trichoderma isolates. New Zealand Plant Prot 69:57ā€“63

    Google ScholarĀ 

  • Goncalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological. Sci World J 14:476207. https://doi.org/10.1155/2014/476207

    ArticleĀ  Google ScholarĀ 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395ā€“412

    CASĀ  Google ScholarĀ 

  • Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83(19):2ā€“17. https://doi.org/10.1128/AEM.01075-17

    ArticleĀ  Google ScholarĀ 

  • Guji J, Merga Y, Terefe H, Kidanu DE (2019) Yield loss of ginger (Zingiber officinale) due to bacterial wilt (Ralstonia solanacearum) in different wilt management systems in Ethiopia. Agric Food Secur 8(5):1ā€“11. https://doi.org/10.1186/s40066-018-0245-6

    ArticleĀ  Google ScholarĀ 

  • Gupta MC (1986) Biological control of Fusarium moniliforme Sheldon and Pythium butleri Subramaniam by Aphelenchus avenae Bastian in chitin and cellulose-amended soils. Soil Biol Biochem 18(3):327ā€“329. https://doi.org/10.1016/0038-0717(86)90069-6

    ArticleĀ  Google ScholarĀ 

  • Hajlaoui MR, Traquair JA, Jarvis WR, Belanger RR (1994) Antifungal activity of extracellular metabolites produced by Sporothrixflocculosa. Biocontrol Sci Tech 4:229ā€“237

    Google ScholarĀ 

  • Hammerschmidt R, Kuc J (1995) Induced resistance to disease in plants. Kluwer Academic. https://doi.org/10.1007/978-94-015-8420-3

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic avirulent plant symbionts. Nat Rev Microbiol 2(1):43ā€“56

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hartmann T, Dumig M, Jaber BM, Szewczyk E, Olbermann P, Morschhauser J et al (2010) Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the Ī²-rec/six site specific recombination system. Appl Environ Microbiol 76:6313ā€“6317. https://doi.org/10.1128/AEM.00882-10

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hashem M, Ali E (2004) Epicoccum nigrum as biocontrol agent of Pythium damping-off and root-rot of cotton seedlings, Archives of Phytopathology and Plant Protection ISSN: 0323-5408 (Print) 1477-2906 (Online) Journal homepage: https://www.tandfonline.com/loi/gapp20. Arch Phytopathol Plant Protect 37:283ā€“297

  • Hassani AM, Duran P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58. https://doi.org/10.1186/s40168-018-0445-0

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421. https://doi.org/10.3389/fmicb.2012.00421

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Heydari A (2007) Biological control of Turfgrass fungal diseases. In: Pessarakli M (ed) Turfgrass management and physiology. CRC Press, Florida

    Google ScholarĀ 

  • Hiltner L (1904) Uber neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriolgie und unter besonderes Berucksichtigung der Grundugungen und Brauche. Arb Dtsch Landwirt Ges Berl 98:59ā€“78

    Google ScholarĀ 

  • Homma Y, Kato Z, Hirayama F, Konno K, Shirahama H, Suzui T (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:723ā€“728

    CASĀ  Google ScholarĀ 

  • Horst RK (2001) Plant diseases and their pathogens. In: Westcottā€™s plant disease handbook. Springer, Boston. https://doi.org/10.1007/978-1-4757-3376-1_3

    ChapterĀ  Google ScholarĀ 

  • Ibrahim ME (2017) In-vitro antagonistic activity of Trichoderma harzianum against Rhizoctonia solani the causative agent of potato black scurf and stem canker. International Conference of ā€œPlant & Microbial Biotech & their Role in the Development of the Societyā€, pp 173ā€“185

    Google ScholarĀ 

  • Igiehon NO, Bbaloal OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteri towards sustainable agriculture. International journal of environmental research and public health. Int J Environ Res Public Health 15:574. https://doi.org/10.3390/ijerph15040574. www.mdpi.com/journal/ijerph

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Iqbal M, Dubey M, Gudmundsson M, Viketoft M, Jensen FD, Karlsson M (2018) Comparative evolutionary histories of fungal proteases reveal gene gains in the mycoparasitic and nematode-parasitic fungus Clonostachys rosea. BMC Evol Biol 18:171

