Skip to main content

Optimal and Adaptive Stimulation Design

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering
  • 62 Accesses

Abstract

Successful stimulation therapies of the central nervous system for chronic neurological disorders have been based so far on electric pulses that have equal amplitude and are delivered at constant intervals. Recent advancements, however, have shown that irregular and time-varying sequences of pulses can be equally effective in treating chronic disease conditions. This suggests that both pulse waveform and temporal arrangement are important factors in determining the therapeutic merit of a stimulation protocol and can be used to address the trade-off between therapeutic effectiveness, amount of charge delivered per unit of time, and efficiency of neural stimulators. Accordingly, a wide range of computational approaches have been developed to optimize this trade-off, and novel nonregular pulse trains have been designed. Optimization, adaptive control, and machine learning have been rapidly integrated into the design process of stimulation therapies, leading to highly efficient solutions but also dramatically increasing the complexity of the design process. This chapter will review the most significant advancements in optimization-based design for neural stimulation, along with the computational challenges, methodological innovations, and the most promising clinical applications for the treatment of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AF:

Axon fibers

CNS:

Central nervous system

CR:

Coordinated reset

CV:

Coefficient of variation

DBS:

Deep brain stimulation

DoC:

Degree of centrality

DP:

Dynamic Programming

FDA:

US Food and Drug Administration

IF:

Integrate-and-fire

IPF:

Instantaneous pulse frequency

LIF:

Leaky integrate-and-fire

MIMO:

Multi-input multi-output

PD:

Parkinson’s disease

PMA:

Pre-market approval

PRC:

Phase response curve

PW:

Pulse width

STN:

Subthalamic nucleus

VAT:

Volume of activated tissue

VNS:

Vagus nerve stimulation

References

  1. Li, M.C.H., Cook, M.J.: Deep brain stimulation for drug-resistant epilepsy. Epilepsia. 59, 273–290 (2018)

    Article  Google Scholar 

  2. Wathen, C.A., Frizon, L.A., Maiti, T.K., Baker, K.B., Machado, A.G.: Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. Neurosurg. Focus. 45, E13 (2018)

    Article  Google Scholar 

  3. Roy, H.A., Green, A.L., Aziz, T.Z.: State of the art: novel applications for deep brain stimulation. Neuromodulation. 21, 126–134 (2018)

    Article  Google Scholar 

  4. Lozano, A.M., Lipsman, N., Bergman, H., Brown, P., Chabardes, S., Chang, J.W., Matthews, K., McIntyre, C.C., Schlaepfer, T.E., Schulder, M., Temel, Y., Volkmann, J., Krauss, J.K.: Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019)

    Article  Google Scholar 

  5. Hariz, M.I., Blomstedt, P., Zrinzo, L.: Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg. Focus. 29, E1 (2010)

    Article  Google Scholar 

  6. Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., Foltynie, T., Limousin, P., Ashkan, K., FitzGerald, J., Green, A.L., Aziz, T.Z., Brown, P.: Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013)

    Article  Google Scholar 

  7. Brocker, D.T., Swan, B.D., Turner, D.A., Gross, R.E., Tatter, S.B., Koop, M.M., Bronte-Stewart, H., Grill, W.M.: Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp. Neurol. 239, 60–67 (2013)

    Article  Google Scholar 

  8. Cagnan, H., Pedrosa, D., Little, S., Pogosyan, A., Cheeran, B., Aziz, T., Green, A., Fitzgerald, J., Foltynie, T., Limousin, P., Zrinzo, L., Hariz, M., Friston, K.J., Denison, T., Brown, P.: Stimulating at the right time: phase-specific deep brain stimulation. Brain. 140, 132–145 (2017)

    Article  Google Scholar 

  9. McCreery, D.B., Agnew, W.F., Yuen, T.G., Bullara, L.A.: Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann. Biomed. Eng. 16, 463–481 (1988)

    Article  Google Scholar 

  10. McCreery, D.B., Agnew, W.F., Yuen, T.G., Bullara, L.: Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37, 996–1001 (1990)

    Google Scholar 

  11. Santaniello, S., Gale, J.T., Sarma, S.V.: Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1421 (2018) https://doi.org/10.1002/wsbm.1421

  12. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, UK (2004)

    Book  MATH  Google Scholar 

  13. Shealy, C.N., Mortimer, J.T., Reswick, J.B.: Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth. Analg. 46, 489–491 (1967)

    Article  Google Scholar 

  14. Mortimer, J.T., Shealy, C.N., Wheeler, C.: Experimental nondestructive electrical stimulation of the brain and spinal cord. J. Neurosurg. 32, 553–559 (1970)

    Article  Google Scholar 

  15. Miocinovic, S., Somayajula, S., Chitnis, S., Vitek, J.L.: History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 70, 163–171 (2013)

    Article  Google Scholar 

  16. Englot, D.J., Chang, E.F., Auguste, K.I.: Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J. Neurosurg. 115, 1248–1255 (2011)

    Article  Google Scholar 

  17. Siegel, S.W., Catanzaro, F., Dijkema, H.E., Elhilali, M.M., Fowler, C.J., Gajewski, J.B., Hassouna, M.M., Janknegt, R.A., Jonas, U., van Kerrebroeck, P.E., Lycklama, A.A., Nijeholt, A., Oleson, K.A., Schmidt, R.A.: Long-term results of a multicenter study on sacral nerve stimulation for treatment of urinary urge incontinence, urgency-frequency, and retention. Urology. 56, 87–91 (2000)

