Skip to main content

Mitochondria and Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Mitochondria are important organelles in eukaryotic cells and perform a variety of biosynthetic and metabolic functions. Many human diseases are closely related to mitochondrial dysfunction. Kidney is an organ with high-energy requirements, which is distributed with a large number of mitochondria. Mitochondrial dysfunction plays a crucial role in the pathogenesis of kidney disease, and studies have shown that mitochondrial dysfunction is involved in the physiological process of renal fibrosis. This review introduced the biogenesis and pathophysiology of mitochondria, illustrated the involvement of mitochondrial dysfunction in renal fibrosis based on various kinds of cells, and finally summarized the latest mitochondria-targeted therapies.

Mohammed Mazheruddin Quadri and Syeda-Safoorah Fatima contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akool ES, Gauer S, Osman B, Doller A, Schulz S, Geiger H et al (2012) Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. BiochemPharmacol 83:286–295

    CAS  Google Scholar 

  • An WS, Kim HJ, Cho KH, Vaziri ND (2009) Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol 297:F895–F903

    Article  CAS  Google Scholar 

  • Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG et al (2003) Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12:2693–2702

    Article  CAS  Google Scholar 

  • Becker T, Wagner R (2018) Mitochondrial outer membrane channels: emerging diversity in transport processes. BioEssays 40:e1800013

    Article  Google Scholar 

  • Boenzi S, Diodato D (2018) Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem 62:443–454

    Article  Google Scholar 

  • Carrozzo R, Bornstein B, Lucioli S, Campos Y, De La Pena P, Petit N et al (2003) Mutation analysis in 16 patients with mtDNA depletion. Hum Mutat 21:453–454

    Article  CAS  Google Scholar 

  • Casalena G, Daehn I, Bottinger E (2012) Transforming growth factor-beta, bioenergetics, and mitochondria in renal disease. SeminNephrol 32:295–303

    CAS  Google Scholar 

  • Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306:F367–F378

    Article  CAS  Google Scholar 

  • Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012) Inhibition of MTOR disrupts autophagic flux in podocytes. J Am SocNephrol 23:412–420

    CAS  Google Scholar 

  • Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP (2015) Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol 5:163–168

    Article  CAS  Google Scholar 

  • De Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60

    Article  Google Scholar 

  • Deng X, Xie Y, Zhang A (2017) Advance of autophagy in chronic kidney diseases. Ren Fail 39:306–313

    Article  Google Scholar 

  • Dimauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    Article  CAS  Google Scholar 

  • Ding H, Bai F, Cao H, Xu J, Fang L, Wu J et al (2018) PDE/cAMP/Epac/C/EBP-beta signaling cascade regulates mitochondria biogenesis of tubular epithelial cells in renal fibrosis. Antioxid Redox Signal 29:637–652

    Article  CAS  Google Scholar 

  • Doleris LM, Hill GS, Chedin P, Nochy D, Bellanne-Chantelot C, Hanslik T et al (2000) Focal segmental glomerulosclerosis associated with mitochondrial cytopathy. Kidney Int 58:1851–1858

    Article  CAS  Google Scholar 

  • Farmer T, Naslavsky N, Caplan S (2018) Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 19:569–577

    Article  CAS  Google Scholar 

  • Fedulov AV, Ses TP, Gavrisheva NA, Rybakova MG, Vassilyeva JG, Tkachenko SB et al (2005) Serum TGF-beta 1 and TNF-alpha levels and cardiac fibrosis in experimental chronic renal failure. Immunol Invest 34:143–152

    Article  CAS  Google Scholar 

  • Galvan DL, Green NH, Danesh FR (2017) The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92:1051–1057

    Article  CAS  Google Scholar 

  • Gomez IG, Nakagawa N, Duffield JS (2016) MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am J Physiol Renal Physiol 310:F931–F944

    Article  CAS  Google Scholar 

  • Gorman GS, Chinnery PF, Dimauro S, Hirano M, Koga Y, Mcfarland R et al (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080

    Article  Google Scholar 

  • Gucer S, Talim B, Asan E, Korkusuz P, Ozen S, Unal S et al (2005) Focal segmental glomerulosclerosis associated with mitochondrial cytopathy: report of two cases with special emphasis on podocytes. Pediatr Dev Pathol 8(6):710–717

    Article  Google Scholar 

  • Guery B, Choukroun G, Noel LH, Clavel P, Rotig A, Lebon S et al (2003) The spectrum of systemic involvement in adults presenting with renal lesion and mitochondrial tRNA(Leu) gene mutation. J Am SocNephrol 14:2099–2108

    CAS  Google Scholar 

  • Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu X et al (2017) microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun 8:14395

    Article  CAS  Google Scholar 

  • Hickey FB, Corcoran JB, Docherty NG, Griffin B, Bhreathnach U, Furlong F et al (2011) IHG-1 promotes mitochondrial biogenesis by stabilizing PGC-1alpha. J Am SocNephrol 22:1475–1485

    CAS  Google Scholar 

  • Ireland J, Rossetti S, Haugen E, Ireland J, MichelsV Harris P (2004) Mitochondrial causes of renal insufficiency and hearing loss. Kidney Int 65:2444–2445

    Article  Google Scholar 

  • Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J et al (2013) Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J BiolChem 288:770–777

    CAS  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J BiolChem 276:4588–4596

    CAS  Google Scholar 

  • Kumar A, Chaugule VK, Condos TEC, Barber KR, Johnson C, Toth R et al (2017) Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat Struct MolBiol 24:475–483