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Janisiewicz WJ, Peterson DJ (2004) Susceptibility of the stem pull area of mechanically harvest apples to blue mold decay and its control with a biocontrol agent. Plant Dis 88:662ā€“664

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Jones EE, Mead A, Whipps JM (2004) Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: control of sclerotinia disease in glasshouse lettuce. Plant Pathol 53:611ā€“620

    Google ScholarĀ 

  • Junaid MJ, Nisar AD, Traiq AB, Arif HB, Mudasir AB (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(2):39ā€“57. Copyright Ā© 2013 by Modern Scientific Press company, Florida, USA

    Google ScholarĀ 

  • Kanfra X, Liu B, Beerhues L, SĆørensen JS, Heuer H (2018) Free-living nematodes together with associated microbes play an essential role in apple replant disease. Front Plant Sci 9:1666. https://doi.org/10.3389/fpls.2018.01666

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kashyap BK, Solanki MK, Pandey AK, Prabha S, Kumar P, Kumari B (2019) Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In: Plant health under biotic stress, vol II. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_11

    ChapterĀ  Google ScholarĀ 

  • Kelly L (2017) Fusarium species associated with grain Sorghum and Mungbean in Queensland. MS thesis, The University of Queensland

    Google ScholarĀ 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02influencedendogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440ā€“447. https://doi.org/10.1016/j.procbio.2010.09.013

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim SW, Park JK, Lee CH, Hahn B, Koo JC (2016) Comparison of the antimicrobial properties of chitosan oligosaccharides (COS) and EDTA against Fusarium fujikuroi causing rice bakanae disease. Curr Microbiol 72(4):496ā€“502. pmid: 26729353

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induce systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259ā€“1266

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kumar G, Sarma BK (2016) Eco-friendly management of soil-borne plant pathogens through plant growth-promoting Rhizobacteria. Annu Tech Issue 20:167ā€“171

    Google ScholarĀ 

  • Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defenserelated gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230:277ā€“291

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kumari B, Mallick MA, Solanki MK, Solanki AC, Hora A, Guo W (2019) Plant Growth-Promoting Rhizobacteria (PGPR): modern prospects for sustainable agriculture. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, vol II. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_6

    ChapterĀ  Google ScholarĀ 

  • Lagerlof J, Insunza V, LundegĆ„rdh B, Ramert B (2011) Interaction between a fungal plant disease, fungivorous nematodes and compost suppressiveness. Acta Agric Scand Sect B Soil Plant Sci 61:372ā€“377

    Google ScholarĀ 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967ā€“973

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the Phytobiome. Cell 169:587ā€“596. https://doi.org/10.1016/j.cell.2017.04.025

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lehner SM, Atanasova L, Neumann NK, Krska R, Lemmens M, Druzhinina IS, Schuhmacher R (2013) Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl Environ Microbiol 79:18ā€“31

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li C, Nong Q, Solanki MK, Liang Q, Xie J, Liu X, Li Y, Wang W, Yang L, Li Y (2016a) Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Sci Rep 6:25698

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li Y, Sun R, Yu J, Saravanakumar K, Chen J (2016b) Antagonistic and biocontrol potential of Trichoderma asperellumZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J Microbiol 56(3):318ā€“327

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li C, Nong Q, Xie J, Wang Z, Liang Q, Solanki MK, Malviya MK, Liu X, Li Y, Htun R, Wei J, Li Y (2017) Molecular characterization and co-expression analysis of the SnRK2 gene family in sugarcane (Saccharum officinarum L.). Sci Rep 7:17659

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lin HF, Chen TH, Liu SD (2010) Bioactivity of antifungal substance iturin a produced by bacillus subtilis strain BS-99-H against pestalotiopsis eugeniae, a causal pathogen of wax apple fruit rot. Plant Pathol Bull 19:225ā€“233

    CASĀ  Google ScholarĀ 

  • Lin YR, Lo CT, Li SY, Peng KC (2012) Involvement of pachybasin and emodin in selfregulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123ā€“2128