    Article  Google Scholar 

  18. van Kerrebroeck, P.E., van Voskuilen, A.C., Heesakkers, J.P., Nijholt, A.A.L.A., Siegel, S., Jonas, U., Fowler, C.J., Fall, M., Gajewski, J.B., Hassouna, M.M., Cappellano, F., Elhilali, M.M., Milam, D.F., Das, A.K., Dijkema, H.E., van den Hombergh, U.: Results of sacral neuromodulation therapy for urinary voiding dysfunction: outcomes of a prospective, worldwide clinical study. J. Urol. 178, 2029–2034 (2007)

    Article  Google Scholar 

  19. Kumsa, D., Steinke, G.K., Molnar, G.F., Hudak, E.M., Montague, F.W., Kelley, S.C., Untereker, D.F., Shi, A., Hahn, B.P., Condit, C., Lee, H., Bardot, D., Centeno, J.A., Krauthamer, V., Takmakov, P.A.: Public regulatory databases as a source of insight for neuromodulation devices stimulation parameters. Neuromodulation. 21, 117–125 (2018)

    Article  Google Scholar 

  20. Cogan, S.F., Ludwig, K.A., Welle, C.G., Takmakov, P.: Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 13, 021001 (2016)

    Article  Google Scholar 

  21. Ranck, J.B.: Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98(417), 417–440 (1975)

    Article  Google Scholar 

  22. Garcia, L., Audin, J., D’Alessandro, G., Bioulac, B., Hammond, C.: Dual effect of high-frequency stimulation on subthalamic neuron activity. J. Neurosci. 23, 8743–8751 (2003)

    Article  Google Scholar 

  23. Jensen, A.L., Durand, D.M.: High frequency stimulation can block axonal conduction. Exp. Neurol. 220, 57–70 (2009)

    Article  Google Scholar 

  24. Bar-Gad, I., Elias, S., Vaadia, E., Bergman, H.: Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation. J. Neurosci. 24, 7410–7419 (2004)

    Article  Google Scholar 

  25. Chiken, S., Nambu, A.: High-frequency pallidal stimulation disrupts information flow through the pallidum by GABaergic inhibition. J. Neurosci. 33, 2268–2280 (2013)

    Article  Google Scholar 

  26. Klink, P.C., Dagnino, B., Gariel-Mathis, M.A., Roelfsema, P.R.: Distinct feedforward and feedback effects of microstimulation in visual cortex reveal neural mechanisms of texture segregation. Neuron. 95, 209–220 (2017)

    Article  Google Scholar 

  27. Koeglsperger, T., Palleis, C., Hell, F., Mehrkens, J.H., Botzel, K.: Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies. Front. Neurol. 10, 410 (2019)

    Article  Google Scholar 

  28. Volkmann, J., Herzog, J., Kopper, F., Deuschl, G.: Introduction to the programming of deep brain stimulators. Mov. Disord. 17(Suppl 3), S181–S187 (2002)

    Article  Google Scholar 

  29. De Ridder, D., Vanneste, S., Plazier, M., van der Loo, E., Menovsky, T.: Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery. 66, 986–990 (2010)

    Article  Google Scholar 

  30. Moro, E., Esselink, R.J., Xie, J., Hommel, M., Benabid, A.L., Pollak, P.: The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology. 59, 706–713 (2002)

    Article  Google Scholar 

  31. Volkmann, J., Moro, E., Pahwa, R.: Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov. Disord. 21(Suppl 14), S284–S289 (2006)

    Article  Google Scholar 

  32. Velisar, A., Syrkin-Nikolau, J., Blumenfeld, Z., Trager, M.H., Afzal, M.F., Prabhakar, V., Bronte-Stewart, H.: Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 12, 868–876 (2019)

    Article  Google Scholar 

  33. Little, S., Beudel, M., Zrinzo, L., Foltynie, T., Limousin, P., Hariz, M., Neal, S., Cheeran, B., Cagnan, H., Gratwicke, J., Aziz, T.Z., Pogosyan, A., Brown, P.: Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 87, 717–721 (2016)

    Article  Google Scholar 

  34. Amon, A., Alesch, F.: Systems for deep brain stimulation: review of technical features. J. Neural Transm. (Vienna). 124, 1083–1091 (2017)

    Article  Google Scholar 

  35. Brocker, D.T., Swan, B.D., So, R.Q., Turner, D.A., Gross, R.E., Grill, W.M.: Optimized temporal pattern of brain stimulation designed by computational evolution. Sci. Transl. Med. 9, eaah3532 (2017)

    Google Scholar 

  36. Swan, B.D., Brocker, D.T., Gross, R.E., Turner, D.A., Grill, W.M.: Effects of ramped-frequency thalamic deep brain stimulation on tremor and activity of modeled neurons. Clin. Neurophysiol. 131, 625–634 (2020)

    Article  Google Scholar 

  37. Cagnan, H., Brittain, J.S., Little, S., Foltynie, T., Limousin, P., Zrinzo, L., Hariz, M., Joint, C., Fitzgerald, J., Green, A.L., Aziz, T., Brown, P.: Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. Brain. 136, 3062–3075 (2013)

    Article  Google Scholar 

  38. Swann, N.C., de Hemptinne, C., Thompson, M.C., Miocinovic, S., Miller, A.M., Gilron, R., Ostrem, J.L., Chizeck, H.J., Starr, P.A.: Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J. Neural Eng. 15, 046006 (2018)

    Article  Google Scholar 

  39. Kuncel, A.M., Grill, W.M.: Selection of stimulus parameters for deep brain stimulation. Clin. Neurophysiol. 115, 2431–2441 (2004)

    Article  Google Scholar 

  40. O’Suilleabhain, P.E., Frawley, W., Giller, C., Dewey Jr., R.B.: Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation. Neurology. 60, 786–790 (2003)

