Skip to main content

Efflux Pump Inhibitors and Their Role in the Reversal of Drug Resistance

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

The worldwide emergence of resistant bacteria to multiple antimicrobial drugs is one of the greatest hurdles to chemotherapy. Multidrug resistance (MDR) is the capability of pathogenic bacteria to survive lethal doses of antimicrobial drugs. One of the underlying mechanisms of survival under stressful conditions is the extrusion of drugs through membrane-embedded efflux proteins. These ubiquitous resistance elements, which confer resistance or cross resistance to multiple drugs, are considered MDR efflux transporters. Consequently, efflux pump inhibitors (EPIs) from various natural and synthetic sources have been developed to increase the therapeutic armamentarium for combating bacterial resistance and restoring the antibiotic activity. Owing to less toxicity issues than chemical-based EPIs, plant-based EPIs are gaining much importance, but none are yet undergoing clinical trials. In this review, we will introduce the concept of efflux pumps and their diversity and then provide a comprehensive understanding of efflux pump inhibitors from both plant and chemical sources, their mode of action and the recent advances in their development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu, A. C., McBain, A. J., & Simoes, M. (2012). Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports, 29(9), 1007–1021.

    Article  CAS  PubMed  Google Scholar 

  • Aghayan, S. S., Mogadam, H. K., Fazli, M., et al. (2017). The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas Aeruginosa isolated from burn infections. AJMB9, 9(1), 2.

    Google Scholar 

  • Ahmed, M. A., Borsch, C. M., Neyfakh, A. A., & Schuldiner, S. (1993, May 25). Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine. Journal of Biological Chemistry, 268(15), 11086–11089.

    Google Scholar 

  • Amaral, L., Spengler, G., Martins, A., Armada, A., Handzlik, J., Kiec-Kononowicz, K., & Molnar, J. (2012). Inhibitors of bacterial efflux pumps that also inhibit efflux pumps of cancer cells. Anticancer Research, 32(7), 2947–2957.

    CAS  PubMed  Google Scholar 

  • Amaral, L., Martins, A., Spengler, G., & Molnar, J. (2014). Efflux pumps of gram-negative bacteria: What they do, how they do it, with what and how to deal with them. Frontiers in Pharmacology, 4, 168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anes, J., McCusker, M. P., Fanning, S., & Martins, M. (2015). The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology, 6, 587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D., & Hopper, W. (2014). Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One, 9(7), 101840.

    Article  CAS  Google Scholar 

  • Avrain, L., Mertens, P., & Van Bambeke, F. (2013). RND efflux pumps in P. aeruginosa: An underestimated resistance mechanism. Antibiotic Susceptibility, 26321, 26–28.

    Google Scholar 

  • Aygül, A. (2015). The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance. Mikrobiyoloji Bülteni, 49(2), 278–291.

    Article  PubMed  Google Scholar 

  • Bag, A., & Chattopadhyay, R. R. (2014). Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Natural Product Research, 28(16), 1280–1283.

    Article  CAS  PubMed  Google Scholar 

  • Barreto, H. M., Coelho, K. M., Ferreira, J. H., dos Santos, B. H., de Abreu, A. P., Coutinho, H. D., da Silva, R. A., de Sousa TO, Citó, A. M. D. G., & Lopes, J. A. (2016). Enhancement of the antibiotic activity of aminoglycosides by extracts from Anadenanthera colubrine (Vell.) Brenan var. cebil against multi-drug resistant bacteria. Natural Product Research, 30(11), 1289–1292.

    Article  CAS  PubMed  Google Scholar 

  • Bay, D. C., Rommens, K. L., & Turner, R. J. (2008). Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochimica et Biophysica Acta, 1778(9), 1814–1838.

    Article  CAS  PubMed  Google Scholar 

  • Beheshti, M., Talebi, M., Ardebili, A., Bahador, A., & Lari, A. R. (2014). Detection of AdeABC efflux pump genes in tetracycline-resistant Acinetobacter baumannii isolates from burn and ventilator-associated pneumonia patients. Journal of Pharmacy & Bioallied Sciences, 6(4), 229.