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu M, Sun ZX, Zhu J, Xu T, Harman GE, Lorito M (2004) Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. J Zhejiang Univ (Sci) 5:133ā€“136

    CASĀ  Google ScholarĀ 

  • Lo CT, Nelson EB, Harman GE (1997) Biological control of Pythium, Rhizoctonia and Sclerotinia infected diseases of turfgrass with Trichoderma harzianum. Phytopathology 84:1372ā€“1379

    Google ScholarĀ 

  • Lombardi N, Vitale S, Turra D, Reverberi M (2018) Root exudates of stressed plants stimulate and attract Trichoderma soil Fungi. Mol Plant-Microbe Interact 31(10):982ā€“994

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Long LT, Tien NTT, Trang NH, Ha TTT, Hieu NM (2014) Study on antifungal ability of water soluble chitosan against green mould infection in harvested oranges. J Agric Sci 6(8):205. https://doi.org/10.5539/jas.v6n8p205

    ArticleĀ  Google ScholarĀ 

  • Macias RL, Guzman GA, Garcia JP, Contreras CHA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy137

  • Malviya MK, Solanki MK, Li C-N, Htun R, Singh RK, Singh P, Yang L-T, Li Y-R (2019) Beneficial linkages of Endophytic Burkholderia anthina MYSP113 towards sugarcane growth promotion. Sugar Tech. https://doi.org/10.1007/s12355-019-00703-2

  • Manganiello G, Sacco A, Ercolano RM, Vinale F, Lanzuise S, Pascale A, Napolitano M, Lombardi N, Matteo L, Woo LLS (2018) Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite Harzianic acid. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01966

  • Manjunatha TG, Rai AB, Singh B (2017) Root Knot nematade: a threat to vegetables production and its management: Technical Bulletin No.76

    Google ScholarĀ 

  • Marik T, Tyagi C, Raci G, Rakk D, Szekeres A, Vagvolgyi C, Kredics L (2018) IDNew 19-residue Peptaibols from Trichoderma Clade viride. Microorganisms 6:85

    CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Martinez AA, Escudero LN, Gonzalez N, Zavala EA, Llorca HB, Lopez LV (2016) CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism: CAZome of Pochonia chlamydosporia. Environ Microbiol 18:4200ā€“4215. https://doi.org/10.1111/1462-2920.13544

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mazzola M, Freilich S (2016) Prospects for biological soil-borne disease control: application of indigenous versus synthetic microbiomes. Phytopathology 107:256ā€“263. https://doi.org/10.1094/PHYTO-09-16-0330-RVW

    ArticleĀ  Google ScholarĀ 

  • Meena KR, Kanwar SS (2015) Review article Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Res Int Article ID 473050, 9 pages https://doi.org/10.1155/2015/473050

  • Mihajlovic M, Rekanovic E, Hrustic J, Grahovac M, Tanovic B (2017) Methods for management of soilborne plant pathogens. Pestic Phytomed (Belgrade) 32(1):9ā€“24

    CASĀ  Google ScholarĀ 

  • Mohammadi P, Tozlu E, Kotan R, Kotan MS (2017) Potential of some bacteria for biological control of postharvest citrus green mold caused by Penicillum digitatum. Plant Prot Sci 53:1ā€“10

    Google ScholarĀ 

  • Morris KA, Langston DB, Dutta B, Davis RF, Timper P, Noe JP et al (2016) Evidence for a disease complex between Pythium aphanidermatum and root-knot nematodes in cucumber. Plant Health Prog 17:200ā€“201. https://doi.org/10.1094/PHP-BR-16-0036

    ArticleĀ  Google ScholarĀ 

  • Murali SP, Vanitha S, Kamalakannan A, Anantha RP, Jeyakumar P (2018) Prevalence of Fusarium oxysporum f. sp. ciceris causing wilt in chickpea and its pathogenic, cultural and morphological characterization. Int J Curr Microbiol App Sci 7(2):1301ā€“1313

    Google ScholarĀ 

  • Mus F, Crook BM, Garcia K, Costas GA, Geddes AB, Kouri DE, Paramasivan P, Ryu HM, Oldroyd EDG, Poole SP, Udvardi KM, Voigt AC, Ane Michel J, Petersa WJ (2016) Symbiotic nitrogen fixation and the challenges to its extension to non-legumes. Appl Environ Microbiol 82(12):3698ā€“3710

