Skip to main content

Animal Models of Pancreas Development, Developmental Disorders, and Disease

  • Chapter
  • First Online:
Animal Models of Human Birth Defects

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1236))

Abstract

The pancreas is a glandular organ responsible for diverse homeostatic functions, including hormone production from the endocrine islet cells to regulate blood sugar levels and enzyme secretion from the exocrine acinar cells to facilitate food digestion. These pancreatic functions are essential for life; therefore, preserving pancreatic function is of utmost importance. Pancreas dysfunction can arise either from developmental disorders or adult onset disease, both of which are caused by defects in shared molecular pathways. In this chapter, we discuss what is known about the molecular mechanisms controlling pancreas development, how disruption of these mechanisms can lead to developmental defects and disease, and how essential pancreas functions can be modeled using human pluripotent stem cells. At the core of understanding of these molecular processes are animal model studies that continue to be essential for elucidating the mechanisms underlying human pancreatic functions and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolgin E. The knockout rat pack. Nat Med. 2010;16:254–7.

    Article  CAS  PubMed  Google Scholar 

  2. Kim SK, Hebrok M, Melton DA. Pancreas development in the chick embryo. Cold Spring Harb Symp Quant Biol. 1997;62:377–83.

    Article  CAS  PubMed  Google Scholar 

  3. Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ. 2018;60(6):393–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chalmers AD, Slack JM. Development of the gut in Xenopus laevis. Dev Dyn. 1998;212(4):509–21.

    Article  CAS  PubMed  Google Scholar 

  5. Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, et al. Development of the human pancreas from foregut to endocrine commitment. Diabetes. 2013;62(10):3514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wessells NK, Cohen JH. Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol. 1967;15(3):237–70.

    Article  CAS  PubMed  Google Scholar 

  7. Slack JM. Developmental biology of the pancreas. Development. 1995;121(6):1569–80.

    CAS  PubMed  Google Scholar 

  8. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25(1):221–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development. 1997;124(21):4243–52.

    CAS  PubMed  Google Scholar 

  10. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 1998;12(11):1705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wandzioch E, Zaret KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science. 2009;324(5935):1707–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan FC, Brissova M. Pancreas development in humans. Curr Opin Endocrinol Diabetes Obes. 2014;21(2):77–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA. Human pancreas development. Development. 2015;142(18):3126–37.

    Article  CAS  PubMed  Google Scholar 

  14. Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol. 2009;326(1):4–35.

    Article  CAS  PubMed  Google Scholar 

  15. Serup P. Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol. 2012;23(6):663–72.

    Article  CAS  PubMed  Google Scholar 

  16. Hart NJ, Powers AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia. 2019;62(2):212–22.

    Article  CAS  PubMed  Google Scholar 

  17. Riopel M, Li J, Fellows GF, Goodyer CG, Wang R. Ultrastructural and immunohistochemical analysis of the 8-20 week human fetal pancreas. Islets. 2014;6(4):e982949.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arnes L, Hill JT, Gross S, Magnuson MA, Sussel L. Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population. PLoS One. 2012;7(12):e52026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L. Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A. 2004;101(9):2924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suissa Y, Magenheim J, Stolovich-Rain M, Hija A, Collombat P, Mansouri A, et al. Gastrin: a distinct fate of neurogenin3 positive progenitor cells in the embryonic pancreas. PLoS One. 2013;8(8):e70397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, et al. Single-cell transcriptome profiling of mouse and hESC-derived pancreatic progenitors. Stem Cell Reports. 2018;11(6):1551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jørgensen MC, Ahnfelt-Rønne J, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J. An illustrated review of early pancreas development in the mouse. Endocr Rev. 2007;28(6):685–705.

    Article  PubMed  CAS  Google Scholar 

  23. Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn. 2011;240(3):530–65.

    Article  CAS  PubMed  Google Scholar 

  24. Mastracci TL, Sussel L. The endocrine pancreas: insights into development, differentiation, and diabetes. Wiley Interdiscip Rev Dev Biol. 2012;1(5):609–28.

    Article  CAS  PubMed  Google Scholar 

  25. Cano DA, Soria B, Martín F, Rojas A. Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci. 2013;71(13):2383–402.

    Article  PubMed  CAS  Google Scholar 

  26. Hanley N. Closing in on pancreatic beta cells. Nat Biotechnol. 2014;32(11):1100–2.

    Article  CAS  PubMed  Google Scholar 

  27. Peshavaria M, Gamer L, Henderson E, Teitelman G, Wright CV, Stein R. XIHbox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. Mol Endocrinol. 1994;8(6):806–16.

