Skip to main content

Iron Pathophysiology in Alzheimer’s Diseases

  • Chapter
  • First Online:
Brain Iron Metabolism and CNS Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1173))

Abstract

Alzheimer’s disease (AD) is a multifactorial neurodegenerative condition associated with pathological accumulation of amyloid plaques and with the appearance of deposit of neurofibrillary tangles. Increasing evidence suggests that disorders of metal ion metabolism in the brain are one of the risk factors for the pathogenesis of AD. Iron, one of the endogenous metal ions, involves in many important physiological activities in the brain. Iron metabolism mainly depends on iron regulatory proteins including ferritin, transferrin and transferrin receptor, hepcidin, ferroportin, lactoferrin. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, leads to cell death, and ultimately influences the process of β-amyloid (Aβ) misfolding and plaque aggregation. Although the results are different, in general, iron has deposition in different brain regions of AD patients, which may impair normal cognitive function and behavior. Therefore, neuroimaging changes have so far been largely attributed to focal iron deposition accompanying the plaques at preclinical stages of AD, and iron-targeted therapeutic strategies have become a new direction. Iron chelators have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Future research will also focus on iron as an opportunity to study the mechanism of the occurrence and development of AD from the iron steady state to more fully clarify the etiology and prevention strategies.

Tao Wang, Shuang-Feng Xu, Yong-Gang Fan, Lin-Bo Li—These authors contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR (2018) Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 12:466

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adams TE, Mason AB, He QY, Halbrooks PJ, Briggs SK et al (2003) The position of arginine 124 controls the rate of iron release from the N-lobe of human serum transferrin. A structural study. J Biol Chem 278:6027–6033

    Article  CAS  PubMed  Google Scholar 

  3. Agosta F, Pievani M, Sala S, Geroldi C, Galluzzi S et al (2011) White matter damage in Alzheimer disease and its relationship to gray matter atrophy. Radiology 258:853–863

    Article  PubMed  Google Scholar 

  4. Ahmad KA, Ahmann JR, Migas MC, Waheed A, Britton RS et al (2002) Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis 29:361–366

    Article  CAS  PubMed  Google Scholar 

  5. Aisen P, Leibman A (1972) Lactoferrin and transferrin: a comparative study. Biochim Biophys Acta 257:314–323

    Article  CAS  PubMed  Google Scholar 

  6. Ali-Rahmani F, Schengrund CL, Connor JR (2014) HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease. Front Pharmacol 5:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Alimonti A, Ristori G, Giubilei F, Stazi MA, Pino A et al (2007) Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. Neurotoxicology 28:450–456

    Article  CAS  PubMed  Google Scholar 

  8. Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16:879–895

    Article  PubMed  CAS  Google Scholar 

  9. Alzheimer’s A (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509

    Article  Google Scholar 

  10. Anderson ED, VanSlyke JK, Thulin CD, Jean F, Thomas G (1997) Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J 16:1508–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andrasi E, Farkas E, Gawlik D, Rosick U, Bratter P (2000) Brain iron and zinc contents of German patients with Alzheimer disease. J Alzheimers Dis 2:17–26

    Article  CAS  PubMed  Google Scholar 

  12. Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118:167–179

    Article  PubMed  Google Scholar 

  13. Arnold RR, Cole MF, McGhee JR (1977) A bactericidal effect for human lactoferrin. Science 197:263–265

    Article  CAS  PubMed  Google Scholar 

  14. Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  CAS  PubMed  Google Scholar 

  15. Ayton S, Faux NG, Bush AI, Alzheimer’s Disease Neuroimaging I. (2015) Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760

    Article  CAS  PubMed  Google Scholar 

  16. Ayton S, Fazlollahi A, Bourgeat P, Raniga P, Ng A et al (2017) Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain 140:2112–2119

    Article  PubMed  Google Scholar 

  17. Baker EN, Baker HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91:3–10

    Article  CAS  PubMed  Google Scholar 

  18. Baker EN, Baker HM, Kidd RD (2002) Lactoferrin and transferrin: functional variations on a common structural framework. Biochem Cell Biol 80:27–34

    Article  CAS  PubMed  Google Scholar 

  19. Bandyopadhyay S, Hartley DM, Cahill CM, Lahiri DK, Chattopadhyay N, Rogers JT (2006) Interleukin-1alpha stimulates non-amyloidogenic pathway by alpha-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase. J Neurosci Res 84:106–118

    Article  CAS  PubMed  Google Scholar 

  20. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  21. Bartzokis G (2011) Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 32:1341–1371

    Article  CAS  PubMed  Google Scholar 

  22. Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA et al (2011) Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res Ther 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Baum L, Chan IH, Cheung SK, Goggins WB, Mok V et al (2010) Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals 23:173–179

    Article  CAS  PubMed  Google Scholar 

  24. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139(Suppl 1):179–197

    Article  CAS  PubMed  Google Scholar 

  25. Berens C, Streicher B, Schroeder R, Hillen W (1998) Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions. Chem Biol 5:163–175

    Article  CAS  PubMed  Google Scholar 

  26. Bhatt L, Murphy C, O’Driscoll LS, Carmo-Fonseca M, McCaffrey MW, Fleming JV (2010) N-glycosylation is important for the correct intracellular localization of HFE and its ability to decrease cell surface transferrin binding. FEBS J 277:3219–3234

    Article  CAS  PubMed  Google Scholar 

  27. Bocca B, Forte G, Petrucci F, Pino A, Marchione F et al (2005) Monitoring of chemical elements and oxidative damage in patients affected by Alzheimer’s disease. Ann Ist Super Sanita 41:197–203

    CAS  PubMed  Google Scholar 

  28. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    Article  CAS  PubMed  Google Scholar 

  29. Borgna-Pignatti C, Marsella M (2015) Iron chelation in Thalassemia major. Clin Ther 37:2866–2877

    Article  CAS  PubMed  Google Scholar 

  30. Bostrom F, Hansson O, Gerhardsson L, Lundh T, Minthon L et al (2009) CSF Mg and Ca as diagnostic markers for dementia with Lewy bodies. Neurobiol Aging 30:1265–1271

    Article  PubMed  CAS  Google Scholar 

  31. Bou-Abdallah F, Yang H, Awomolo A, Cooper B, Woodhall MR et al (2014) Functionality of the three-site ferroxidase center of Escherichia coli bacterial ferritin (EcFtnA). Biochemistry 53:483–495