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Muschiol D, Traunspurger W (2007) Life cycle and cal- culation of the intrinsic rate of natural increase of two bac- terivorous nematodes, Panagrolaimussp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9:271ā€“284

    Google ScholarĀ 

  • Musoni M, Destain J, Thonart P, Bahama JB, Delvigne F (2015) Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems. Biotechnol Agron Soc Environ 19(4):430ā€“442

    Google ScholarĀ 

  • Nelson EB (2017) The seed microbiome: origins, interactions, and impacts. Plant Soil 422:7ā€“34. https://doi.org/10.1007/s11104-017-3289-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Neshev G (2008) Major soil-borne phytopathogens on tomato and cucumber in Bulgaria, and methods for their management. In: Labrada R (ed) Alternatives to replace methyl bromide for soil-borne pest control in East and Central Europe. FAO, UNEP, pp 1ā€“14

    Google ScholarĀ 

  • Nie P, Li X, Wang S, Guo J, Zhao H, Niu D (2017) Induced systemic resistance against Botrytis cinerea by Bacillus cereusAR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci 8:238. https://doi.org/10.3389/fpls.2017.00238

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31ā€“43

    Google ScholarĀ 

  • Okada H (2006) Ecology of fungivorous nematodes and their use for suppression of plant diseases. Bull Natl Agric Res Cent Tohoku 105:155ā€“197. (published in Japanese with English summary)

    Google ScholarĀ 

  • Oliveira Junior EN, de Melo IS, de Franco TT (2012) Changes in hyphal morphology due to chitosan treatment in some fungal species. Braz Arch Biol Technol 55(5):637ā€“646

    Google ScholarĀ 

  • Palma-Guerrero J, Jansson H-B, Salinas J, Lopez-Llorca L (2008) Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J Appl Microbiol 104:541ā€“553. https://doi.org/10.1111/j.1365-2672.2007.03567.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Patil HJ, Solanki MK (2016a) Microbial inoculant: modern era of fertilizers and pesticides. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi, pp 319ā€“343

    Google ScholarĀ 

  • Patil HJ, Solanki MK (2016b) Molecular prospecting: advancement in diagnosis and control of Rhizoctonia solani diseases in plants. Springer International Publishing, pp 165ā€“185.

    Google ScholarĀ 

  • Perez MF, Contreras L, Garnica NM, Fernandez ZMV, Farias ME, Sepulveda M et al (2016) Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. Public Libr Sci 11(10):e0165590

    Google ScholarĀ 

  • Peteira B, Martinez B, Muniz Y, Miranda I (2001) Molecular characterization of the genetic diversity of some promising isolates of Trichoderma spp. by RAPD. Revista-de-Proteccion-Vegetal 16:157ā€“158. 23

    Google ScholarĀ 

  • Praveen Kumar D, Singh RK, Anupama PD, Solanki MK, Kumar S, Srivastava AK, Singhal PK, Arora DK (2012) Studies on exo-chitinase production from Trichoderma asperellum UTP-16 and its characterization. Indian J Microbiol 52:388ā€“395

    PubMedĀ  Google ScholarĀ 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403ā€“424. https://doi.org/10.1146/annurev-phyto-081211-172908

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rabbee FM, Ali SM, Choi J, Hwang HB, Jeong CS, Baek HK (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes review. Molecules 24(6):1046

    CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rai S, Solanki M, Solanki AC, Surapathrudu K (2019) Trichoderma as biocontrol agent: molecular prospectus and application. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, vol II. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_7

    ChapterĀ  Google ScholarĀ 

  • Ramanauskiene J, Dabkevicius Z, Tamosiunas K, Petraitiene E (2019) The incidence and severity of take-all in winter wheat and Gaeumannomyces graminis soil inoculum levels in Lithuania. Zemdirbyste-Agric 106:37ā€“44. https://doi.org/10.13080/z-a.2019.106.005