    Article  CAS  Google Scholar 

  • Berti, L., Lorenzi, V., Casanova, J., Muselli, A., Pagès, J.M. and Bolla, J.M. (2010) Geraniol as bacterial efflux pump inhibitor. European Patent No. EP 2 184 061 A1, 12 Jun 2010.

    Google Scholar 

  • Bhardwaj, A. K., & Mohanty, P. (2012). Bacterial efflux pumps involved in multidrug resistance and their inhibitors: Rejuvinating the antimicrobial chemotherapy. Recent Patents on Anti-Infective Drug Discovery, 7(1), 73–89.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya, T., Sharma, A., Akhter, J., & Pathania, R. (2017). The small molecule IITR08027 restores the antibacterial activity of fluoroquinolones against multidrug-resistant Acinetobacter baumannii by efflux inhibition. International Journal of Antimicrobial Agents, 50(2), 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Bialek-Davenet, S., Lavigne, J. P., Guyot, K., Mayer, N., Tournebize, R., Brisse, S., Leflon-Guibout, V., & Nicolas-Chanoine, M. H. (2014). Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. The Journal of Antimicrobial Chemotherapy, 70(1), 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Blair, J. M., Richmond, G. E., & Piddock, L. J. (2014). Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiology, 9(10), 1165–1177.

    Article  CAS  PubMed  Google Scholar 

  • Blanco, P., Hernando-Amado, S., Reales-Calderon, J. A., Corona, F., Lira, F., Alcalde-Rico, M., Bernardini, A., Sanchez, M. B., & Martinez, J. L. (2016). Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganism, 4(1), 14.

    Article  CAS  Google Scholar 

  • Bohnert, J. A., & Kern, W. V. (2005). Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrobial Agents and Chemotherapy, 49(2), 849–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnert, J. A., Schuster, S., Kern, W. V., Karcz, T., Olejarz, A., Kaczor, A., Handzlik, J., & Kieć-Kononowicz, K. (2016). Novel piperazine arylideneimidazolones inhibit the AcrAB-TolC pump in Escherichia coli and simultaneously act as fluorescent membrane probes in a combined real-time influx and efflux assay. Antimicrobial Agents and Chemotherapy, 60(4), 1974–1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boncoeur, E., Durmort, C., Bernay, B., Ebel, C., Di Guilmi, A. M., Croizé, J., Vernet, T., & Jault, J. M. (2012). PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry, 51(39), 7755–7765.

    Article  CAS  PubMed  Google Scholar 

  • Bremner, J. B. (2007). Some approaches to new antibacterial agents. Pure and Applied Chemistry, 79(12), 2143–2153.

    Article  CAS  Google Scholar 

  • Chan, B. C., Han, X. Q., Lui, S. L., Wong, C. W., Wang, T. B., Cheung, D. W., Cheng, W., Ip, M., Han, S. Q., Yang, X. S., & Jolivalt, C. (2015). Combating against methicillin-resistant Staphylococcus aureus–two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. The Journal of Pharmacy and Pharmacology, 67(1), 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier, J., Bredin, J., Mahamoud, A., Malléa, M., Barbe, J., & Pagès, J. M. (2004). Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrobial Agents and Chemotherapy, 48(3), 1043–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitsaz, M., & Brown, M. H. (2017). The role played by drug efflux pumps in bacterial multidrug resistance. Essays in Biochemistry, 61(1), 127–139.

    Article  PubMed  Google Scholar 

  • Choudhury, D., Talukdar, A. D., Choudhury, M. D., Maurya, A. P., Paul, D., Chanda, D., Chakravorty, A., & Bhattacharjee, A. (2015). Transcriptional analysis of MexAB-OprM efflux pumps system of Pseudomonas aeruginosa and its role in carbapenem resistance in a tertiary referral hospital in India. PLoS One, 10(7), 0133842.