    Article  Google Scholar 

  41. Van Havenbergh, T., Vancamp, T., Van Looy, P., Vanneste, S., De Ridder, D.: Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation. Neuromodulation. 18, 9–12.; discussion 12 (2015)

    Article  Google Scholar 

  42. Fasano, A., Appel-Cresswell, S., Jog, M., Zurowkski, M., Duff-Canning, S., Cohn, M., Picillo, M., Honey, C.R., Panisset, M., Munhoz, R.P.: Medical management of Parkinson’s disease after initiation of deep brain stimulation. Can. J. Neurol. Sci. 43, 626–634 (2016)

    Article  Google Scholar 

  43. Timmermann, L., Jain, R., Chen, L., Maarouf, M., Barbe, M.T., Allert, N., Brucke, T., Kaiser, I., Beirer, S., Sejio, F., Suarez, E., Lozano, B., Haegelen, C., Verin, M., Porta, M., Servello, D., Gill, S., Whone, A., Van Dyck, N., Alesch, F.: Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the vantage study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 14, 693–701 (2015)

    Article  Google Scholar 

  44. Willsie, A., Dorval, A.: Fabrication and initial testing of the μDBS: a novel deep brain stimulation electrode with thousands of individually controllable contacts. Biomed. Microdevices. 17, 9961 (2015)

    Article  Google Scholar 

  45. Anderson, D.N., Anderson, C., Lanka, N., Sharma, R., Butson, C.R., Baker, B.W., Dorval, A.D.: The μDBS: multiresolution, directional deep brain stimulation for improved targeting of small diameter fibers. Front. Neurosci. 13, 1152 (2019)

    Article  Google Scholar 

  46. Marblestone, A.H., Wayne, G., Kording, K.P.: Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016)

    Article  Google Scholar 

  47. Wongsarnpigoon, A., Grill, W.M.: Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. J. Neural Eng. 7, 046009 (2010)

    Article  Google Scholar 

  48. Chang, J., Paydarfar, D.: Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm. J. Comput. Neurosci. 37, 569–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chang, J., Paydarfar, D.: Evolution of extrema features reveals optimal stimuli for biological state transitions. Sci. Rep. 8, 3403 (2018)

    Article  Google Scholar 

  50. Pena, E., Zhang, S., Deyo, S., Xiao, Y., Johnson, M.D.: Particle swarm optimization for programming deep brain stimulation arrays. J. Neural Eng. 14, 016014 (2017)

    Article  Google Scholar 

  51. Pena, E., Zhang, S., Patriat, R., Aman, J.E., Vitek, J.L., Harel, N., Johnson, M.D.: Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J. Neural Eng. 15, 066020 (2018)

    Article  Google Scholar 

  52. Zlotnik, A., Li, J.S.: Optimal entrainment of neural oscillator ensembles. J. Neural Eng. 9, 046015 (2012)

    Article  Google Scholar 

  53. Nabi, A., Stigen, T., Moehlis, J., Netoff, T.: Minimum energy control for in vitro neurons. J. Neural Eng. 10, 036005 (2013)

    Article  Google Scholar 

  54. Kafashan, M., Ching, S.: Optimal stimulus scheduling for active estimation of evoked brain networks. J. Neural Eng. 12, 066011 (2015)

    Article  Google Scholar 

  55. Li, J.-S., Dasanayake, I., Ruths, J.: Control and synchronization of neuron ensembles. IEEE Trans. Autom. Control. 58, 1919–1930 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA (1995)

    MATH  Google Scholar 

  57. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization Nonconvex Optimization and Its Applications, 2nd edn. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)

    Book  MATH  Google Scholar 

  58. Boger, A.S., Bhadra, N., Gustafson, K.J.: High frequency sacral root nerve block allows bladder voiding. Neurourol. Urodyn. 31, 677–682 (2012)

    Article  Google Scholar 

  59. Bhadra, N., Bhadra, N., Kilgore, K., Gustafson, K.J.: High frequency electrical conduction block of the pudendal nerve. J. Neural Eng. 3, 180–187 (2006)

    Article  Google Scholar 

  60. Guan, Y., Wacnik, P.W., Yang, F., Carteret, A.F., Chung, C.Y., Meyer, R.A., Raja, S.N.: Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology. 113, 1392–1405 (2010)

    Article  Google Scholar 

  61. Gervain, J., Geffen, M.N.: Efficient neural coding in auditory and speech perception. Trends Neurosci. 42, 56–65 (2019)

    Article  Google Scholar 

  62. Green, J., Adachi, A., Shah, K.K., Hirokawa, J.D., Magani, P.S., Maimon, G.: A neural circuit architecture for angular integration in drosophila. Nature. 546, 101–106 (2017)

    Article  Google Scholar 

  63. Reyes, A.D., Rubel, E.W., Spain, W.J.: in vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. J. Neurosci. 16, 993–1007 (1996)

    Article  Google Scholar 

  64. Briguglio, J.J., Aizenberg, M., Balasubramanian, V., Geffen, M.N.: Cortical neural activity predicts sensory acuity under optogenetic manipulation. J. Neurosci. 38, 2094–2105 (2018)

    Article  Google Scholar 

  65. Bolus, M.F., Willats, A.A., Whitmire, C.J., Rozell, C.J., Stanley, G.B.: Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo. J. Neural Eng. 15, 026011 (2018)

    Article  Google Scholar 

  66. Doron, G., von Heimendahl, M., Schlattmann, P., Houweling, A.R., Brecht, M.: Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron. 81, 653–663 (2014)

    Article  Google Scholar 

  67. Brandman, D.M., Cash, S.S., Hochberg, L.R.: Review: human intracortical recording and neural decoding for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1687–1696 (2017)