    ArticleĀ  Google ScholarĀ 

  • Raza W, Ling N, Yang L, Huang Q, Shen Q (2016) Response of tomato wilt pathogen Ralstonia solanacearumto the volatile organic compounds produced by biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Report 6:24856

    CASĀ  Google ScholarĀ 

  • Recinosa AD, Sekedata VM, Hernandeza A, Cohen ST, Sakhtaha H, Prince SA, Price-Whelanc A, Dietricha EPL (2012) Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. 109(47):19420ā€“19425. www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1213901109/-/DCSupplemental

  • Reino JL, Guerrero RF, Hernandez GR, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89ā€“123

    CASĀ  Google ScholarĀ 

  • Rosane SC, Helder LSL, Gustavo ASP, Carlos ATG, Sueli R (2008) Effect of moisture on Trichoderma conidia production on corn and wheat bran by solid state fermentation. Food Bioprocess Technol 1:100ā€“104

    Google ScholarĀ 

  • Ruano RD, Prieto P, Rincon AM, Gomez-Rodriguez MV, Valderrama R, Barroso JB et al (2016) Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl 61:269ā€“282. https://doi.org/10.1007/s10526-015-9706-z

    ArticleĀ  Google ScholarĀ 

  • Saeedizadeh A (2016) Trichoderma viride and Pseudomonas fluorescens CHA0 against Meloidogyne javanica in the rhizosphere of tomato plants. Hellenic Plant Prot J 9:28ā€“34

    Google ScholarĀ 

  • Sah S, Singh R (2015) Siderophore: structural and functional characterization ā€“a comprehensive review. Agric (Polnohospodarstvo) 61:97ā€“114. https://doi.org/10.1515/agri-2015-0015

    ArticleĀ  Google ScholarĀ 

  • Saldajeno MGB, Naznin HA, Elsharkawy MM, Shimizu M, Yakumachi MH (2014) Enhanced resistance of plants to disease using Trichoderma spp. Biotechnol Biol Trichoderma:477ā€“493

    Google ScholarĀ 

  • Sansone G, Rezza I, Calvente V, Benuzzi D, Sanz de Tosetti MI (2005) Control of Botrytis cinereastrains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol Technol 35:245ā€“251

    CASĀ  Google ScholarĀ 

  • Saremi H, Amiri ME, Ashrafi J (2011) Epidemiological aspects of bean decline disease caused by Fusarium species and evaluation of the bean resistant cultivars to disease in Northwest Iran. Afr J Biotechnol 10(66):14954ā€“14961. https://doi.org/10.5897/AJB11.2580

    ArticleĀ  Google ScholarĀ 

  • Saunders G, Cooke B, McColl K, Richard S (2010) Modern approaches for the biological control of vertebrate pests: an Australian perspective. Biol Control 52(3):288ā€“295. https://doi.org/10.1016/j.biocontrol.2009.06.014

    ArticleĀ  Google ScholarĀ 

  • Schulz BK, Martin SL, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484. https://doi.org/10.3389/fmicb.2017.02484

    ArticleĀ  Google ScholarĀ 

  • Shabir HW, Kumar V, Varsha S, Saroj KS (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162ā€“176

    Google ScholarĀ 

  • Shukla N, Negi AE, Singh A, Kabadwa BC, Sharma R, Kumar DJ (2019) Present status and future prospects of bio-agents in agriculture. Int J Curr Microbiol App Sci 8(4):2138ā€“2153

    Google ScholarĀ 

  • Siddique MNA, Ahmmed ANF, Mazumder MGH, Khaiyam MO, Islam MR (2016) Evaluation of some fungicides and bio-agents against Sclerotium rolfsii and foot and root rot disease of eggplant (Solanum melongena L.). Agriculturists 14(1):92ā€“97

    Google ScholarĀ 

  • Siddiqui Y, Meon S, Ismail R, Rahmani M (2009) Bio-potential of compost tea from agro-waste to suppress Choanephora cucurbitarum L. the causal pathogen of wet rot of okra. Biol Control 49(1):38ā€“44