    CAS  PubMed  Google Scholar 

  28. Gamer LW, Wright CV. Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8. Dev Biol. 1995;171(1):240–51.

    Article  CAS  PubMed  Google Scholar 

  29. Potter LA, Choi E, Hipkens SB, Wright CVE, Magnuson MA. A recombinase-mediated cassette exchange-derived cyan fluorescent protein reporter allele for Pdx1. Genesis. 2012;50(4):384–92.

    Article  CAS  PubMed  Google Scholar 

  30. De Franco E, Shaw-Smith C, Flanagan SE, et al. Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. Diabet Med. 2013;30(5):e197–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17(2):138–9.

    Article  CAS  PubMed  Google Scholar 

  32. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371(6498):606–9.

    Article  CAS  PubMed  Google Scholar 

  33. Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Cereghini S. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet. 2006;15(15):2363–75.

    Article  CAS  PubMed  Google Scholar 

  34. Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci U S A. 2005;102(5):1490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P, et al. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes. 2011;60(4):1349–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Senée V, Chelala C, Duchatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38(6):682–7.

    Article  PubMed  CAS  Google Scholar 

  37. Kang HS, Kim YS, ZeRuth G, et al. Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol. 2009;29(24):6366–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 2010;59(9):2326–31.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  40. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997;11(18):2323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flanagan SE, De Franco E, Lango Allen H, Zerah M, Abdul-Rasoul MM, Edge JA, et al. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab. 2014;19(1):146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. 1998;125(12):2213–21.

    Google Scholar 

  43. Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet. 1999;23(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  44. Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 1999;23(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  45. Solomon BD, Pineda-Alvarez DE, Balog JZ, et al. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet A. 2009;149A(11):2543–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997;387(6631):406–9.

    Article  CAS  PubMed  Google Scholar 

  47. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36(12):1301–5.

    Article  CAS  PubMed  Google Scholar 

  48. Weedon MN, Cebola I, Patch AM, et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46(1):61–4.

    Article  CAS  PubMed  Google Scholar 

  49. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  50. Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer PK. The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J. 1996;15(16):4317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Allen HL, Flanagan SE, Shaw-Smith C, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2011;44(1):20–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Shaw-Smith C, De Franco E, Lango Allen H, et al. GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes. 2014;63(8):2888–94.

    Article  CAS  PubMed  Google Scholar 

  53. Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, et al. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest. 2012;122(10):3516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carrasco M, Delgado I, Soria B, Martín F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest. 2012;122(10):3504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000;97(4):1607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burlison JS, Long Q, Fujitani Y, et al. Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol. 2008;316(1):74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krapp A, Knöfler M, Ledermann B, Bürki K, Berney C, Zoerkler N, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 1998;12(23):3752–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Decker K, Goldman DC, Grasch CL, Sussel L. Gata6 is an important regulator of mouse pancreas development. Dev Biol. 2006;298(2):415–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xuan S, Sussel L. GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling. Development. 2016;143(5):780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Villasenor A, Chong DC, Cleaver O. Biphasic Ngn3 expression in the developing pancreas. Dev Dyn. 2008;237(11):3270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee CS, Perreault N, Brestelli JE, Kaestner KH. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev. 2002;16(12):1488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Cruz Dela F, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development. 2000;127(24):5533–40.

    CAS  PubMed  Google Scholar 

  63. Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, et al. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet. 2013;9(1):e1003274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gutiérrez GD, Bender AS, Cirulli V, Mastracci TL, Kelly SM, Tsirigos A, et al. Pancreatic β cell identity requires continual repression of non–β cell programs. J Clin Invest. 2017;127(1):244–59.

    Article  PubMed  Google Scholar 

  65. Anderson KR, Torres CA, Solomon K, Becker TC, Newgard CB, Wright CV, et al. Cooperative transcriptional regulation of the essential pancreatic islet gene NeuroD1 (beta2) by Nkx2.2 and neurogenin 3. J Biol Chem. 2009;284(45):31236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chao CS, Loomis ZL, Lee JE, Sussel L. Genetic identification of a novel NeuroD1 function in the early differentiation of islet alpha, PP and epsilon cells. Dev Biol. 2007;312(2):523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang H-P, Chu K, Nemoz-Gaillard E, Elberg D, Tsai M-J. Neogenesis of beta-cells in adult BETA2/NeuroD-deficient mice. Mol Endocrinol. 2002;16(3):541–51.

    CAS  PubMed  Google Scholar 

  68. Kang HS, Takeda Y, Jeon K, Jetten AM. The spatiotemporal pattern of Glis3 expression indicates a regulatory function in bipotent and endocrine progenitors during early pancreatic development and in beta, PP and ductal cells. PLoS One. 2016;11(6):e0157138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cano DA, Hebrok M, Zenker M. Pancreatic development and disease. Gastroenterology. 2007;132(2):745–62.