    Article  Google Scholar 

  68. Feng, J., Tuckwell, H.C.: Optimal control of neuronal activity. Phys. Rev. Lett. 91, 018101 (2003)

    Article  Google Scholar 

  69. Kirischuk, S., Grantyn, R.: Inter-Bouton variability of synaptic strength correlates with heterogeneity of presynaptic Ca2+ signals. J. Neurophysiol. 88, 2172–2176 (2002)

    Article  Google Scholar 

  70. Neishabouri, A., Faisal, A.A.: Axonal noise as a source of synaptic variability. PLoS Comput. Biol. 10, e1003615 (2014)

    Article  Google Scholar 

  71. Segev, I., Rinzel, J., Shepherd, G.M. (eds.): The Theoretical Foundation of Dendritic Function: The Collected Papers of Wilfrid Rall with Commentaries Computational Neuroscience Series. MIT Press, Cambridge, MA (2003)

    Google Scholar 

  72. Richard, A., Orio, P., Tanre, E.: An integrate-and-fire model to generate spike trains with long-range dependence. J. Comput. Neurosci. 44, 297–312 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tuckwell, H.C.: Introduction to Theoretical Neurobiology Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge, UK (2006)

    MATH  Google Scholar 

  74. Moehlis, J., Shea-Brown, E., Rabitz, H.: Optimal inputs for phase models of spiking neurons. J. Comput. Nonlinear Dyn. 1, 358–367 (2006)

    Article  Google Scholar 

  75. Danzl, P., Nabi, A., Moehlis, J.: Charge-balanced spike timing control for phase models of spiking neurons. Discrete Contin. Dynam Syst. 28, 1413–1435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Winfree, A.T.: The Geometry of Biological Time, 2nd edn. Springer, New York, NY (2001)

    Book  MATH  Google Scholar 

  77. Wilson, D., Holt, A.B., Netoff, T.I., Moehlis, J.: Optimal entrainment of heterogeneous noisy neurons. Front. Neurosci. 9, 192 (2015)

    Article  Google Scholar 

  78. Nabi, A., Moehlis, J.: Time optimal control of spiking neurons. J. Math. Biol. 64, 981–1004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  79. Dasanayake, I.S., Li, J.S.: Design of charge-balanced time-optimal stimuli for spiking neuron oscillators. Neural Comput. 26, 2223–2246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  80. Wang, J., Costello, W., Rubin, J.E.: Tailoring inputs to achieve maximal neuronal firing. J. Math. Neurosci. 1, 3 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P., Brown, E.N.: A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93, 1074–1089 (2005)

    Article  Google Scholar 

  82. Brown, E., Barbieri, R., Eden, U., Frank, L.: Likelihood methods for neural spike train data analysis. In: Feng, J. (ed.) Computational Neuroscience, pp. 253–289. Chapman and Hall/CRC, London, UK (2003).

    Google Scholar 

  83. Ahmadian, Y., Packer, A.M., Yuste, R., Paninski, L.: Designing optimal stimuli to control neuronal spike timing. J. Neurophysiol. 106, 1038–1053 (2011)

    Article  Google Scholar 

  84. Koyama, S., Paninski, L.: Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. J. Comput. Neurosci. 29, 89–105 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. Iolov, A., Ditlevsen, S., Longtin, A.: Stochastic optimal control of single neuron spike trains. J. Neural Eng. 11, 046004 (2014)

    Article  Google Scholar 

  86. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs, NJ (1980)

    Google Scholar 

  87. Dasanayake, I., Li, J.S.: Optimal design of minimum-power stimuli for phase models of neuron oscillators. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83, 061916 (2011)

    Article  Google Scholar 

  88. Dasanayake, I.S., Li, J.-S.: Constrained charge-balanced minimum-power controls for spiking neuron oscillators. Syst. Cont. Lett. 75, 124–130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  89. O’Connor, K.N., Petkov, C.I., Sutter, M.L.: Adaptive stimulus optimization for auditory cortical neurons. J. Neurophysiol. 94, 4051–4067 (2005)

    Article  Google Scholar 

  90. Newman, J.P., Fong, M.F., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. Elife. 4, e07192 (2015)

    Article  Google Scholar 

  91. Yang, Y., Connolly, A.T., Shanechi, M.M.: A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation. J. Neural Eng. 15, 066007 (2018)

    Article  Google Scholar 

  92. Stanslaski, S., Afshar, P., Cong, P., Giftakis, J., Stypulkowski, P., Carlson, D., Linde, D., Ullestad, D., Avestruz, A.T., Denison, T.: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 410–421 (2012)

    Article  Google Scholar 

  93. Miranda-Dominguez, O., Gonia, J., Netoff, T.I.: Firing rate control of a neuron using a linear proportional-integral controller. J. Neural Eng. 7, 066004 (2010)

    Article  Google Scholar 

  94. Stigen, T., Danzl, P., Moehlis, J., Netoff, T.: Controlling spike timing and synchrony in oscillatory neurons. J. Neurophysiol. 105, 2074–2082 (2011)

    Article  Google Scholar 

  95. Li, L., Park, I.M., Brockmeier, A., Chen, B., Seth, S., Francis, J.T., Sanchez, J.C., Principe, J.C.: Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 532–543 (2013)

    Article  Google Scholar 

  96. Ching, S., Ritt, J.T.: Control strategies for underactuated neural ensembles driven by optogenetic stimulation. Front. Neural. Circ. 7, 54 (2013)