    Google ScholarĀ 

  • Sikora DE, Mercy L, Baum C, Hrynkiewicz K (2019) The contribution of Endomycorrhiza to the performance of Potato Virus Y-infected Solanaceous plants: disease alleviation or exacerbation review article. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00516

  • Singh RK, Kumar DP, Solanki MK, Singh P, Srivastva AK, Kumar S, Kashayp PL, Saxena AK, Singhal PK, Arora DK (2012) Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J. Basic Microbiol 52:1ā€“10

    Google ScholarĀ 

  • Singh RK, Kumar DP, Singh P, Solanki MK, Srivastava S, Kashyap PL, Kumar S, Srivastava AK, Singhal PK, Arora DK (2014) Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regul 73:91ā€“101

    CASĀ  Google ScholarĀ 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016) Seed biopriming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric Environ Biotechnol 9(3):361ā€“365

    Google ScholarĀ 

  • Singh P, Song Q-Q, Singh R, Li H-B, Solanki M, Malviya M, Verma K, Yang L-T, Li Y-R, Singh P, Song Q-Q, Singh RK, Li H-B, Solanki MK, Malviya MK, Verma KK, Yang L-T, Li Y-R (2019) Proteomic analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection. Int J Mol Sci 20:569

    CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Smith RS, Osburn RM (2016) Combined used of Lipo-Chitooligosaccharides and Chitinous compounds for enhanced plant growth and yield. U.S. Patent 9,253,989, 9

    Google ScholarĀ 

  • Smith KP, Handelsman J, Godman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci U S A 9:4786ā€“4790

    Google ScholarĀ 

  • Smitha C, Finosh GT, Rajesh R, Abraham PK (2014) Induction of hydrolytic enzymes of phytopathogenic fungi in response to Trichoderma viride influence biocontrol activity. Int J Curr Microbiol App Sci 3(9):1207ā€“1217

    Google ScholarĀ 

  • Solanki MK, Singh N, Singh RK, Singh P, Srivastava AK, Kumar S, Kashyap PL, Arora DK (2011) Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica 39:471ā€“481

    CASĀ  Google ScholarĀ 

  • Solanki MK, Kumar S, Pandey AK, Srivastava S, Singh RK, Kashyap PL, Srivastava AK, Arora DK (2012a) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Tech 22:203ā€“217

    Google ScholarĀ 

  • Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Srivastava AK, Arora DK (2012b) Characterization of Mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 65:330ā€“336

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54:585ā€“597

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Solanki M, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK (2015) Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol 55:82ā€“90

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Solanki MK, Malviya MK, Wang Z (2016) Actinomycetes bio-inoculants: a modern prospectus for plant disease management. In: Subramaniam G, Arumugam S, Rajendran V (eds) Plant growth promoting Actinobacteria. Springer Singapore, Singapore, pp 63ā€“81

    Google ScholarĀ 

  • Solanki MK, Wang Z, Wang FY, Li CN, Lan TJ, Singh RK, Singh P, Yang LT, Li YR (2017) Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital Diazotrophic Bacteria. Sugar Tech 19:136ā€“147

    CASĀ  Google ScholarĀ 

  • Solanki MK, Yandigeri MS, Kumar S, Singh RK, Srivastava AK (2018) Nutrient competition mediated antagonism of microbes against Rhizoctonia solani. Notulae Scientia Biologicae 10:392ā€“399

    CASĀ  Google ScholarĀ 

  • Solanki MK, Kashyap BK, Solanki AC, Malviya MK, Surapathrudu K (2019a) Helpful linkages of Trichoderma in the Mycoremediation and Mycorestoration. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress, vol II. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_2

    ChapterĀ  Google ScholarĀ 

  • Solanki MK, Wang F-Y, Wang Z, Li C-N, Lan T-J, Singh RK, Singh P, Yang L-T, Li Y-R (2019b) Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. J Soils Sediments 19:1911ā€“1927

    CASĀ  Google ScholarĀ 

  • Srivastava M, Shahid M, Pandey S, Singh A, Kumar V, Gupta S, Maurya M (2014) Trichoderma genome to genomics: a review. J Data Min Genomics Proteomics 5(3):1000172