    Article  CAS  Google Scholar 

  • Lagouge M, Larsson NG (2013) The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med 273:529–543

    Article  CAS  Google Scholar 

  • Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct MolBiol 24:800–808

    Article  CAS  Google Scholar 

  • Lin JR, Zheng YJ, Zhang ZB, Shen WL, Li XD, Wei T et al (2018) Suppression of endothelial-to-mesenchymal transition by SIRT (Sirtuin) 3 alleviated the development of hypertensive renal injury. Hypertension 72:350–360

    Article  CAS  Google Scholar 

  • Liu S, Soong Y, Seshan SV, Szeto HH (2014) Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Renal Physiol 306:F970–F980

    Article  CAS  Google Scholar 

  • Messmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55:2322–2337

    Article  CAS  Google Scholar 

  • Molino D, Nascimbeni AC, Giordano F, Codogno P, Morel E (2017) ER-driven membrane contact sites: Evolutionary conserved machineries for stress response and autophagy regulation? CommunIntegrBiol 10:e1401699

    Google Scholar 

  • Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022

    Article  CAS  Google Scholar 

  • Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253

    Article  CAS  Google Scholar 

  • Reichold M, Klootwijk ED, Reinders J, Otto EA, Milani M, Broeker C et al (2018) Glycine amidinotransferase (GATM), renal fanconi syndrome, and kidney failure. J Am SocNephrol 29:1849–1858

    CAS  Google Scholar 

  • Rivara MB,Yeung CK, Robinson-Cohen C, Phillips BR, Ruzinski J, Rock D et al (2017) Effect of coenzyme Q10 on biomarkers of oxidative stress and cardiac function in hemodialysis patients: the CoQ10 biomarker trial. Am J Kidney Dis 69:389–399

    Article  CAS  Google Scholar 

  • Schiffer M, Bitzer M, Roberts IS, Kopp JB, Ten Dijke P, Mundel P et al (2001) Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 108:807–816

    Article  CAS  Google Scholar 

  • Schubert AF, Gladkova C, Pardon E, Wagstaff JL, Freund SMV, Steyaert J et al (2017) Structure of PINK1 in complex with its substrate ubiquitin. Nature 552:51–56

    Article  CAS  Google Scholar 

  • Seidowsky A, Hoffmann M, Glowacki F, Dhaenens CM, Devaux JP, De Sainte Foy CL et al (2013) Renal involvement in MELAS syndrome—a series of 5 cases and review of the literature. ClinNephrol 80:456–463

    Google Scholar 

  • Shoubridge EA (2001) Nuclear genetic defects of oxidative phosphorylation. Hum Mol Genet 10:2277–2284

    Article  CAS  Google Scholar 

  • Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K et al (2013) Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. MolNutr Food Res 57:1649–1659

    CAS  Google Scholar 

  • Stiles AR, Simon MT, Stover A, Eftekharian S, Khanlou N, Wang HL et al (2016) Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Mol Genet Metab 119:91–99

    Article  CAS  Google Scholar 

  • Sweetwyne MT, Pippin JW, Eng DG, Hudkins KL, Chiao YA, Campbell MD et al (2017) The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int 91:1126–1145

    Article  CAS  Google Scholar 

  • Van Vliet AR, Agostinis P (2018) Mitochondria-associated membranes and ER stress. Curr Top Microbiol Immunol 414:73–102

    PubMed  Google Scholar 

  • Vincent AE, Turnbull DM, Eisner V, Hajnoczky G, Picard M (2017) Mitochondrial nanotunnels. Trends Cell Biol 27:787–799

    Article  CAS  Google Scholar 

  • Volobueva AS, Melnichenko AA, GrechkoAV Orekhov AN (2018) Mitochondrial genome variability: the effect on cellular functional activity. Ther Clin Risk Manag 14:237–245

    Article  CAS  Google Scholar 

  • Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P et al (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15:186–200

    Article  CAS  Google Scholar 

  • Wei Y, Chiang WC, Sumpter R Jr, Mishra P, Levine B (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168:224–238

    Article  CAS  Google Scholar 

  • Xu Y, Nie L, Yin YG, Tang JL, Zhou JY, Li DD et al (2012) Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 259:395–401

    Article  CAS  Google Scholar 

  • Yang CC, Hsu SP, Wu MS, Hsu SM, Chien CT (2006) Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress. Kidney Int 69:706–714

    Article  CAS  Google Scholar 

  • Yuan Y, Huang S, Wang W, Wang Y, Zhang P, Zhu C et al (2012) Activation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 82:771–789

    Article  CAS  Google Scholar 

  • Zhu C, Huang S, Yuan Y, Ding G, Chen R, Liu B et al (2011) Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARgamma. Am J Pathol 178:2020–2031

    Article  CAS  Google Scholar 

  • Zhuang Y, Ding G, Zhao M, Bai M, Yang L, Ni J et al (2014) NLRP3 inflammasome mediates albumin-induced renal tubular injury through impaired mitochondrial function. J BiolChem 289:25101–25111

    CAS  Google Scholar 

  • Zhuang Y, Yasinta M, Hu C, Zhao M, Ding G, Bai M et al (2015) Mitochondrial dysfunction confers albumin-induced NLRP3 inflammasome activation and renal tubular injury. Am J Physiol Renal Physiol 308:F857–F866

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Hua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quadri, M.M., Fatima, SS., Che, RC., Zhang, AH. (2019). Mitochondria and Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_25

Download citation

Publish with us

Policies and ethics