    Article  CAS  Google Scholar 

  • Chovanová, R., Mezovská, J., Vaverková, Š., & Mikulášová, M. (2015). The inhibition the Tet (K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Letters in Applied Microbiology, 61(1), 58–62.

    Article  PubMed  CAS  Google Scholar 

  • Cox, D. (2015). Antibiotic resistance: The race to stop the silent tsunami facing modern medicine. The Guardian.

    Google Scholar 

  • Coyne, S., Courvalin, P., & Périchon, B. (2011). Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrobial Agents and Chemotherapy, 55(3), 947–953.

    Article  CAS  PubMed  Google Scholar 

  • Crow, A., Greene, N. P., Kaplan, E., & Koronakis, V. (2017). Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proceedings of the National Academy of Sciences, 114(47), 12572–12577.

    Article  CAS  Google Scholar 

  • Dantas, N., de Aquino, T. M., de Araújo-Júnior, J. X., da Silva-Júnior, E., Gomes, E., Gomes, A. A. S., Siqueira-Júnior, J. P., & Junior, F. J. B. M. (2018). Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chemico-Biological Interactions, 280, 8–14.

    Article  CAS  PubMed  Google Scholar 

  • Daury, L., Orange, F., Taveau, J. C., Verchère, A., Monlezun, L., Gounou, C., Marreddy, R. K., Picard, M., Broutin, I., Pos, K. M., & Lambert, O. (2016). Tripartite assembly of RND multidrug efflux pumps. Nature Communications, 12(7), 1073.

    Google Scholar 

  • Davin-Regli, A., Masi, M., Bialek, S., Nicolas-Chanoine, M. H., & Pagès, J. M. (2016). Antimicrobial drug efflux pumps in Enterobacter and Klebsiella. In L. Xianzhi, C. A. Elkins, & H. I. Zgurskaya (Eds.), Efflux-mediated antimicrobial resistance in Bacteria (Ist ed.). Cham: Springer International Publishing.

    Google Scholar 

  • Dhanarani, S., Congeevaram, S., Piruthiviraj, P., Park, J. H., & Kaliannan, T. (2017). Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria. Chemical Biology Letters, 4(2), 69–72.

    Google Scholar 

  • Dwivedi, G. R., Maurya, A., Yadav, D. K., Khan, F., Darokar, M. P., & Srivastava, S. K. (2015). Drug resistance reversal potential of Ursolic acid derivatives against Nalidixic acid-and multidrug-resistant Escherichia coli. Chemical Biology & Drug Design, 86(3), 272–283.

    Article  CAS  Google Scholar 

  • Eicher, T., Cha, H. J., Seeger, M. A., Brandstätter, L., El-Delik, J., Bohnert, J. A., Kern, W. V., Verrey, F., Grütter, M. G., Diederichs, K., & Pos, K. M. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proceedings of the National Academy of Sciences of the United States of America, 109, 5687–5692.

    Google Scholar 

  • El-Banna, T. E., Sonbol, F. I., El-Aziz, A. A., & Al-Fakharany, O. M. (2016). Modulation of antibiotic efficacy against Klebsiella pneumoniae by antihistaminic drugs. Journal of Medical Microbiology & Diagnosis, 5(225), 2161–0703.

    Google Scholar 

  • Fankam, A. G., Kuiate, J. R., & Kuete, V. (2017). Antibacterial and antibiotic resistance modulatory activities of leaves and bark extracts of Recinodindron heudelotii (Euphorbiaceae) against multidrug-resistant gram-negative bacteria. BMC Complementary and Alternative Medicine, 17(1), 168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira, S., Silva, F., Queiroz, J. A., Oleastro, M., & Domingues, F. C. (2014). Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions. Int J Food Microbiol, 180, 62–68.

    Google Scholar 

  • Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 1;41(3), 430–449.