    Article  CAS  PubMed  Google Scholar 

  32. Bousejra-ElGarah F, Bijani C, Coppel Y, Faller P, Hureau C (2011) Iron(II) binding to amyloid-β, the Alzheimer’s peptide. Inorg Chem 50:9024–9030

    Article  CAS  PubMed  Google Scholar 

  33. Bradley-Whitman MA, Timmons MD, Beckett TL, Murphy MP, Lynn BC, Lovell MA (2014) Nucleic acid oxidation: an early feature of Alzheimer’s disease. J Neurochem 128:294–304

    Article  CAS  PubMed  Google Scholar 

  34. Brickman AM, Provenzano FA, Muraskin J, Manly JJ, Blum S et al (2012) Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Arch Neurol 69:1621–1627

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB et al (2015) Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiol Aging 36:27–32

    Article  CAS  PubMed  Google Scholar 

  36. Brown JP, Hewick RM, Hellstrom I, Hellstrom KE, Doolittle RF, Dreyer WJ (1982) Human melanoma-associated antigen p97 is structurally and functionally related to transferrin. Nature 296:171–173

    Article  CAS  PubMed  Google Scholar 

  37. Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanisms: an overview. Biometals 16:63–75

    Article  CAS  PubMed  Google Scholar 

  38. Burns A, Zaudig M (2002) Mild cognitive impairment in older people. Lancet 360:1963–1965

    Article  PubMed  Google Scholar 

  39. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    Article  CAS  PubMed  Google Scholar 

  40. Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548–554

    Article  CAS  PubMed  Google Scholar 

  41. Cai Z, Xiao M (2016) Oligodendrocytes and Alzheimer’s disease. Int J Neurosci 126:97–104

    Article  CAS  PubMed  Google Scholar 

  42. Cardozo-Pelaez F, Song S, Parthasarathy A, Hazzi C, Naidu K, Sanchez-Ramos J (1999) Oxidative DNA damage in the aging mouse brain. Mov Disord 14:972–980

    Article  CAS  PubMed  Google Scholar 

  43. Carlson ES, Tkac I, Magid R, O’Connor MB, Andrews NC et al (2009) Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 139:672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carro E, Bartolome F, Bermejo-Pareja F, Villarejo-Galende A, Molina JA et al (2017) Early diagnosis of mild cognitive impairment and Alzheimer’s disease based on salivary lactoferrin. Alzheimers Dement (Amst) 8:131–138

    Google Scholar 

  45. Carvajal FJ, Mattison HA, Cerpa W (2016) Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast 2016:2701526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826:129–169

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan YK, Sung HK, Sweeney G (2015) Iron metabolism and regulation by neutrophil gelatinase-associated lipocalin in cardiomyopathy. Clin Sci (Lond) 129:851–862

    Article  CAS  Google Scholar 

  48. Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE 3rd et al (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid β peptide in Alzheimer’s disease. Redox Biol 14:450–564

    Article  CAS  PubMed  Google Scholar 

  50. Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B et al (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285:31217–31232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi J, Lee HW, Suk K (2011) Increased plasma levels of lipocalin 2 in mild cognitive impairment. J Neurol Sci 305:28–33

    Article  CAS  PubMed  Google Scholar 

  52. Chong MS, Sahadevan S (2005) Preclinical Alzheimer’s disease: diagnosis and prediction of progression. Lancet Neurol 4:576–579

    Article  PubMed  Google Scholar 

  53. Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611

    Article  CAS  PubMed  Google Scholar 

  54. Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83

    Article  CAS  PubMed  Google Scholar 

  55. Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J Neurochem 65:717–724

    Article  CAS  PubMed  Google Scholar 

  56. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335

    Article  CAS  PubMed  Google Scholar 

  57. Cooper LN, Bear MF (2012) The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci 13:798–810

    Article  CAS  PubMed  Google Scholar 

  58. Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ (2012) Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 8:518–530

    Article  CAS  PubMed  Google Scholar 

  59. Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19:339–345

    CAS  PubMed  Google Scholar 

  60. Corrigan FM, Reynolds GP, Ward NI (1993) Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6:149–154

    Article  CAS  PubMed  Google Scholar 

  61. Corsi B, Cozzi A, Arosio P, Drysdale J, Santambrogio P et al (2002) Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J Biol Chem 277:22430–22437

    Article  CAS  PubMed  Google Scholar 

  62. Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL et al (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337:1304–1308

    Article  CAS  PubMed  Google Scholar 

  63. Crespo AC, Silva B, Marques L, Marcelino E, Maruta C et al (2014) Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging 35:777–785

    Article  CAS  PubMed  Google Scholar 

  64. Cristovao JS, Santos R, Gomes CM (2016) Metals and neuronal metal binding proteins implicated in Alzheimer’s disease. Oxid Med Cell Longev 2016:9812178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dekens DW, Naude PJ, Engelborghs S, Vermeiren Y, Van Dam D et al (2017) Neutrophil gelatinase-associated lipocalin and its receptors in Alzheimer’s disease (AD) brain regions: differential findings in AD with and without depression. J Alzheimers Dis 55:763–776

    Article  CAS  PubMed  Google Scholar 

  66. Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305

    Article  CAS  PubMed  Google Scholar 

  67. Dhennin-Duthille I, Masson M, Damiens E, Fillebeen C, Spik G, Mazurier J (2000) Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J Cell Biochem 79:583–593

    Article  CAS  PubMed  Google Scholar 

  68. Ding B, Chen KM, Ling HW, Sun F, Li X et al (2009) Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. J Magn Reson Imaging 29:793–798

    Article  PubMed  Google Scholar 

  69. Ding Q, Dimayuga E, Markesbery WR, Keller JN (2004) Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures. J Neurochem 91:1211–1218

    Article  CAS  PubMed  Google Scholar 

  70. Diouf I, Fazlollahi A, Bush AI, Ayton S, Alzheimer’s disease Neuroimaging I. (2019) Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with underlying β-amyloid pathology. Neurobiol Dis 124:335–339

    Article  CAS  PubMed  Google Scholar 

  71. Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dixon SJ (2017) Ferroptosis: bug or feature? Immunol Rev 277:150–157