    Google ScholarĀ 

  • Strom N, Hu W, Haarith D, Chen S, Bushley K (2019) Fungal communities in soybean cyst nematode-infested soil under long term corn and soybean monoculture and crop rotation. https://doi.org/10.1101/516575

  • Tabatabaei FS, Saeedizadeh A (2017) Rhizobacteria cooperative effect against Meloidogyne javanica in rhizosphere of legume seedlings. Hellenic Plant Prot J 10:25ā€“34

    Google ScholarĀ 

  • Tamiru G, Muleta D (2018) The effect of rhizobia isolates against black root rot disease of Faba bean (Vicia faba L) caused by Fusarium solani. Open Agric J 12:131ā€“147. https://doi.org/10.2174/1874331501812010131

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tarique HA, Mahfouz MM, Abd E (2017) Beneficial nematodes in agroecosystems: a global perspective. Entomopathogenic and Slug Parasitic Nematodes, Biocontrol Agents

    Google ScholarĀ 

  • Thakore Y, Ehlers R-U (2006) Biopesticide market for global agricultural use. Ind Biotechnol 2:194ā€“208

    Google ScholarĀ 

  • Thangavelu R, Mustaffa M (2012) Current advances in the Fusarium wilt disease management in banana with emphasis on biological control. INTECH, Shanghai, pp 274ā€“287

    Google ScholarĀ 

  • Thaware DS, Kohire OD, Gholve VM (2015) Survey of chickpea wilt (Fusarium oxysporum f. sp. ciceri) disease in Marathwada region of Maharashtra state. Adv Res J Crop Improv 6(2):134ā€“138

    Google ScholarĀ 

  • Thaware DS, Gholve VM, Ghante PH (2017) Screening of chickpea varieties, cultivars and genotypes against Fusarium oxysporium f. sp. ciceri. Int J Curr Microbiol App Sci 6(1):896ā€“904. https://doi.org/10.20546/ijcmas.2017.601.105

    ArticleĀ  Google ScholarĀ 

  • Thomashow LS, Weller DM, Bonsall RF et al (1990) Appl Environ Microbiol 56:908ā€“912

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120ā€“126

    PubMedĀ  Google ScholarĀ 

  • Tijerino A, Cardoza RE, Moraga J, Malmierca GM, Vicente F, Aleu J, Collado GI, Gutierrez S, Monte E, Hermosa R (2010) Overexpression of the trichodiene synthase gene Tbtri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 48(3):285ā€“296

    PubMedĀ  Google ScholarĀ 

  • Tiwari N, Ahmed S, Kumar S, Sarker A (2018) Fusarium wilt: Akiller disease of lentil review. Books, FusariumĀ ā€“ plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers. Agric Microbiol:119ā€“138. https://doi.org/10.5772/intechopen.72508

  • Toufiq N, Tabassum B, Bhatti MU, Khan A, Tariq M, Shahid N, Nasir IA, Husnain T (2017) Improved antifungal activity of barley derived chitinase i gene that overexpress a 32 kDa recombinant chitinase in Escherichia coli host. Braz J Microbiol 42:414ā€“421

    Google ScholarĀ 

  • Toyoda H, Hashimoto H, Utsumi R, Kobayashi H, Ouchi S (1988) Detoxification of Fusaric acid by a Fusaric acid- resistant mutant of Pseudomonas solanacearum and its application to biological control of Fusarium wilt of tomato. Phytopathology 78:1307ā€“1311

    CASĀ  Google ScholarĀ 

  • Tsegaye Z, Assefa F, Tefera G, Alemu T, Gizaw B, Abatenh E (2018) Concept, principle and application of biological control and their role in sustainable plant diseases management strategies. Int J Res Stud Biosci 6(4):18ā€“34

    Google ScholarĀ 

  • Vallad GE, Goodman RM (2004) Goodman systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920ā€“1934

    Google ScholarĀ 

  • van Agtmaal M, Straathof AL, Termorshuizen A, Lievens B, Hoffland E, de Boer W (2018) Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition. Soil Biol Biochem 117:164ā€“174. https://doi.org/10.1016/j.soilbio.2017.11.015