    Article  CAS  Google Scholar 

  • Furi, L., Ciusa, M. L., Knight, D., Di Lorenzo, V., Tocci, N., Cirasola, D., Aragones, L., Coelho, J. R., Freitas, A. T., Marchi, E., & Moce, L. (2013). Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 57(8), 3488–3497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvey, M. I., & Piddock, L. J. (2008). The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrobial Agents and Chemotherapy, 52(5), 1677–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, Nikbakht M and Khalili Y (2017) Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and intensive care unit isolates of Pseudomonas aeruginosa. Journal Infect Public Health 11(3):364-372.

    Article  PubMed  Google Scholar 

  • Gottesman, M. M., & Ling, V. (2006). The molecular basis of multidrug resistance in cancer: The early years of P-glycoprotein research. FEBS Letters, 580(4), 998–1009.

    Article  CAS  PubMed  Google Scholar 

  • Guérin, F., Galimand, M., Tuambilangana, F., Courvalin, P., & Cattoir, V. (2014). Overexpression of the novel MATE fluoroquinolone efflux pump FepA in Listeria monocytogenes is driven by inactivation of its local repressor FepR. PLoS One, 9(9), 106340.

    Article  CAS  Google Scholar 

  • Hashimoto, K., Ogawa, W., Nishioka, T., Tsuchiya, T., & Kuroda, T. (2013). Functionally cloned pdrM from Streptococcus pneumoniae encodes a Na+ coupled multidrug efflux pump. PLoS One, 8(3), e59525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernando-Amado, S., Blanco, P., Alcalde-Rico, M., Corona, F., Reales-Calderón, J. A., Sánchez, M. B., & Martínez, J. L. (2016). Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resistance Updates, 28, 13–27.

    Article  PubMed  Google Scholar 

  • Holler, J. G., Christensen, S. B., Slotved, H. C., Rasmussen, H. B., Gúzman, A., Olsen, C. E., Petersen, B., & Mølgaard, P. (2012). Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. The Journal of Antimicrobial Chemotherapy, 67(5), 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  • Hou, P. F., Chen, X. Y., Yan, G. F., Wang, Y. P., & Ying, C. M. (2012). Study of the correlation of imipenem resistance with efflux pumps AdeABC, AdeIJK, AdeDE and AbeM in clinical isolates of Acinetobacter baumannii. Chemotherapy, 58(2), 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Hürlimann, L. M., Corradi, V., Hohl, M., Bloemberg, G. V., Tieleman, D. P., & Seeger, M. A. (2016). The heterodimeric ABC transporter EfrCD mediates multidrug efflux in Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 60(9), 5400–5411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang, S. (2016). Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. Journal of Microbiology, 54(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Kenana, J., Langat, B., Kalicki, C., Inthavong, E., & Kanna, A. (2017). The structure of EmrE and its role in antibiotic resistance. The FASEB Journal, 31(1 Supplement), 777–723.

    Google Scholar 

  • Kourtesi, C., Ball, A. R., Huang, Y. Y., Jachak, S. M., Vera, D. M. A., Khondkar, P., Gibbons, S., Hamblin, M. R., & Tegos, G. P. (2013). Suppl 1: Microbial efflux systems and inhibitors: Approaches to drug discovery and the challenge of clinical implementation. Open Microbiologica Journal, 7, 34.

    Article  CAS  Google Scholar 

  • Kovač, J., Šimunović, K., Wu, Z., Klančnik, A., Bucar, F., Zhang, Q., & Možina, S. S. (2015). Antibiotic resistance modulation and modes of action of (−)-α-pinene in campylobacter jejuni. PLoS One, 10(4), e0122871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnamoorthy, S., Shah, B. P., Lee, H. H., & Martinez, L. R. (2016). Microbicides alter the expression and function of RND-type efflux pump AdeABC in biofilm-associated cells of Acinetobacter baumannii clinical isolates. Antimicrobial Agents and Chemotherapy, 60(1), 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Floyd, J. T., He, G., & Varela, M. F. (2013). Bacterial antimicrobial efflux pumps of the MFS and MATE transporter families: A review. Recent Res Dev Antimicrob Agents Chemother, 7, 1–21.