    Google Scholar 

  97. Nandi, A., Schattler, H., Ritt, J.T., Ching, S.: Fundamental limits of forced asynchronous spiking with integrate and fire dynamics. J. Math. Neurosci. 7, 11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  98. Tang, Y., Gao, H., Du, W., Lu, J., Vasilakos, A.V., Kurths, J.: Robust multiobjective controllability of complex neuronal networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 13, 778–791 (2016)

    Article  Google Scholar 

  99. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford, UK (2010)

    Book  MATH  Google Scholar 

  100. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River, NJ (1996)

    MATH  Google Scholar 

  101. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103, 8577–8582 (2006)

    Article  Google Scholar 

  102. Tang, Y., Wang, Z., Gao, H., Swift, S., Kurths, J.: A constrained evolutionary computation method for detecting controlling regions of cortical networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1569–1581 (2012)

    Article  Google Scholar 

  103. Tang, Y., Gao, H., Kurths, J.: Multiobjective identification of controlling areas in neuronal networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 708–720 (2013)

    Article  Google Scholar 

  104. Lu, J., Kurths, J., Cao, J., Mahdavi, N., Huang, C.: Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans. Neural. Netw. Learn. Syst. 23, 285–292 (2012)

    Article  Google Scholar 

  105. Yu, W., DeLellis, P., Chen, G., di Bernardo, M., Kurths, J.: Distributed adaptive control of synchronization in complex networks. IEEE Trans. Autom. Control. 57(2153), 2153–2158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  106. Tang, Y., Wong, W.K.: Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural. Netw. Learn. Syst. 24, 435–447 (2013)

    Article  Google Scholar 

  107. Tang, Y., Gao, H., Lu, J., Kurths, J.K.: Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization approach. IEEE Trans. Neural. Netw. Learn. Syst. 25, 1804–1815 (2014)

    Article  Google Scholar 

  108. Tang, Y., Gao, H., Kurths, J.: Distributed robust synchronization of dynamical networks with stochastic coupling. IEEE Trans. Circ. Syst. I: Reg. Pap. 61(1508), 1508–1519 (2014)

    MathSciNet  MATH  Google Scholar 

  109. Tang, Y., Wang, Z., Gao, H., Qiao, H., Kurths, J.: On controllability of neuronal networks with constraints on the average of control gains. IEEE Trans. Cybern. 44, 2670–2681 (2014)

    Article  Google Scholar 

  110. Wang, L.Z., Su, R.Q., Huang, Z.G., Wang, X., Wang, W.X., Grebogi, C., Lai, Y.C.: A geometrical approach to control and controllability of nonlinear dynamical networks. Nat. Commun. 7, 11323 (2016)

    Article  Google Scholar 

  111. Yuan, Z., Zhao, C., Di, Z., Wang, W.X., Lai, Y.C.: Exact controllability of complex networks. Nat. Commun. 4, 2447 (2013)

    Article  Google Scholar 

  112. Khalil, H.K.: Nonlinear Control. Pearson, Boston, MA (2015)

    Google Scholar 

  113. Lorach, H., Benosman, R., Marre, O., Ieng, S.H., Sahel, J.A., Picaud, S.: Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J. Neural Eng. 9, 066004 (2012)

    Article  Google Scholar 

  114. Feng, M., Qu, H., Yi, Z., Xie, X., Kurths, J.: Evolving scale-free networks by Poisson process: modeling and degree distribution. IEEE Trans. Cybern. 46, 1144–1155 (2016)

    Article  Google Scholar 

  115. Nandi, A., Kafashan, M., Ching, S.: Control analysis and design for statistical models of spiking networks. IEEE Trans. Cont. Netw. Syst. 5, 1146–1156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  116. Chen, Z., Putrino, D.F., Ghosh, S., Barbieri, R., Brown, E.N.: Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 121–135 (2011)

    Article  Google Scholar 

  117. Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P.: Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature. 454, 995–999 (2008)

    Article  Google Scholar 

  118. Ahmadian, Y., Pillow, J.W., Paninski, L.: Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural Comput. 23, 46–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  119. Paiva, A.R., Park, I., Principe, J.C.: A reproducing kernel Hilbert space framework for spike train signal processing. Neural Comput. 21, 424–449 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  120. Marsden, J.F., Limousin-Dowsey, P., Ashby, P., Pollak, P., Brown, P.: Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain. 124, 378–388 (2001)

    Article  Google Scholar 

  121. Pogosyan, A., Yoshida, F., Chen, C.C., Martinez-Torres, I., Foltynie, T., Limousin, P., Zrinzo, L., Hariz, M.I., Brown, P.: Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization. Neuroscience. 171, 245–257 (2010)

    Article  Google Scholar 

  122. Yaffe, R.B., Borger, P., Megevand, P., Groppe, D.M., Kramer, M.A., Chu, C.J., Santaniello, S., Meisel, C., Mehta, A.D., Sarma, S.V.: Physiology of functional and effective networks in epilepsy. Clin. Neurophysiol. 126, 227–236 (2015)

    Article  Google Scholar 

  123. Zhang, X., Santaniello, S.: Role of cerebellar GABaergic dysfunctions in the origins of essential tremor. Proc. Natl. Acad. Sci. U. S. A. 116, 13592–13601 (2019)

    Article  Google Scholar 

  124. Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  125. Zhou, C., Kurths, J., Kiss, I.Z., Hudson, J.L.: Noise-enhanced phase synchronization of chaotic oscillators. Phys. Rev. Lett. 89, 014101 (2002)

    Article  Google Scholar 

  126. Zlotnik, A., Nagao, R., Kiss, I.Z., Li, J.S.: Phase-selective entrainment of nonlinear oscillator ensembles. Nat. Commun. 7, 10788 (2016)