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van Loon LC (2007) Plant responses to plant growth promoting bacteria. Eur J Plant Pathol 119:243ā€“254

    Google ScholarĀ 

  • VelĆ”zquez-Becerra C, MacĆ­as-RodrĆ­guez LI, LĆ³pez-Bucio J, Flores-Cortez I, Santoyo G, HernĆ”ndez-Soberano C, Valencia-Cantero E (2013) The rhizobacterium arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma 250(6):1251ā€“1262

    PubMedĀ  Google ScholarĀ 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550ā€“556. https://doi.org/10.1002/jobm.201000155

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571ā€“586

    CASĀ  Google ScholarĀ 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127ā€“139

    Google ScholarĀ 

  • Walker MJ, Birch RG, Pemberton JM (1988) Mol Microbiol 2:443ā€“454

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang F, Li D, Wang Z, Dong A, Liu L, Wang B, Chen Q, Liu X (2014) Transcriptomic analysis of the Rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS One 9(3):e91591. https://doi.org/10.1371/journal.pone.009159.1

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang Z, Solanki MK, Pang F, Singh RK, Yang L-T, Li Y-R, Li H-B, Zhu K, Xing Y-X (2017) Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech 19:492ā€“500

    CASĀ  Google ScholarĀ 

  • Wang Z, Solanki MK, Yu Z-X, Yang L-T, An Q-L, Dong D-F, Li Y-R (2018) Draft genome analysis offers insights into the mechanism by which streptomyces chartreusis WZS021 increases drought tolerance in sugarcane. Front Microbiol 9:3262

    PubMedĀ  Google ScholarĀ 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487ā€“511

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71ā€“82

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wolfarth FS, Schrader E, Oldenburg E, Weinert J (2013) Nematode-collembolan- interaction promotes the degradation of Fusarium biomass and deoxynivalenol according to soil texture. Soil Biol Biochem 57:903ā€“910

    CASĀ  Google ScholarĀ 

  • Xiang N, Lawrence KS, Kloepper JW, Donald PA, McInroy JA (2017) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS One 12:e0181201

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Xiao L, Xie C-c, Cai J, Lin Z-J, Chen Y-H (2009) Identification and characterization of a chitinase-produced bacillus showing significant antifungal activity. Curr Microbiol 58(5):528ā€“533

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Xu L, Wu C, Oelmuller R, Zhang W (2018) Review article: role of phytohormone in Piriformospora indica induced growth promotion and stress tolerance in plants: more questions than answers. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01646

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31:1217ā€“1225

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yeates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects

    Google ScholarĀ 

  • Yeates GW, Bongers T (1999) Nematode diversity in agro ecosystems. Agriculture

    Google ScholarĀ 

  • Yeates GW, Bongers T, Goede RGM, de Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and generaĀ ā€“ an outline for soil ecologists. J Nematol 25:315ā€“331

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yu T (2008) Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit. Int J Food Microbiol 122(1ā€“2):44ā€“48

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yurkov AM (2018) Yeasts of the soilĀ ā€“ obscure but precious. Yeast 35(5):369ā€“378

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zaidi NW, Singh US (2013) 14 Trichodermain plant health management. Trichoderma: biology and applications. CAB International, London, p 230

    Google ScholarĀ 

  • Zakaria AZ (2018) Applied environmental science and engineering for a sustainable future. Ā© Springer Nature Singapore Pte Ltd. http://www.springer.com/series/13085

  • Zhao M, Yuan J, Zhang R, Dong M, Deng X, Zhu C et al (2018) Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil. Appl Soil Ecol 132:83ā€“90

    Google ScholarĀ 

Website

Download references

Acknowledgments

We appreciate the support rendered by Department of Plant Protection, Aligarh Muslim University, Aligarh, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Musheer, N., Ashraf, S., Choudhary, A., Kumar, M., Saeed, S. (2020). Role of Microbiotic Factors Against the Soil-Borne Phytopathogens. In: Solanki, M., Kashyap, P., Kumari, B. (eds) Phytobiomes: Current Insights and Future Vistas. Springer, Singapore. https://doi.org/10.1007/978-981-15-3151-4_10

Download citation

Publish with us

Policies and ethics