    Google Scholar 

  • Kumar, R., & Pooja Patial, S. J. (2016). A review on efflux pump inhibitors of gram-positive and gram-negative bacteria from plant sources. International Journal of Current Microbiology and Applied Sciences, 5, 837–855.

    Article  CAS  Google Scholar 

  • Kuroda, T., & Tsuchiya, T. (2009). Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta. Proteins and Proteomics, 1794(5), 763–768.

    Article  CAS  Google Scholar 

  • Kvist, M., Hancock, V., & Klemm, P. (2008). Inactivation of efflux pumps abolishes bacterial biofilm formation. Applied and Environmental Microbiology, 74(23), 7376–7382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M. D., Galazzo, J. L., Staley, A. L., Lee, J. C., Warren, M. S., Fuernkranz, H., Chamberland, S., Lomovskaya, O., & Miller, G. H. (2001). Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco, 56(1–2), 81–85.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. S., Jang, K., & Cha, J. D. (2011). Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. Journal of Biomedicine & Biotechnology, 2012, 7.

    Google Scholar 

  • Lekshmi, M., Ammini, P., Adjei, J., Sanford, L. M., Shrestha, U., Kumar, S., & Varela, M. F. (2017). Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. Review, 4(1), 1–18.

    Google Scholar 

  • Li, X. Z., & Nikaido, H. (2009). Efflux-mediated drug resistance in bacteria. Drugs, 69(12), 1555–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloris-Garcerá, P., Slusky, J. S., Seppälä, S., Prieß, M., Schäfer, L. V., & von Heijne, G. (2013). In vivo Trp scanning of the small multidrug resistance protein EmrE confirms 3D structure models. Journal of Molecular Biology, 425(22), 4642–4651.

    Article  PubMed  CAS  Google Scholar 

  • Lomovskaya, O., & Bostian, K. A. (2006). Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochemical Pharmacology, 71(7), 910–918.

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R., Lee, M., Blais, J., Cho, D., Chamberland, S., Renau, T., & Leger, R. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy. Antimicrobial Agents and Chemotherapy, 45(1), 105–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S., & Zgurskaya, H. I. (2013). MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopolysaccharide core specifically and with high affinity. Journal of Bacteriology, 195(21), 4865–4872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood, H. Y., Jamshidi, S., Sutton, J. M., & Rahman, K. M. (2016). Current advances in developing inhibitors of bacterial multidrug efflux pumps. Current Medicinal Chemistry, 23(10), 1062–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisuria, V. B., Hosseinidoust, Z., & Tufenkji, N. (2015). Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria. Applied and Environmental Microbiology, 81(11), 3782–3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchi, E., Furi, L., Arioli, S., Morrissey, I., Di Lorenzo, V., Mora, D., Giovannetti, L., Oggioni, M. R., & Viti, C. (2015). Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus. Microbiological Research, 170, 184–194.

    Article  CAS  PubMed  Google Scholar 

  • Maurya, A., Dwivedi, G. R., Darokar, M. P., & Srivastava, S. K. (2013). Antibacterial and synergy of Clavine alkaloid Lysergol and its derivatives against Nalidixic acid-resistant Escherichia coli. Chemical Biology and Drug Design, 81(4), 484–490.

    Article  CAS  PubMed  Google Scholar 

  • McCrackin, M. A., Helke, K. L., Galloway, A. M., Poole, A. Z., Salgado, C. D., & Marriott, B. P. (2016). Effect of antimicrobial use in agricultural animals on drug-resistant foodborne campylobacteriosis in humans: A systematic literature review. Critical Reviews in Food Science and Nutrition, 56(13), 2115–2132.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, S., Nakashima, R., Yamashita, E., & Yamaguchi, A. (2002a). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature, 419(6907), 587.

    Google Scholar 

  • Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T., & Yamaguchi, A. (2006). Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature, 443(7108), 173.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, R., Sakurai, K., Yamasaki, S., Hayashi, K., Nagata, C., Hoshino, K., Onodera, Y., Nishino, K., & Yamaguchi, A. (2013). Structural basis for the inhibition of bacterial multidrug exporters. Nature, 500(7460), 102.