    Article  Google Scholar 

  127. Wilson, D., Moehlis, J.: Locally optimal extracellular stimulation for chaotic desynchronization of neural populations. J. Comput. Neurosci. 37, 243–257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  128. Danzl, P., Hespanha, J., Moehlis, J.: Event-based minimum-time control of oscillatory neuron models: phase randomization, maximal spike rate increase, and desynchronization. Biol. Cybern. 101, 387–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  129. Nabi, A., Mirzadeh, M., Gibou, F., Moehlis, J.: Minimum energy desynchronizing control for coupled neurons. J. Comput. Neurosci. 34, 259–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  130. Wilson, D., Moehlis, J.: Optimal chaotic desynchronization for neural populations. SIAM J. Appl. Dyn. Syst. 13, 276–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  131. Matchen, T.D., Moehlis, J.: Phase model-based neuron stabilization into arbitrary clusters. J. Comput. Neurosci. 44, 363–378 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  132. Kubota, S., Rubin, J.E.: Numerical optimization of coordinated reset stimulation for desynchronizing neuronal network dynamics. J. Comput. Neurosci. 45, 45–58 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  133. Holt, A.B., Netoff, T.I.: Origins and suppression of oscillations in a computational model of Parkinson’s disease. J. Comput. Neurosci. 37, 505–521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  134. Tass, P.A.: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88 (2003)

    Article  MATH  Google Scholar 

  135. Holt, A.B., Wilson, D., Shinn, M., Moehlis, J., Netoff, T.I.: Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease. PLoS Comput. Biol. 12, e1005011 (2016)

    Article  Google Scholar 

  136. Vogelstein, J.T., Packer, A.M., Machado, T.A., Sippy, T., Babadi, B., Yuste, R., Paninski, L.: Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010)

    Article  Google Scholar 

  137. Priori, A., Foffani, G., Rossi, L., Marceglia, S.: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol. 245, 77–86 (2013)

    Article  Google Scholar 

  138. Pollo, C., Kaelin-Lang, A., Oertel, M.F., Stieglitz, L., Taub, E., Fuhr, P., Lozano, A.M., Raabe, A., Schupbach, M.: Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 137, 2015–2026 (2014)

    Article  Google Scholar 

  139. Slopsema, J.P., Pena, E., Patriat, R., Lehto, L.J., Grohn, O., Mangia, S., Harel, N., Michaeli, S., Johnson, M.D.: Clinical deep brain stimulation strategies for orientation-selective pathway activation. J. Neural Eng. 15, 056029 (2018)

    Article  Google Scholar 

  140. Teplitzky, B.A., Zitella, L.M., Xiao, Y., Johnson, M.D.: Model-based comparison of deep brain stimulation array functionality with varying number of radial electrodes and machine learning feature sets. Front. Comput. Neurosci. 10, 58 (2016)

    Article  Google Scholar 

  141. Zhou, A., Santacruz, S.R., Johnson, B.C., Alexandrov, G., Moin, A., Burghardt, F.L., Rabaey, J.M., Carmena, J.M., Muller, R.: A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nat. Biomed. Eng. 3, 15–26 (2019)

    Article  Google Scholar 

  142. Clay, J.R., Forger, D.B., Paydarfar, D.: Ionic mechanism underlying optimal stimuli for neuronal excitation: role of Na+ channel inactivation. PLoS One. 7, e45983 (2012)

    Article  Google Scholar 

  143. Forger, D.B., Paydarfar, D., Clay, J.R.: Optimal stimulus shapes for neuronal excitation. PLoS Comput. Biol. 7, e1002089 (2011)

    Article  MathSciNet  Google Scholar 

  144. Tinkhauser, G., Pogosyan, A., Tan, H., Herz, D.M., Kuhn, A.A., Brown, P.: Beta burst dynamics in Parkinson’s disease off and on dopaminergic medication. Brain. 140, 2968–2981 (2017)

    Article  Google Scholar 

  145. Kuhn, A.A., Kempf, F., Brucke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G.H., Hariz, M.I., Vandenberghe, W., Nuttin, B., Brown, P.: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28, 6165–6173 (2008)

    Article  Google Scholar 

  146. Holt, A.B., Kormann, E., Gulberti, A., Potter-Nerger, M., McNamara, C.G., Cagnan, H., Baaske, M.K., Little, S., Koppen, J.A., Buhmann, C., Westphal, M., Gerloff, C., Engel, A.K., Brown, P., Hamel, W., Moll, C.K.E., Sharott, A.: Phase-dependent suppression of beta oscillations in Parkinson’s disease patients. J. Neurosci. 39, 1119–1134 (2019)

    Article  Google Scholar 

  147. Santaniello, S., Fiengo, G., Glielmo, L., Grill, W.M.: Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 15–24 (2011)

    Article  Google Scholar 

  148. Gorzelic, P., Schiff, S.J., Sinha, A.: Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson’s disease. J. Neural Eng. 10, 026016 (2013)

    Article  Google Scholar 

  149. Su, F., Wang, J., Deng, B., Wei, X.L., Chen, Y.Y., Liu, C., Li, H.Y.: Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25, 1450030 (2015)

    Article  Google Scholar 

  150. Huang, H.D., Santaniello, S.: Closed-loop low-frequency DBS restores thalamocortical relay fidelity in a computational model of the motor loop. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 1954–1957 (2017)

    Google Scholar 

  151. Popovych, O.V., Lysyansky, B., Tass, P.A.: Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Sci. Rep. 7, 1033 (2017)

    Article  Google Scholar 

  152. Su, F., Wang, J., Niu, S., Li, H., Deng, B., Liu, C., Wei, X.: Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network. Neural Netw. 98, 283–295 (2018)