    Article  CAS  PubMed  Google Scholar 

  72. Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI, et al. Beta cell differentiation during early human pancreas development. J Endocrinol. 2004;181(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  73. Jennings RE, Berry AA, Gerrard DT, Wearne SJ, Strutt J, Withey S, et al. Laser capture and deep sequencing reveals the transcriptomic programmes regulating the onset of pancreas and liver differentiation in human embryos. Stem Cell Reports. 2017;9(5):1387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab. 2003;88(9):4398–406.

    Article  CAS  PubMed  Google Scholar 

  75. Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright CV, et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development. 1995;121(1):11–8.

    CAS  PubMed  Google Scholar 

  76. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95.

    CAS  PubMed  Google Scholar 

  77. Allen HL, Flanagan SE, Shaw-Smith C, De Franco E, Akerman I, Caswell R, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2011;44(1):20–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 1998;12(22):3579–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tiyaboonchai A, Cardenas-Diaz FL, Ying L, Maguire JA, Sim X, Jobaliya C, et al. GATA6 plays an important role in the induction of human definitive endoderm, development of the pancreas, and functionality of pancreatic β cells. Stem Cell Reports. 2017;8(3):589–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi Z-D, Lee K, Yang D, Amin S, Verma N, Li QV, et al. Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in human pancreatic development. Cell Stem Cell. 2017;20(5):675–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Robert AP, Iqbal S, John M. Complete agenesis of the dorsal pancreas: a rare clinical entity. Int J Appl Basic Med Res. 2016;6(4):290–2.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Molotkov A, Molotkova N, Duester G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn. 2005;232(4):950–7.

    Article  CAS  PubMed  Google Scholar 

  83. Esni F, Johansson BR, Radice GL, Semb H. Dorsal pancreas agenesis in N-cadherin-deficient mice. Dev Biol. 2001;238(1):202–12.

    Article  CAS  PubMed  Google Scholar 

  84. Kim SK, Hebrok M, Li E, et al. Activin receptor patterning of foregut organogenesis. Genes Dev. 2000;14(15):1866–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jain A, Singh M, Dey S, Kaura A, Diwakar G. A rare case of complete agenesis of dorsal pancreas. Euroasian J Hepatogastroenterol. 2017;7(2):183–4.

    PubMed  PubMed Central  Google Scholar 

  86. Erotokritou A, Gerharz CD, Sagir A. Agenesis of dorsal pancreas associated with pancreatic neuroendocrine tumor: a case report and review of the literature. J Med Case Rep. 2018;12(1):185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Etienne D, John A, Menias CO, Ward R, Tubbs RS, Loukas M. Annular pancreas: a review of its molecular embryology, genetic basis and clinical considerations. Ann Anat. 2012;194(5):422–8.

    Article  PubMed  Google Scholar 

  88. Lim J, Porter J, Varia H, Pettit S. Annular pancreas causing duodenal obstruction in an adult. BMJ Case Rep. 2017;2017.

    Google Scholar 

  89. Lainakis N, Antypas S, Panagidis A, Alexandrou I, Kambouri K, Kyriazis C, et al. Annular pancreas in two consecutive siblings: an extremely rare case. Eur J Pediatr Surg. 2005;15(5):364–8.

    Article  CAS  PubMed  Google Scholar 

  90. Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development. 2000;127(22):4905–13.

    CAS  PubMed  Google Scholar 

  91. Kanakatti Shankar R, Pihoker C, Dolan LM, Standiford D, Badaru A, Dabelea D, et al. Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for Diabetes in Youth Study. Pediatr Diabetes. 2013;14(3):174–80.

    PubMed  Google Scholar 

  92. Flanagan SE, Patch A-M, Mackay DJG, Edghill EL, Gloyn AL, Robinson D, et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 2007;56(7):1930–7.

    Article  CAS  PubMed  Google Scholar 

  93. Li H, Edlund H. Persistent expression of Hlxb9 in the pancreatic epithelium impairs pancreatic development. Dev Biol. 2001;240(1):247–53.

    Article  CAS  PubMed  Google Scholar 

  94. Demirbilek H, Hussain K. Congenital hyperinsulinism: diagnosis and treatment update. J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):69–87.

    PubMed  PubMed Central  Google Scholar 

  95. Salisbury RJ, Han B, Jennings RE, Berry AA, Stevens A, Mohamed Z, et al. Altered phenotype of β-cells and other pancreatic cell lineages in patients with diffuse congenital hyperinsulinism in infancy caused by mutations in the ATP-sensitive K-channel. Diabetes. 2015;64(9):3182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pihoker C, Gilliam LK, Ellard S, Dabelea D, Davis C, Dolan LM, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013;98(10):4055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stoffel M, Le Beau MM, Espinosa R, Bohlander SF, Le Paslier D, Cohen D, et al. A yeast artificial chromosome-based map of the region of chromosome 20 containing the diabetes-susceptibility gene, MODY1, and a myeloid leukemia related gene. Proc Natl Acad Sci U S A. 1996;93(9):3937–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vaxillaire M, Boccio V, Philippi A, Vigouroux C, Terwilliger J, Passa P, et al. A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nat Genet. 1995;9(4):418–23.