    Article  CAS  PubMed  Google Scholar 

  • Nguefack, J., Dongmo, J. L., Dakole, C. D., Leth, V., Vismer, H. F., Torp, J., Guemdjom, E. F. N., Mbeffo, M., Tamgue, O., Fotio, D., & Zollo, P. A. (2009). Food preservative potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against mycotoxigenic fungi. International Journal of Food Microbiology, 131(2–3), 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, S. T., Kwasny, S. M., Ding, X., Cardinale, S. C., McCarthy, C. T., Kim, H. S., Nikaido, H., Peet, N. P., Williams, J. D., Bowlin, T. L., & Opperman, T. J. (2015). Structure–activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorganic & Medicinal Chemistry, 23(9), 2024–2034.

    Article  CAS  Google Scholar 

  • Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido, H., & Pagès, J. M. (2012). Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiology Reviews, 36(2), 340–363.

    Article  CAS  PubMed  Google Scholar 

  • Nishino, K., & Yamaguchi, A. (2008). Virulence and drug resistance roles of multidrug efflux pumps in Escherichia coli and Salmonella. Bioscience and Microflora, 27(3), 75–85.

    Article  CAS  Google Scholar 

  • Opperman, T. J., Kwasny, S. M., Kim, H. S., Nguyen, S. T., Houseweart, C., D’Souza, S., Walker, G. C., Peet, N. P., Nikaido, H., & Bowlin, T. L. (2014). Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrobial Agents and Chemotherapy, 58(2), 722–733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pagès, J. M., & Amaral, L. (2009). Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of gram-negative bacteria. Biochimica et Biophysica Acta. Proteins and Proteomics, 1794(5), 826–833.

    Article  CAS  Google Scholar 

  • Pérez, A., Poza, M., Fernández, A., Fernández Mdel, C., Mallo, S., Merino, M., Rumbo-Feal, S., Cabral, M. P., & Bou, G. (2012). Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 56(4), 2084–2090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez, F., Rudin, S. D., Marshall, S. H., Coakley, P., Chen, L., Kreiswirth, B. N., Rather, P. N., Hujer, A. M., Toltzis, P., Van Duin, D., & Paterson, D. L. (2013). OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrobial Agents and Chemotherapy, 57(9), 4602–4603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piddock, L. J. (2006). Multidrug-resistance efflux pumps – not just for resistance. Nature Reviews. Microbiology, 4(8), 629.

    Article  CAS  PubMed  Google Scholar 

  • Piddock, L. J., Garvey, M. I., Rahman, M. M., & Gibbons, S. (2010). Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in gram-negative bacteria. The Journal of Antimicrobial Chemotherapy, 65(6), 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  • Radchenko, M., Symersky, J., Nie, R., & Lu, M. (2015). Structural basis for the blockade of MATE multidrug efflux pumps. Nature Communications, 6, 7995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalhete, C., Spengler, G., Martins, A., Martins, M., Viveiros, M., Mulhovo, S., Ferreira, M. J. U., & Amaral, L. (2011a). Inhibition of efflux pumps in methicillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. International Journal of Antimicrobial Agents, 37(1), 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Ramalhete, C., Spengler, G., Martins, A., Martins, M., Viveiros, M., Mulhovo, S., Ferreira, M. J., & Amaral, L. (2011b). Inhibition of efflux pumps in methicillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. International Journal of Antimicrobial Agents, 37(1), 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Ramalhete, C., Mulhovo, S., Molnar, J., & Ferreira, M. J. (2016). Triterpenoids from Momordica balsamina: Reversal of ABCB1-mediated multidrug resistance. Bioorganic & Medicinal Chemistry, 1;24(21), 5061–5067.

    Article  CAS  Google Scholar 

  • Ranaweera, I., Shrestha, U., Ranjana, K. C., Kakarla, P., Willmon, T. M., Hernandez, A. J., Mukherjee, M. M., Barr, S. R., & Varela, M. F. (2015). Structural comparison of bacterial multidrug efflux pumps of the major facilitator superfamily. Trends in Cell & Molecular Biology, 10, 131.

    Google Scholar 

  • Reddy, V. S., Shlykov, M. A., Castillo, R., Sun, E. I., & Saier, M. H. (2012). The major facilitator superfamily (MFS) revisited. The FEBS Journal, 279(11), 2022–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. (2014). Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, 22(8), 438–445.

    Article  CAS  PubMed  Google Scholar 

  • Schindler, B. D., & Kaatz, G. W. (2016). Multidrug efflux pumps of gram-positive bacteria. Drug Resistance Updates, 27, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, S., Kohler, S., Buck, A., Dambacher, C., König, A., Bohnert, J. A., & Kern, W. V. (2014). Random mutagenesis of the multidrug transporter AcrB from Escherichia coli for identification of putative target residues of efflux pump inhibitors. Antimicrobial Agents and Chemotherapy, 58(11), 6870–6878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sennhauser, G., Bukowska, M. A., Briand, C., & Grütter, M. G. (2009). Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. Journal of Molecular Biology, 389(1), 134–145.

    Article  CAS  PubMed  Google Scholar 

  • Shiu, W. K., Malkinson, J. P., Rahman, M. M., Curry, J., Stapleton, P., Gunaratnam, M., Neidle, S., Mushtaq, S., Warner, M., Livermore, D. M., & Evangelopoulos, D. (2013). A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. International Journal of Antimicrobial Agents, 42(6), 513–518.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K. V., Malathum, K., & Murray, B. E. (2001). Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrobial Agents and Chemotherapy, 45(1), 263–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, M., Yau, Y. C., Wang, S., Waters, V., & Kumar, A. (2017). MexXY efflux pump overexpression and aminoglycoside resistance in cystic fibrosis isolates of Pseudomonas aeruginosa from chronic infections. Canadian Journal of Microbiology, 63(12), 929–938.

    Article  CAS  PubMed  Google Scholar 

  • Sjuts, H., Vargiu, A. V., Kwasny, S. M., Nguyen, S. T., Kim, H. S., Ding, X., Ornik, A. R., Ruggerone, P., Bowlin, T. L., Nikaido, H., & Pos, K. M. (2016). Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proceedings of the National Academy of Sciences of the United States of America, 29;113(13), 3509–3514.

    Article  CAS  Google Scholar 

  • Smith, E. C., Williamson, E. M., Wareham, N., Kaatz, G. W., & Gibbons, S. (2007). Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry, 68(2), 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Stermitz, F. R., Tawara-Matsuda, J., Lorenz, P., Mueller, P., Zenewicz, L., & Lewis, K. (2000). 5′-Methoxyhydnocarpin-D and Pheophorbide A: Berberis species components that Potentiate Berberine growth inhibition of resistant Staphylococcus aureus. Journal of natural products, 63(8), 1146–1149.

    Article  CAS  PubMed  Google Scholar 

  • Su, C. C., Yin, L., Kumar, N., Dai, L., Radhakrishnan, A., Bolla, J. R., Lei, H. T., Chou, T. H., Delmar, J. A., Rajashankar, K. R., & Zhang, Q. (2017). Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nature Communications, 8(1), 171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267.

    CAS  PubMed  Google Scholar 

  • Tanabe, M., Szakonyi, G., Brown, K. A., Henderson, P. J., Nield, J., & Byrne, B. (2009). The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochemical and Biophysical Research Communications, 380(2), 338–342.

    Article  CAS  PubMed  Google Scholar 

  • Tegos, G., Masago, K., Aziz, F., Higginbotham, A., Stermitz, F. R., & Hamblin, M. R. (2008). Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrobial Agents and Chemotherapy, 52(9), 3202–3209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegos, G. P., Haynes, M., Jacob Strouse, J., Khan, M. M. T., Bologa, C. G., Oprea, T. I., & Sklar, L. A. (2011). Microbial efflux pump inhibition: Tactics and strategies. Current Pharmaceutical Design, 17(13), 1291–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tocci, N., Iannelli, F., Bidossi, A., Ciusa, M. L., Decorosi, F., Viti, C., Pozzi, G., Ricci, S., & Oggioni, M. R. (2013). Functional analysis of pneumococcal drug efflux pumps associates the MATE DinF transporter with quinolone susceptibility. Antimicrobial Agents and Chemotherapy, 57(1), 248–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Putten, B. C., Pasquini, G., Remondini, D., Janes, V. A., Matamoros, S., & Schultsz, C. (2018 Jan). Quantifying the contribution of four resistance mechanisms to ciprofloxacin minimum inhibitory concentration in Escherichia coli: A systematic review. bioRxiv, 1, 372086.

    Google Scholar 

  • Vargiu, A. V., Ruggerone, P., Opperman, T. J., Nguyen, S. T., & Nikaido, H. (2014). Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother, 58(10), 6224–6234.

    Google Scholar 

  • Vargiu, A. V., & Nikaido, H. (2012). Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Nat Acad Sci, 109(50), 20637–20642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter, H., Mowla, R., Ohene-Agyei, T., & Ma, S. (2015). RND-type drug efflux pumps from gram-negative bacteria: Molecular mechanism and inhibition. Frontiers in Microbiology, 6, 377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wassenaar, T., Ussery, D., Nielsen, L., & Ingmer, H. (2015). Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. European Journal of Microbiology & Immunology, 1;5(1), 44–61.

    Article  Google Scholar 

  • Wendlandt, S., Kadlec, K., Feßler, A. T., & Schwarz, S. (2015). Identification of ABC transporter genes conferring combined pleuromutilin–lincosamide–streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci. Veterinary Microbiology, 177(3–4), 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Wilkens, S. (2015). Structure and mechanism of ABC transporters. F1000Prime Rep, 7, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wink, M. (2012). Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Frontiers in Microbiology, 23(3), 130.

    Google Scholar 

  • World Health Organization. (2014). Antimicrobial resistance: Global report on surveillance. Geneva: World Health Organization.

    Google Scholar 

  • Yamaguchi, A., Nakashima, R., & Sakurai, K. (2015). Structural basis of RND-type multidrug exporters. Frontiers in Microbiology, 6, 327.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, H., Shen, Z., Wang, Y., Deng, F., Liu, D., Naren, G., Dai, L., Su, C. C., Wang, B., Wang, S., & Wu, C. (2016). Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics. MBio, 7(5), e01543–e01516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, C. C., Aldema-Ramos, M. L., Borges-Walmsley, M. I., Taylor, R. W., Walmsley, A. R., Levy, S. B., & Bullough, P. A. (2000). The quarternary molecular architecture of TetA, a secondary tetracycline transporter from Escherichia coli. Journal Molecular Microbiology, 38(3), 482–492.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, K. I., Nakayama, K., Ohtsuka, M., Kuru, N., Yokomizo, Y., Sakamoto, A., Takemura, M., Hoshino, K., Kanda, H., Nitanai, H., & Namba, K. (2007). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: Highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem, 15(22), 7087–7097.

    Google Scholar 

  • Yu, J. L., Grinius, L., Hooper, D. C. (2002, March 1). NorA functions as a multidrug efflux p rotein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. Journal of Bacteriology, 184(5), 1370–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C. Z., Chen, P. X., Yang, L., Li, W., Chang, M. X., & Jiang, H. X. (2018). Coordinated expression of acrAB-tolC and eight other functional efflux pumps through activating ramA and marA in Salmonella enterica serovar Typhimurium. Microbial Drug Resistance, 24(2), 120–125.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Samreen is thankful to UGC, New Delhi, for providing Non-Net Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samreen, Ahmad, I., Qais, F.A., Maheshwari, M., Rumbaugh, K.P. (2019). Efflux Pump Inhibitors and Their Role in the Reversal of Drug Resistance. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_12

Download citation

Publish with us

Policies and ethics