    Article  CAS  PubMed  Google Scholar 

  73. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Domenico I, McVey Ward D, Kaplan J (2008) Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 9:72–81

    Article  PubMed  CAS  Google Scholar 

  75. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E et al (2010) Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van Duijn S, Bulk M, van Duinen SG, Nabuurs RJA, van Buchem MA et al (2017) Cortical iron reflects severity of Alzheimer’s disease. J Alzheimers Dis 60:1533–1545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Dunn LL, Sekyere EO, Suryo Rahmanto Y, Richardson DR (2006) The function of melanotransferrin: a role in melanoma cell proliferation and tumorigenesis. Carcinogenesis 27:2157–2169

    Article  CAS  PubMed  Google Scholar 

  78. Dusek P, Schneider SA, Aaseth J (2016) Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 38:81–92

    Article  CAS  PubMed  Google Scholar 

  79. Elfawy HA, Das B (2019) Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci 218:165–184

    Article  CAS  PubMed  Google Scholar 

  80. Esteves IM, Lopes-Aguiar C, Rossignoli MT, Ruggiero RN, Broggini ACS et al (2017) Chronic nicotine attenuates behavioral and synaptic plasticity impairments in a streptozotocin model of Alzheimer’s disease. Neuroscience 353:87–97

    Article  CAS  PubMed  Google Scholar 

  81. Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA (2014) Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci 17:193–206

    Article  CAS  PubMed  Google Scholar 

  82. Fava A, Pirritano D, Plastino M, Cristiano D, Puccio G et al (2013) The effect of lipoic acid therapy on cognitive functioning in patients with Alzheimer’s disease. J Neurodegener Dis 2013:454253

    PubMed  PubMed Central  Google Scholar 

  83. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  CAS  PubMed  Google Scholar 

  84. Feder JN, Penny DM, Irrinki A, Lee VK, Lebron JA et al (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci U S A 95:1472–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fischer FU, Wolf D, Scheurich A, Fellgiebel A, Alzheimer’s Disease Neuroimaging I. (2015) Altered whole-brain white matter networks in preclinical Alzheimer’s disease. Neuroimage Clin 8:660–666

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fonte J, Miklossy J, Atwood C, Martins R (2001) The severity of cortical Alzheimer’s type changes is positively correlated with increased amyloid-β Levels: Resolubilization of amyloid-β with transition metal ion chelators. J Alzheimers Dis 3:209–219

    Article  CAS  PubMed  Google Scholar 

  87. Food MR, Sekyere EO, Richardson DR (2002) The soluble form of the membrane-bound transferrin homologue, melanotransferrin, inefficiently donates iron to cells via nonspecific internalization and degradation of the protein. Eur J Biochem 269:4435–4445

    Article  CAS  PubMed  Google Scholar 

  88. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98:813–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

    Article  CAS  PubMed  Google Scholar 

  90. Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S et al (2017) Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 16:661–676

    Article  PubMed  Google Scholar 

  91. Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K et al (2003) Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 54:732–747

    Article  PubMed  Google Scholar 

  92. Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ (2007) Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 32:1196–1208

    Article  CAS  PubMed  Google Scholar 

  93. Gabbita SP, Lovell MA, Markesbery WR (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71:2034–2040

    Article  CAS  PubMed  Google Scholar 

  94. Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM et al (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69:836–841

    Article  PubMed  PubMed Central  Google Scholar 

  95. Galazka-Friedman J, Bauminger ER, Szlachta K, Friedman A (2012) The role of iron in neurodegeneration–Mossbauer spectroscopy, electron microscopy, enzyme-linked immunosorbent assay and neuroimaging studies. J Phys: Condens Matter 24:244106

    Google Scholar 

  96. Gallagher JJ, Finnegan ME, Grehan B, Dobson J, Collingwood JF, Lynch MA (2012) Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J Alzheimers Dis 28:147–161

    Article  CAS  PubMed  Google Scholar 

  97. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gerhardsson L, Blennow K, Lundh T, Londos E, Minthon L (2009) Concentrations of metals, β-amyloid and tau-markers in cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 28:88–94

    Article  CAS  PubMed  Google Scholar 

  99. Gerstein M, Anderson BF, Norris GE, Baker EN, Lesk AM, Chothia C (1993) Domain closure in lactoferrin. Two hinges produce a see-saw motion between alternative close-packed interfaces. J Mol Biol 234:357–372

    Article  CAS  PubMed  Google Scholar 

  100. Giambattistelli F, Bucossi S, Salustri C, Panetta V, Mariani S et al (2012) Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer’s disease. Neurobiol Aging 33:1633–1641

    Article  CAS  PubMed  Google Scholar 

  101. Giovannelli L, Decorosi F, Dolara P, Pulvirenti L (2003) Vulnerability to DNA damage in the aging rat substantia nigra: a study with the comet assay. Brain Res 969:244–247

    Article  CAS  PubMed  Google Scholar 

  102. Gomes CM, Santos R (2013) Neurodegeneration in Friedreich’s ataxia: from defective frataxin to oxidative stress. Oxid Med Cell Longev 2013:487534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Gomez-Pinilla F, Yang X (2018) System biology approach intersecting diet and cell metabolism with pathogenesis of brain disorders. Prog Neurobiol 169:76–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gomme PT, McCann KB, Bertolini J (2005) Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 10:267–273

    Article  CAS  PubMed  Google Scholar 

  105. Gong NJ, Dibb R, Bulk M, van der Weerd L, Liu C (2019) Imaging β amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. Neuroimage 191:176–185

    Article  CAS  PubMed  Google Scholar 

  106. Gonzalez J, Jurado-Coronel JC, Avila MF, Sabogal A, Capani F, Barreto GE (2015) NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci 125:315–327

    Article  CAS  PubMed  Google Scholar 

  107. Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31:286–292

    Article  CAS  PubMed  Google Scholar 

  108. Goodman L (1953) Alzheimer’s disease; a clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis. J Nerv Ment Dis 118:97–130

    Article  CAS  PubMed  Google Scholar 

  109. Goozee K, Chatterjee P, James I, Shen K, Sohrabi HR et al (2018) Elevated plasma ferritin in elderly individuals with high neocortical amyloid-β load. Mol Psychiatry 23:1807–1812

    Article  CAS  PubMed  Google Scholar 

  110. Goralska M, Dackor R, Holley B, McGahan MC (2003) Alpha lipoic acid changes iron uptake and storage in lens epithelial cells. Exp Eye Res 76:241–248

    Article  CAS  PubMed  Google Scholar 

  111. Goswami T, Andrews NC (2006) Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 281:28494–28498

    Article  CAS  PubMed  Google Scholar 

  112. Griffiths PD, Crossman AR (1993) Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia 4:61–65

    CAS  PubMed  Google Scholar 

  113. Gu M, Owen AD, Toffa SE, Cooper JM, Dexter DT et al (1998) Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases. J Neurol Sci 158:24–29

    Article  CAS  PubMed  Google Scholar 

  114. Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY (2013) Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34:562–575

    Article  CAS  PubMed  Google Scholar 

  115. Guo C, Wang P, Zhong ML, Wang T, Huang XS et al (2013) Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int 62:165–172

    Article  CAS  PubMed  Google Scholar 

  116. Guo C, Yang ZH, Zhang S, Chai R, Xue H et al (2017) Intranasal lactoferrin enhances alpha-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1alpha pathways in an Alzheimer’s disease mouse model. Neuropsychopharmacology 42:2504–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guo C, Zhang YX, Wang T, Zhong ML, Yang ZH et al (2015) Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1alpha pathway on the brain of APP/PS1 transgenic mice. Front Aging Neurosci 7:104

    PubMed  PubMed Central  Google Scholar 

  118. Haeger P, Alvarez A, Leal N, Adasme T, Nunez MT, Hidalgo C (2010) Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotox Res 17:238–247

    Article  CAS  PubMed  Google Scholar 

  119. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  CAS  PubMed  Google Scholar 

  120. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM et al (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A 98:10469–10474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Han M, Kim J (2015) Effect of dietary iron loading on recognition memory in growing rats. PLoS ONE 10:e0120609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hare DJ, Doecke JD, Faux NG, Rembach A, Volitakis I et al (2015) Decreased plasma iron in Alzheimer’s disease is due to transferrin desaturation. ACS Chem Neurosci 6:398–402

    Article  CAS  PubMed  Google Scholar 

  124. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  CAS  PubMed  Google Scholar 

  126. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372

    Article  CAS  PubMed  Google Scholar 

  127. Hirano T, Yamaguchi R, Asami S, Iwamoto N, Kasai H (1996) 8-hydroxyguanine levels in nuclear DNA and its repair activity in rat organs associated with age. J Gerontol A Biol Sci Med Sci 51:B303–B307

    Article  CAS  PubMed  Google Scholar 

  128. Hofer T, Perry G (2016) Nucleic acid oxidative damage in Alzheimer’s disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol 38:1–9

    Article  CAS  PubMed  Google Scholar 

  129. Holland R, McIntosh AL, Finucane OM, Mela V, Rubio-Araiz A et al (2018) Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav Immun 68:183–196

    Article  CAS  PubMed  Google Scholar 

  130. Honda K, Smith MA, Zhu X, Baus D, Merrick WC et al (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986

    Article  CAS  PubMed  Google Scholar 

  131. Horowitz MP, Greenamyre JT (2010) Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 20(Suppl 2):S551–S568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C (2004) Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6:291–301

    Article  CAS  PubMed  Google Scholar 

  133. House MJ, St Pierre TG, McLean C (2008) 1.4T study of proton magnetic relaxation rates, iron concentrations, and plaque burden in Alzheimer’s disease and control postmortem brain tissue. Magn Reson Med 60:41–52

    Article  CAS  PubMed  Google Scholar 

  134. Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y et al (2011) Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci 303:95–99

    Article  CAS  PubMed  Google Scholar 

  135. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE et al (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616

    Article  CAS  PubMed  Google Scholar 

  136. Huang CW, Wang SJ, Wu SJ, Yang CC, Huang MW et al (2013) Potential blood biomarker for disease severity in the Taiwanese population with Alzheimer’s disease. Am J Alzheimers Dis Other Demen 28:75–83

    Article  PubMed  Google Scholar 

  137. Hui Y, Wang D, Li W, Zhang L, Jin J et al (2011) Long-term overexpression of heme oxygenase 1 promotes tau aggregation in mouse brain by inducing tau phosphorylation. J Alzheimers Dis 26:299–313

    Article  CAS  PubMed  Google Scholar 

  138. Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287:30485–30496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ising C, Stanley M, Holtzman DM (2015) Current thinking on the mechanistic basis of Alzheimer’s and implications for drug development. Clin Pharmacol Ther 98:469–471

    Article  CAS  PubMed  Google Scholar 

  140. Jiang T, Sun Q, Chen S (2016) Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 147:1–19

    Article  CAS  PubMed  Google Scholar 

  141. Juurlink BH, Thorburne SK, Hertz L (1998) Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22:371–378

    Article  CAS  PubMed  Google Scholar 

  142. Kamalinia G, Khodagholi F, Atyabi F, Amini M, Shaerzadeh F et al (2013) Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol Pharm 10:4418–4431

    Article  CAS  PubMed  Google Scholar 

  143. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S et al (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661

    Article  CAS  PubMed  Google Scholar 

  144. Kaur C, Ling EA (1999) Increased expression of transferrin receptors and iron in amoeboid microglial cells in postnatal rats following an exposure to hypoxia. Neurosci Lett 262:183–186

    Article  CAS  PubMed  Google Scholar 

  145. Kaur D, Sharma V, Deshmukh R (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology

    Google Scholar 

  146. Kawabata H, Fleming RE, Gui D, Moon SY, Saitoh T et al (2005) Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood 105:376–381

    Article  CAS  PubMed  Google Scholar 

  147. Kawamata T, Tooyama I, Yamada T, Walker DG, McGeer PL (1993) Lactotransferrin immunocytochemistry in Alzheimer and normal human brain. Am J Pathol 142:1574–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kennard ML, Feldman H, Yamada T, Jefferies WA (1996) Serum levels of the iron binding protein p97 are elevated in Alzheimer’s disease. Nat Med 2:1230–1235

    Article  CAS  PubMed  Google Scholar 

  149. Kennard ML, Richardson DR, Gabathuler R, Ponka P, Jefferies WA (1995) A novel iron uptake mechanism mediated by GPI-anchored human p97. EMBO J 14:4178–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim AC, Lim S, Kim YK (2018) Metal ion effects on Aβ and Tau Aggregation. Int J Mol Sci 19

    Article  PubMed Central  CAS  Google Scholar 

  151. Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG et al (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150

    Article  CAS  PubMed  Google Scholar 

  152. Lane DJR, Ayton S, Bush AI (2018) Iron and Alzheimer’s disease: an update on emerging mechanisms. J Alzheimers Dis 64:S379–S395

    Article  CAS  PubMed  Google Scholar 

  153. Langlois d’Estaintot B, Santambrogio P, Granier T, Gallois B, Chevalier JM et al (2004) Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Ser144Ala. J Mol Biol 340:277–293

    Article  PubMed  CAS  Google Scholar 

  154. Lavados M, Guillon M, Mujica MC, Rojo LE, Fuentes P, Maccioni RB (2008) Mild cognitive impairment and Alzheimer patients display different levels of redox-active CSF iron. J Alzheimers Dis 13:225–232

    Article  CAS  PubMed  Google Scholar 

  155. Lavich IC, de Freitas BS, Kist LW, Falavigna L, Dargel VA et al (2015) Sulforaphane rescues memory dysfunction and synaptic and mitochondrial alterations induced by brain iron accumulation. Neuroscience 301:542–552

    Article  CAS  PubMed  Google Scholar 

  156. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC (1999) Crystal structure of the ectodomain of human transferrin receptor. Science 286:779–782

    Article  CAS  PubMed  Google Scholar 

  157. Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G et al (2016) White matter hyperintensities are a core feature of Alzheimer’s disease: evidence from the dominantly inherited Alzheimer network. Ann Neurol 79:929–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295

    Article  CAS  PubMed  Google Scholar 

  159. Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, Hof PR (1994) The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis. Brain Res 650:20–31

    Article  CAS  PubMed  Google Scholar 

  160. Levi S, Finazzi D (2014) Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 5:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Levi S, Tiranti V (2019) Neurodegeneration with brain iron accumulation disorders: valuable models aimed at understanding the pathogenesis of iron deposition. Pharmaceuticals (Basel) 12

    Google Scholar 

  162. Li C, Lonn ME, Xu X, Maghzal GJ, Frazer DM et al (2012) Sustained expression of heme oxygenase-1 alters iron homeostasis in nonerythroid cells. Free Radic Biol Med 53:366–374

    Article  CAS  PubMed  Google Scholar 

  163. Lista S, O’Bryant SE, Blennow K, Dubois B, Hugon J et al (2015) Biomarkers in sporadic and familial Alzheimer’s disease. J Alzheimers Dis 47:291–317

    Article  PubMed  Google Scholar 

  164. Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C (2018) Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front Neurosci 12:632

    Article  PubMed  PubMed Central  Google Scholar 

  165. Liu Y, Lee SY, Neely E, Nandar W, Moyo M et al (2011) Mutant HFE H63D protein is associated with prolonged endoplasmic reticulum stress and increased neuronal vulnerability. J Biol Chem 286:13161–13170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Liu B, Moloney A, Meehan S, Morris K, Thomas SE et al (2011) Iron promotes the toxicity of amyloid β peptide by impeding its ordered aggregation. J Biol Chem 286:4248–4256

    Article  CAS  PubMed  Google Scholar 

  167. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J et al (2017) Dementia prevention, intervention, and care. Lancet 390:2673–2734

    Article  PubMed  Google Scholar 

  168. Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J et al (2008) Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 10:1767–1812

    Article  CAS  PubMed  Google Scholar 

  169. Lopes KO, Sparks DL, Streit WJ (2008) Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia 56:1048–1060

    Article  PubMed  Google Scholar 

  170. Lovell MA, Gabbita SP, Markesbery WR (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem 72:771–776

    Article  CAS  PubMed  Google Scholar 

  171. Lu T, Pan Y, Kao SY, Li C, Kohane I et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  PubMed  Google Scholar 

  172. Lu LN, Qian ZM, Wu KC, Yung WH, Ke Y (2017) Expression of iron transporters and pathological hallmarks of Parkinson’s and Alzheimer’s diseases in the brain of young, adult, and aged rats. Mol Neurobiol 54:5213–5224

    Article  CAS  PubMed  Google Scholar 

  173. Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A (2019) Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: a focus on the protective roles of heme oxygenase (HO)-1. Front Physiol 10:70

    Article  PubMed  PubMed Central  Google Scholar 

  174. Magnani E, Fan J, Gasparini L, Golding M, Williams M et al (2007) Interaction of tau protein with the dynactin complex. EMBO J 26:4546–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mairuae N, Hall Ii EC, Cheepsunthorn P, Lee SY, Connor JR (2010) The H63D HFE gene variant promotes activation of the intrinsic apoptotic pathway via mitochondria dysfunction following β-amyloid peptide exposure. J Neurosci Res 88:3079–3089

    Article  CAS  PubMed  Google Scholar 

  176. Mandel S, Amit T, Bar-Am O, Youdim MB (2007) Iron dysregulation in Alzheimer’s disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 82:348–360

    Article  CAS  PubMed  Google Scholar 

  177. Marro S, Chiabrando D, Messana E, Stolte J, Turco E et al (2010) Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position—7007 of the FPN1 promoter. Haematologica 95:1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mattson MP (2004) Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci 1012:37–50

    Article  CAS  PubMed  Google Scholar 

  179. Matute C (2010) Calcium dyshomeostasis in white matter pathology. Cell Calcium 47:150–157

    Article  CAS  PubMed  Google Scholar 

  180. McCarthy RC, Sosa JC, Gardeck AM, Baez AS, Lee CH, Wessling-Resnick M (2018) Inflammation-induced iron transport and metabolism by brain microglia. J Biol Chem 293:7853–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G et al (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–1759

    Article  CAS  PubMed  Google Scholar 

  182. Meadowcroft MD, Connor JR, Smith MB, Yang QX (2009) MRI and histological analysis of β-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. J Magn Reson Imaging: JMRI 29:997–1007

    Article  PubMed  Google Scholar 

  183. Meadowcroft MD, Connor JR, Yang QX (2015) Cortical iron regulation and inflammatory response in Alzheimer’s disease and APPSWE/PS1DeltaE9 mice: a histological perspective. Front Neurosci 9:255

    Article  PubMed  PubMed Central  Google Scholar 

  184. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    Article  CAS  PubMed  Google Scholar 

  185. Mecocci P, Polidori MC, Ingegni T, Cherubini A, Chionne F et al (1998) Oxidative damage to DNA in lymphocytes from AD patients. Neurology 51:1014–1017

    Article  CAS  PubMed  Google Scholar 

  186. Mehlenbacher M, Poli M, Arosio P, Santambrogio P, Levi S et al (2017) Iron oxidation and core formation in recombinant heteropolymeric human ferritins. Biochemistry 56:3900–3912

    Article  CAS  PubMed  Google Scholar 

  187. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Nunez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105

    Article  CAS  PubMed  Google Scholar 

  188. Di Meo I, Tiranti V (2018) Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 22:272–284

    Article  PubMed  Google Scholar 

  189. Mesquita SD, Ferreira AC, Falcao AM, Sousa JC, Oliveira TG et al (2014) Lipocalin 2 modulates the cellular response to amyloid β. Cell Death Differ 21:1588–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Migliore L, Fontana I, Trippi F, Colognato R, Coppede F et al (2005) Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 26:567–573

    Article  CAS  PubMed  Google Scholar 

  191. Miyamoto T, Kashima H, Suzuki A, Kikuchi N, Konishi I et al (2011) Laser-captured microdissection-microarray analysis of the genes involved in endometrial carcinogenesis: stepwise up-regulation of lipocalin2 expression in normal and neoplastic endometria and its functional relevance. Hum Pathol 42:1265–1274

    Article  CAS  PubMed  Google Scholar 

  192. Molina JA, Jimenez-Jimenez FJ, Aguilar MV, Meseguer I, Mateos-Vega CJ et al (1998) Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J Neural Transm (Vienna) 105:479–488

    Article  CAS  Google Scholar 

  193. Mouton-Liger F, Paquet C, Dumurgier J, Bouras C, Pradier L et al (2012) Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2alpha pathway. Biochim Biophys Acta 1822:885–896

    Article  CAS  PubMed  Google Scholar 

  194. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T et al (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409

    Article  CAS  PubMed  Google Scholar 

  195. Munoz P, Humeres A (2012) Iron deficiency on neuronal function. Biometals 25:825–835

    Article  CAS  PubMed  Google Scholar 

  196. Munoz P, Humeres A, Elgueta C, Kirkwood A, Hidalgo C, Nunez MT (2011) Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem 286:13382–13392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nakamichi N, Oikawa H, Kambe Y, Yoneda Y (2004) Relevant modulation by ferrous ions of N-methyl-D-aspartate receptors in ischemic brain injuries. Curr Neurovasc Res 1:429–440

    Article  CAS  PubMed  Google Scholar 

  198. Nandar W, Connor JR (2011) HFE gene variants affect iron in the brain. J Nutr 141:729S–739S

    Article  CAS  PubMed  Google Scholar 

  199. Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 6:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Naude PJ, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R et al (2012) Lipocalin 2: novel component of proinflammatory signaling in Alzheimer’s disease. FASEB J 26:2811–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  CAS  PubMed  Google Scholar 

  202. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B et al (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 98:8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C et al (2002) Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A 99:4596–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C et al (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101

    Article  CAS  PubMed  Google Scholar 

  205. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338:668–676

    Article  CAS  PubMed  Google Scholar 

  206. Nnah IC, Wessling-Resnick M (2018) Brain iron homeostasis: a focus on microglial iron. Pharmaceuticals (Basel) 11

    Google Scholar 

  207. Nunomura A, Chiba S, Lippa CF, Cras P, Kalaria RN et al (2004) Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 17:108–113

    Article  CAS  PubMed  Google Scholar 

  208. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    Article  CAS  PubMed  Google Scholar 

  209. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K et al (2000) Neuronal oxidative stress precedes amyloid-β deposition in down syndrome. J Neuropathol Exp Neurol 59:1011–1017

    Article  CAS  PubMed  Google Scholar 

  210. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K et al (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A et al (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ou P, Tritschler HJ, Wolff SP (1995) Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharmacol 50:123–126

    Article  CAS  PubMed  Google Scholar 

  213. Ozcankaya R, Delibas N (2002) Malondialdehyde, superoxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer disease: cross-sectional study. Croat Med J 43:28–32

    PubMed  Google Scholar 

  214. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  CAS  PubMed  Google Scholar 

  215. Paul S, Connor JA (2010) NR2B-NMDA receptor-mediated increases in intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling. J Neurochem 114:1107–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Pelizzoni I, Macco R, Morini MF, Zacchetti D, Grohovaz F, Codazzi F (2011) Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell 10:172–183

    Article  CAS  PubMed  Google Scholar 

  217. Perez DR, Sklar LA, Chigaev A (2019) Clioquinol: to harm or heal. Pharmacol Ther

    Google Scholar 

  218. Persson T, Popescu BO, Cedazo-Minguez A (2014) Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid Med Cell Longev 2014:427318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Pierrel F, Cobine PA, Winge DR (2007) Metal Ion availability in mitochondria. Biometals 20:675–682

    Article  CAS  PubMed  Google Scholar 

  220. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B et al (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  CAS  PubMed  Google Scholar 

  221. Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P et al (2016) Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev 30:25–48

    Article  PubMed  Google Scholar 

  222. Pooler AM, Noble W, Hanger DP (2014) A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology 76 Pt A:1–8

    Article  CAS  PubMed  Google Scholar 

  223. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Puzzo D (2019) Abeta oligomers: role at the synapse. Aging (Albany NY) 11:1077–1078

    Article  Google Scholar 

  225. Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7:103–108

    Article  CAS  PubMed  Google Scholar 

  226. Qian ZM, Wang Q (1998) Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Brain Res Rev 27:257–267

    Article  CAS  PubMed  Google Scholar 

  227. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42(Suppl 3):S125–S152

    Article  PubMed  CAS  Google Scholar 

  228. Radlowski EC, Johnson RW (2013) Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci 7:585

    Article  PubMed  PubMed Central  Google Scholar 

  229. Raha AA, Vaishnav RA, Friedland RP, Bomford A, Raha-Chowdhury R (2013) The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol Commun 1:55

    Article  PubMed  PubMed Central  Google Scholar 

  230. Rajan MT, Jagannatha Rao KS, Mamatha BM, Rao RV, Shanmugavelu P et al (1997) Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 146:153–166

    Article  CAS  PubMed  Google Scholar 

  231. Rakba N, Aouad F, Henry C, Caris C, Morel I et al (1998) Iron mobilisation and cellular protection by a new synthetic chelator O-Trensox. Biochem Pharmacol 55:1797–1806

    Article  CAS  PubMed  Google Scholar 

  232. Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17

    Article  CAS  PubMed  Google Scholar 

  233. Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G (2013) Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 37:127–136

    Article  CAS  PubMed  Google Scholar 

  234. Richardson DR (2000) The role of the membrane-bound tumour antigen, melanotransferrin (p97), in iron uptake by the human malignant melanoma cell. Eur J Biochem 267:1290–1298

    Article  CAS  PubMed  Google Scholar 

  235. Rishi G, Wallace DF, Subramaniam VN (2015) Hepcidin: regulation of the master iron regulator. Biosci Rep 35

    Article  CAS  Google Scholar 

  236. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M et al (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    Article  PubMed  Google Scholar 

  237. Robert A, Liu Y, Nguyen M, Meunier B (2015) Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer’s disease. Acc Chem Res 48:1332–1339

    Article  CAS  PubMed  Google Scholar 

  238. Rogers JT, Bush AI, Cho HH, Smith DH, Thomson AM et al (2008) Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem Soc Trans 36:1282–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W et al (2002) Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41:11080–11090

    Article  CAS  PubMed  Google Scholar 

  240. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI et al (2001) Redox-active iron mediates amyloid-β toxicity. Free Radic Biol Med 30:447–450

    Article  CAS  PubMed  Google Scholar 

  241. Sabbir MG (2018) Loss of Ca(2+)/calmodulin dependent protein kinase kinase 2 leads to aberrant transferrin phosphorylation and trafficking: a potential biomarker for Alzheimer’s disease. Front Mol Biosci 5:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Salvador GA (2010) Iron in neuronal function and dysfunction. BioFactors 36:103–110

    Article  CAS  PubMed  Google Scholar 

  243. Salvador GA, Uranga RM, Giusto NM (2010) Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2011:720658

    PubMed  PubMed Central  Google Scholar 

  244. Santambrogio P, Biasiotto G, Sanvito F, Olivieri S, Arosio P, Levi S (2007) Mitochondrial ferritin expression in adult mouse tissues. J Histochem Cytochem 55:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A (2017) Neuroinflammation in Alzheimer’s disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Adv Protein Chem Struct Biol 108:33–57

    Article  CAS  PubMed  Google Scholar 

  246. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB et al (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  PubMed  Google Scholar 

  247. Schipper HM, Song W (2015) A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. Int J Mol Sci 16:5400–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Schipper HM, Song W, Tavitian A, Cressatti M (2019) The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 172:40–70

    Article  CAS  PubMed  Google Scholar 

  249. Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D (2009) Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 110:469–485

    Article  CAS  PubMed  Google Scholar 

  250. Schneider C, Pratt DA, Porter NA, Brash AR (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol 14:473–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Schon EA, Area-Gomez E (2013) Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 55:26–36

    Article  CAS  PubMed  Google Scholar 

  252. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM (2011) Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Seiler A, Schneider M, Forster H, Roth S, Wirth EK et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent—and AIF-mediated cell death. Cell Metab 8:237–248

    Article  CAS  PubMed  Google Scholar 

  254. Sekyere EO, Dunn LL, Suryo Rahmanto Y, Richardson DR (2006) Role of melanotransferrin in iron metabolism: studies using targeted gene disruption in vivo. Blood 107:2599–2601

    Article  CAS  PubMed  Google Scholar 

  255. Shan X, Lin CL (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662

    Article  CAS  PubMed  Google Scholar 

  256. Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 54:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Shimada A, Keino H, Satoh M, Kishikawa M, Hosokawa M (2003) Age-related loss of synapses in the frontal cortex of SAMP10 mouse: a model of cerebral degeneration. Synapse 48:198–204

    Article  CAS  PubMed  Google Scholar 

  258. Shin RW, Kruck TP, Murayama H, Kitamoto T (2003) A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated tau of Alzheimer’s disease. Brain Res 961:139–146

    Article  CAS  PubMed  Google Scholar 

  259. da Silva VK, de Freitas BS, da Silva Dornelles A, Nery LR, Falavigna L et al (2014) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol 49:222–233

    Article  PubMed  CAS  Google Scholar 

  260. Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 94:9866–9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed  PubMed Central  Google Scholar 

  262. Spires-Jones TL, Hyman BT (2014) The intersection of amyloid β and tau at synapses in Alzheimer’s disease. Neuron 82:756–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Squitti R, Ghidoni R, Scrascia F, Benussi L, Panetta V et al (2011) Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals. J Alzheimers Dis 23:239–248

    Article  CAS  PubMed  Google Scholar 

  264. Squitti R, Lupoi D, Pasqualetti P, Dal Forno G, Vernieri F et al (2002) Elevation of serum copper levels in Alzheimer’s disease. Neurology 59:1153–1161

    Article  CAS  PubMed  Google Scholar 

  265. Squitti R, Salustri C, Siotto M, Ventriglia M, Vernieri F et al (2010) Ceruloplasmin/Transferrin ratio changes in Alzheimer’s disease. Int J Alzheimers Dis 2011:231595

    PubMed  PubMed Central  Google Scholar 

  266. Srivastava RA, Jain JC (2002) Scavenger receptor class B type I expression and elemental analysis in cerebellum and parietal cortex regions of the Alzheimer’s disease brain. J Neurol Sci 196:45–52

    Article  CAS  PubMed  Google Scholar 

  267. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Tang J, Oliveros A, Jang MH (2019) Dysfunctional mitochondrial bioenergetics and synaptic degeneration in Alzheimer disease. Int Neurourol J 23:S5–S10

    Article  PubMed  PubMed Central  Google Scholar 

  269. Telling ND, Everett J, Collingwood JF, Dobson J, van der Laan G et al (2017) Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer’s disease. Cell Chem Biol 24(1205–15):e3

    Google Scholar 

  270. Theil EC (2013) Ferritin: the protein nanocage and iron biomineral in health and in disease. Inorg Chem 52:12223–12233

    Article  CAS  PubMed  Google Scholar 

  271. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Thomsen MS, Andersen MV, Christoffersen PR, Jensen MD, Lichota J, Moos T (2015) Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis 81:108–118

    Article  CAS  PubMed  Google Scholar 

  273. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022

    Article  CAS  PubMed  Google Scholar 

  274. Tiwari S, Ndisang JF (2014) The heme oxygenase system and type-1 diabetes. Curr Pharm Des 20:1328–1337

    Article  CAS  PubMed  Google Scholar 

  275. Torsdottir G, Kristinsson J, Snaedal J, Johannesson T (2011) Ceruloplasmin and iron proteins in the serum of patients with Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 1:366–371

    Article  PubMed  PubMed Central  Google Scholar 

  276. Tse KH, Herrup K (2017) DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 161:37–50

    Article  CAS  PubMed  Google Scholar 

  277. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP et al (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126:541–549

    Article  CAS  PubMed  Google Scholar 

  278. Urrutia PJ, Mena NP, Nunez MT (2014) The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 5:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Ursini F, Bindoli A (1987) The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids 44:255–276

    Article  CAS  PubMed  Google Scholar 

  280. Valore EV, Ganz T (2008) Posttranslational processing of hepcidin in human hepatocytes is mediated by the prohormone convertase furin. Blood Cells Mol Dis 40:132–138

    Article  CAS  PubMed  Google Scholar 

  281. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208

    Article  CAS  PubMed  Google Scholar 

  282. Veitch DP, Weiner MW, Aisen PS, Beckett LA, Cairns NJ et al (2019) Understanding disease progression and improving Alzheimer’s disease clinical trials: recent highlights from the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement 15:106–152

    Article  PubMed  Google Scholar 

  283. Violet M, Chauderlier A, Delattre L, Tardivel M, Chouala MS et al (2015) Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. Neurobiol Dis 82:540–551

    Article  CAS  PubMed  Google Scholar 

  284. Vural H, Demirin H, Kara Y, Eren I, Delibas N (2010) Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. J Trace Elem Med Biol 24:169–173

    Article  CAS  PubMed  Google Scholar 

  285. Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ et al (2006) The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J Biol Chem 281:24934–24944

    Article  CAS  PubMed  Google Scholar 

  286. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R et al (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  287. Wan L, Nie G, Zhang J, Zhao B (2012) Overexpression of human wild-type amyloid-β protein precursor decreases the iron content and increases the oxidative stress of neuroblastoma SH-SY5Y cells. J Alzheimers Dis 30:523–530

    Article  CAS  PubMed  Google Scholar 

  288. Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96:825–832

    Article  CAS  PubMed  Google Scholar 

  289. Wang L, Sato H, Zhao S, Tooyama I (2010) Deposition of lactoferrin in fibrillar-type senile plaques in the brains of transgenic mouse models of Alzheimer’s disease. Neurosci Lett 481:164–167

    Article  CAS  PubMed  Google Scholar 

  290. Wang J, Song N, Jiang H, Wang J, Xie J (2013) Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta 1832:618–625

    Article  CAS  PubMed  Google Scholar 

  291. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842:1240–1247

    Article  CAS  PubMed  Google Scholar 

  292. Wang P, Wu Q, Wu W, Li H, Guo Y et al (2017) Mitochondrial ferritin deletion exacerbates β-amyloid-induced neurotoxicity in mice. Oxid Med Cell Longev 2017:1020357

    PubMed  PubMed Central  Google Scholar 

  293. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962

    Article  CAS  PubMed  Google Scholar 

  294. Ward A, Hudson JW (2014) p53-Dependent and cell specific epigenetic regulation of the polo-like kinases under oxidative stress. PLoS ONE 9:e87918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. White RS, Bhattacharya AK, Chen Y, Byrd M, McMullen MF et al (2016) Lysosomal iron modulates NMDA receptor-mediated excitation via small GTPase, Dexras1. Mol Brain 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM et al (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  298. Wong BX, Duce JA (2014) The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA (2014) β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS ONE 9:e114174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Wu WS, Zhao YS, Shi ZH, Chang SY, Nie GJ et al (2013) Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxid Redox Signal 18:158–169

    Article  CAS  PubMed  Google Scholar 

  301. Xu H, Jiang H, Xie J (2017) New insights into the crosstalk between NMDARs and iron: implications for understanding pathology of neurological diseases. Front Mol Neurosci 10:71

    PubMed  PubMed Central  Google Scholar 

  302. Xu H, Wang Y, Song N, Wang J, Jiang H, Xie J (2017) New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson’s disease. Front Mol Neurosci 10:455

    Article  CAS  PubMed  Google Scholar 

  303. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H et al (2002) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82:1137–1147

    Article  CAS  PubMed  Google Scholar 

  304. Yang H, Guan H, Yang M, Liu Z, Takeuchi S et al (2015) Upregulation of mitochondrial ferritin by proinflammatory cytokines: implications for a role in Alzheimer’s disease. J Alzheimers Dis 45:797–811

    Article  CAS  PubMed  Google Scholar 

  305. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. You LH, Yan CZ, Zheng BJ, Ci YZ, Chang SY et al (2017) Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis 8:e2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Zatta P, Drago D, Bolognin S, Sensi SL (2009) Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 30:346–355

    Article  CAS  PubMed  Google Scholar 

  308. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M et al (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 101:9843–9848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG et al (2018) alpha-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 14:535–548

    Article  CAS  PubMed  Google Scholar 

  310. Zilka N, Ferencik M, Hulin I (2006) Neuroinflammation in Alzheimer’s disease: protector or promoter? Bratisl Lek Listy 107:374–383

    CAS  PubMed  Google Scholar 

  311. Zmijewski JW, Landar A, Watanabe N, Dickinson DA, Noguchi N, Darley-Usmar VM (2005) Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 33:1385–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, T., Xu, SF., Fan, YG., Li, LB., Guo, C. (2019). Iron Pathophysiology in Alzheimer’s Diseases. In: Chang, YZ. (eds) Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology, vol 1173. Springer, Singapore. https://doi.org/10.1007/978-981-13-9589-5_5

Download citation

Publish with us

Policies and ethics