    Article  CAS  PubMed  Google Scholar 

  99. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17(4):384–5.

    Article  CAS  PubMed  Google Scholar 

  100. Shih DQ, Heimesaat M, Kuwajima S, Stein R, Wright CVE, Stoffel M. Profound defects in pancreatic beta-cell function in mice with combined heterozygous mutations in Pdx-1, Hnf-1alpha, and Hnf-3beta. Proc Natl Acad Sci U S A. 2002;99(6):3818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Centers for Disease Control and Prevention (CDC). National Diabetes Statistics Report, 2017; 2017. p. 1–20.

    Google Scholar 

  102. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29(1):1–13.

    CAS  PubMed  Google Scholar 

  103. Wicker LS, Clark J, Fraser HI, Garner VES, Gonzalez-Munoz A, Healy B, et al. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun. 2005;25(Suppl):29–33.

    Article  CAS  PubMed  Google Scholar 

  104. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017;3:17016.

    Article  PubMed  Google Scholar 

  105. Roep BO. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth. Ann N Y Acad Sci. 2007;1103(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  106. Mordes JP, Bortell R, Blankenhorn EP, Rossini AA, Greiner DL. Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J. 2004;45(3):278–91.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang W, Kamiya H, Ekberg K, Wahren J, Sima AAF. C-peptide improves neuropathy in type 1 diabetic BB/Wor-rats. Diabetes Metab Res Rev. 2006;23(1):63–70.

    Article  CAS  Google Scholar 

  108. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.

    Article  PubMed  Google Scholar 

  109. Chen D, Wang M-W. Development and application of rodent models for type 2 diabetes. Diabetes Obes Metab. 2005;7(4):307–17.

    Article  PubMed  Google Scholar 

  110. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  111. Lindström P. The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal. 2007;7:666–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–5.

    Article  CAS  PubMed  Google Scholar 

  113. Drel VR, Pacher P, Stavniichuk R, Xu W, Zhang J, Kuchmerovska TM, et al. Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med. 2011;28(4):629–35.

    CAS  PubMed  Google Scholar 

  114. Chen H, Zheng C, Zhang X, Li J, Li J, Zheng L, et al. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides. 2011;32(8):1634–9.

    Article  CAS  PubMed  Google Scholar 

  115. Kawano K, Hirashima T, Mori S, Natori T. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract. 1994;24(Suppl):S317–20.

    Article  PubMed  Google Scholar 

  116. Bi S, Moran TH. Obesity in the Otsuka Long Evans Tokushima Fatty rat: mechanisms and discoveries. Front Nutr. 2016;3:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Tokuyama Y, Sturis J, DePaoli AM, Diabetes JT. Evolution of β-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995;44(12):1447–57.

    Article  CAS  PubMed  Google Scholar 

  118. Gauguier D, Froguel P, Parent V, Bernard C, Bihoreau MT, Portha B, et al. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet. 1996;12(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  119. Kuwabara WMT, Panveloski-Costa AC, Yokota CNF, Pereira JNB, Filho JM, Torres RP, et al. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: are they reliable models to study Type 2 Diabetes mellitus? PLoS One. 2017;12(12):e0189622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes. 2008;57(6):1584–94.

    Article  CAS  PubMed  Google Scholar 

  121. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic β cells. Cells. 2014;159(2):428–39.

    Google Scholar 

  122. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33.

    Article  CAS  PubMed  Google Scholar 

  123. Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports. 2015;4(4):591–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu S, Russ HA, Wang X, Zhang M, Ma T, Xu T, et al. Human pancreatic beta-like cells converted from fibroblasts. Nat Commun. 2016;7:10080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McGrath PS, Watson CL, Ingram C, Helmrath MA, Wells JM. The basic helix-loop-helix transcription factor NEUROG3 is required for development of the human endocrine pancreas. Diabetes. 2015;64(7):2497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Illustrations in this chapter were drawn by Jennifer Colquhoun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Sussel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorberbaum, D.S., Docherty, F.M., Sussel, L. (2020). Animal Models of Pancreas Development, Developmental Disorders, and Disease. In: Liu, A. (eds) Animal Models of Human Birth Defects. Advances in Experimental Medicine and Biology, vol 1236. Springer, Singapore. https://doi.org/10.1007/978-981-15-2389-2_3

Download citation

Publish with us

Policies and ethics