    Article  MATH  Google Scholar 

  153. Su, F., Kumaravelu, K., Wang, J., Grill, W.M.: Model-based evaluation of closed-loop deep brain stimulation controller to adapt to dynamic changes in reference signal. Front. Neurosci. 13, 956 (2019)

    Article  Google Scholar 

  154. Fleming, J.E., Orlowski, J., Lowery, M.M., Chaillet, A.: Self-tuning deep brain stimulation controller for suppression of beta oscillations: analytical derivation and numerical validation. Front. Neurosci. 14, 639 (2020)

    Article  Google Scholar 

  155. Fleming, J.E., Dunn, E., Lowery, M.M.: Simulation of closed-loop deep brain stimulation control schemes for suppression of pathological beta oscillations in Parkinson’s disease. Front. Neurosci. 14, 166 (2020)

    Article  Google Scholar 

  156. Grado, L.L., Johnson, M.D., Netoff, T.I.: Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLoS Comput. Biol. 14, e1006606 (2018)

    Article  Google Scholar 

  157. Feng, X.J., Shea-Brown, E., Greenwald, B., Kosut, R., Rabitz, H.: Optimal deep brain stimulation of the subthalamic nucleus –a computational study. J. Comput. Neurosci. 23, 265–282 (2007)

    Article  MathSciNet  Google Scholar 

  158. Cassar, I.R., Titus, N.D., Grill, W.M.: An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. J. Neural Eng. 14, 066013 (2017)

    Article  Google Scholar 

  159. Rodriguez-Oroz, M.C., Moro, E., Krack, P.: Long-term outcomes of surgical therapies for Parkinson’s disease. Mov. Disord. 27, 1718–1728 (2012)

    Article  Google Scholar 

  160. Xiao, Y., Pena, E., Johnson, M.D.: Theoretical optimization of stimulation strategies for a directionally segmented deep brain stimulation electrode array. IEEE Trans. Biomed. Eng. 63, 359–371 (2016)

    Article  Google Scholar 

  161. Anderson, D.N., Osting, B., Vorwerk, J., Dorval, A.D., Butson, C.R.: Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. J. Neural Eng. 15, 026005 (2018)

    Article  Google Scholar 

  162. Valentin, A., Alarcon, G., Honavar, M., Garcia Seoane, J.J., Selway, R.P., Polkey, C.E., Binnie, C.D.: Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurol. 4, 718–726 (2005)

    Article  Google Scholar 

  163. Murphy, P.M., von Paternos, A.J., Santaniello, S.: A novel HFO-based method for unsupervised localization of the seizure onset zone in drug-resistant epilepsy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 1054–1057 (2017)

    Google Scholar 

  164. Sumsky, S.L., Santaniello, S.: Decision support system for seizure onset zone localization based on channel ranking and high-frequency EEG activity. IEEE J. Biomed. Health Inform. 23, 1535–1545 (2019)

    Article  Google Scholar 

  165. Keller, C.J., Bickel, S., Entz, L., Ulbert, I., Milham, M.P., Kelly, C., Mehta, A.D.: Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc. Natl. Acad. Sci. U. S. A. 108, 10308–10313 (2011)

    Article  Google Scholar 

  166. Matsumoto, R., Nair, D.R., LaPresto, E., Bingaman, W., Shibasaki, H., Luders, H.O.: Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain. 130, 181–197 (2007)

    Article  Google Scholar 

  167. Lepage, K.Q., Ching, S., Kramer, M.A.: Inferring evoked brain connectivity through adaptive perturbation. J. Comput. Neurosci. 34, 303–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  168. Schuele, S.U., Luders, H.O.: Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol. 7, 514–524 (2008)

    Article  Google Scholar 

  169. Morrell, M.J., RNS System in Epilepsy Group: Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 77, 1295–1304 (2011)

    Article  Google Scholar 

  170. Fisher, R., Salanova, V., Witt, T., Worth, R., Henry, T., Gross, R., Oommen, K., Osorio, I., Nazzaro, J., Labar, D., Kaplitt, M., Sperling, M., Sandok, E., Neal, J., Handforth, A., Stern, J., DeSalles, A., Chung, S., Shetter, A., Bergen, D., Bakay, R., Henderson, J., French, J., Baltuch, G., Rosenfeld, W., Youkilis, A., Marks, W., Garcia, P., Barbaro, N., Fountain, N., Bazil, C., Goodman, R., McKhann, G., Babu Krishnamurthy, K., Papavassiliou, S., Epstein, C., Pollard, J., Tonder, L., Grebin, J., Coffey, R., Graves, N., SANTE Study Group: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 51, 899–908 (2010)

    Article  Google Scholar 

  171. Paz, J.T., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., Huguenard, J.R.: Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013)

    Article  Google Scholar 

  172. Burns, S.P., Santaniello, S., Yaffe, R.B., Jouny, C.C., Crone, N.E., Bergey, G.K., Anderson, W.S., Sarma, S.V.: Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl. Acad. Sci. U. S. A. 111, E5321–E5330 (2014)

    Article  Google Scholar 

  173. Kramer, M.A., Eden, U.T., Kolaczyk, E.D., Zepeda, R., Eskandar, E.N., Cash, S.S.: Coalescence and fragmentation of cortical networks during focal seizures. J. Neurosci. 30, 10076–10085 (2010)

    Article  Google Scholar 

  174. Nagaraj, V., Lamperski, A., Netoff, T.I.: Seizure control in a computational model using a reinforcement learning stimulation paradigm. Int. J. Neural Syst. 27, 1750012 (2017)

    Article  Google Scholar 

  175. Pineau, J., Guez, A., Vincent, R., Panuccio, G., Avoli, M.: Treating epilepsy via adaptive neurostimulation: a reinforcement learning approach. Int. J. Neural Syst. 19, 227–240 (2009)

    Article  Google Scholar 

  176. Panuccio, G., Guez, A., Vincent, R., Avoli, M., Pineau, J.: Adaptive control of epileptiform excitability in an in vitro model of limbic seizures. Exp. Neurol. 241, 179–183 (2013)

    Article  Google Scholar 

  177. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, Princeton, NJ (1960)

    MATH  Google Scholar 

  178. Santaniello, S., Burns, S.P., Golby, A.J., Singer, J.M., Anderson, W.S., Sarma, S.V.: Quickest detection of drug-resistant seizures: an optimal control approach. Epilepsy Behav. 22(Suppl 1), S49–S60 (2011)

    Article  Google Scholar 

  179. Santaniello, S., Sherman, D.L., Thakor, N.V., Eskandar, E.N., Sarma, S.V.: Optimal control-based Bayesian detection of clinical and behavioral state transitions. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 708–719 (2012)

    Article  Google Scholar 

  180. Santaniello, S., Burns, S.P., Anderson, W.S., Sarma, S.V.: An optimal control approach to seizure detection in drug-resistant epilepsy. In: Kulkarni, V.V., Stan, G.-B., Raman, K. (eds.) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pp. 153–178. Springer, Netherlands (2014). https://doi.org/10.1007/978-94-017-9041-3_6

  181. Sritharan, D., Sarma, S.V.: Fragility in dynamic networks: application to neural networks in the epileptic cortex. Neural Comput. 26, 2294–2327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  182. Ehrens, D., Sritharan, D., Sarma, S.V.: Closed-loop control of a fragile network: application to seizure-like dynamics of an epilepsy model. Front. Neurosci. 9, 58 (2015)

    Article  Google Scholar 

  183. Schiller, Y., Bankirer, Y.: Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J. Neurophysiol. 97, 1887–1902 (2007)

    Article  Google Scholar 

  184. Good, L.B., Sabesan, S., Marsh, S.T., Tsakalis, K., Treiman, D., Iasemidis, L.: Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents. Int. J. Neural Syst. 19, 173–196 (2009)

    Article  Google Scholar 

  185. Beverlin Ii, B., Netoff, T.I.: Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation. Front. Neural. Circ. 6, 126 (2012)

    Google Scholar 

  186. Baltus, A., Wagner, S., Wolters, C.H., Herrmann, C.S.: Optimized auditory transcranial alternating current stimulation improves individual auditory temporal resolution. Brain Stimul. 11, 118–124 (2018)

    Article  Google Scholar 

  187. Lorenz, R., Simmons, L.E., Monti, R.P., Arthur, J.L., Limal, S., Laakso, I., Leech, R., Violante, I.R.: Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization. Brain Stimul. 12, 1484–1489 (2019)

    Article  Google Scholar 

  188. Picillo, M., Lozano, A.M., Kou, N., Munhoz, R.P., Fasano, A.: Programming deep brain stimulation for Parkinson’s disease: the Toronto Western Hospital algorithms. Brain Stimul. 9, 425–437 (2016)

    Article  Google Scholar 

  189. Kang, X., Sarma, S.V., Santaniello, S., Schieber, M., Thakor, N.V.: Task-independent cognitive state transition detection from cortical neurons during 3-D reach-to-grasp movements. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 676–682 (2015)

    Article  Google Scholar 

  190. Sumsky, S.L., Schieber, M.H., Thakor, N.V., Sarma, S.V., Santaniello, S.: Decoding kinematics using task-independent movement-phase-specific encoding models. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2122–2132 (2017)

    Article  Google Scholar 

  191. Savage, C.O., Grayden, D.B., Meffin, H., Burkitt, A.N.: Optimized single pulse stimulation strategy for retinal implants. J. Neural Eng. 10, 016003 (2013)

    Article  Google Scholar 

  192. Lee, J.I., Im, M.: Optimal electric stimulus amplitude improves the selectivity between responses of on versus off types of retinal ganglion cells. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 2015–2024 (2019)

    Article  Google Scholar 

  193. Flores, T., Goetz, G., Lei, X., Palanker, D.: Optimization of return electrodes in neurostimulating arrays. J. Neural Eng. 13, 036010 (2016)

    Article  Google Scholar 

  194. Tass, P.A., Adamchic, I., Freund, H.J., von Stackelberg, T., Hauptmann, C.: Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci. 30, 137–159 (2012)

    Google Scholar 

  195. Arts, R.A., George, E.L., Chenault, M.N., Stokroos, R.J.: Optimizing intracochlear electrical stimulation to suppress tinnitus. Ear Hear. 36, 125–135 (2015)

    Article  Google Scholar 

  196. Tass, P.A., Popovych, O.V.: Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling. Biol. Cybern. 106, 27–36 (2012)

    Article  Google Scholar 

  197. Lucken, L., Yanchuk, S., Popovych, O.V., Tass, P.A.: Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Front. Comput. Neurosci. 7, 63 (2013)

    Article  Google Scholar 

  198. Adamchic, I., Hauptmann, C., Barnikol, U.B., Pawelczyk, N., Popovych, O., Barnikol, T.T., Silchenko, A., Volkmann, J., Deuschl, G., Meissner, W.G., Maarouf, M., Sturm, V., Freund, H.J., Tass, P.A.: Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov. Disord. 29, 1679–1684 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the CT Institute for the Brain and Cognitive Sciences IBRAiN Fellowship (to X.Z.) and the US National Science Foundation CAREER Award 1845348 (to S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabato Santaniello .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, X., Santaniello, S. (2022). Optimal and Adaptive Stimulation Design. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics