Skip to main content

Use of Plant Hormones for the Improvement of Plant Growth and Production Under Salt Stress

  • Chapter
  • First Online:
Salt Stress, Microbes, and Plant Interactions: Causes and Solution

Abstract

Phytohormones are specialized chemical messengers which play significant role in plant defense mechanisms against several abiotic stresses. Plants frequently face biotic or abiotic stresses which restrict their growth and productivity. Salinity, abiotic stress, acquires great significance, affecting plants in various ways, including oxidative burst, ions toxicity, altered metabolism and water stress. This ultimately obstructs the plant to reach its actual genetic potential. Recent investigations have unraveled the functional role of potential phytohormones as mediators between abiotic stress signaling and defense responses. These plant hormones have the capacity to induce numerous defense mechanisms by integrating the stress signals. Subsequently, the downstream responses are regulated in a coordinated manner to produce a robust defense response against salt stress. The present chapter highlights the role of hormones such as abscissic acid, gibberellic acid, cytokinins, brassinosteroids, jasmonates and salicylic acid for improving plant’s tolerance and productivity under saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah Z, Ahmad R (1990) Effect of pre-and post-kinetin treatments on salt tolerance of different potato cultivars growing on saline soils. J Agron Crop Sci 165:94–102

    Article  CAS  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008a) The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achard P, Renou J-P, Berthomé R, Harberd NP, Genschik P (2008b) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  • Afzal I, Basra SMA, Ahmad N, Farooq M (2005) Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno Pesq Biol 17:95–109

    Google Scholar 

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212

    Article  CAS  PubMed  Google Scholar 

  • Ahmadvand G, Soleimani F, Saadatian B, Pouya M (2012) Effects of seed priming on germination and emergence traits of two soybean cultivars under salinity stress. J Basic Appl Sci Res 3:234–241

    CAS  Google Scholar 

  • Akbari G, Sanavy S, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci 10:2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Akrami M, Arzani A (2018) Physiological alterations due to field salinity stress in melon (Cucumis melo L.). Acta Physiol Plant 40:1–14

    Article  CAS  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Amjad M, Akhtar J, Anwar-ul-Haq M, Yang A, Akhtar SS, Jacobsen SE (2014a) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    Article  CAS  Google Scholar 

  • Amjad M, Akhtar J, Haq MAU, Yang A, Akhtar SS, Jacobsen SE (2014b) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    Article  CAS  Google Scholar 

  • Amzallag G, Lerner H, Poljakoff-Mayber A (1990) Exogenous ABA as a modulator of the response of sorghum to high salinity. J Exp Bot 41:1529–1534

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2003) Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased Nitrate reductase activity. Plant Growth Regul 40:29–32

    Article  CAS  Google Scholar 

  • Ashraf MA, Akbar A, Askari SH, Iqbal M, Rasheed R, Hussain I (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Rakshit A, Singh H (eds) Advances in seed priming. Springer, Singapore, pp 51–79

    Chapter  Google Scholar 

  • Aydinsakir K, Dinc N, Buyuktas D, Karaguzel UO, Ozkan CF, Vuran FA (2018) Effects of salinity levels and substrates on yield and flower quality of soilless cultivated rose grown in an unheated greenhouse. Fresen Envirno Bull 27:1424–1436

    CAS  Google Scholar 

  • Azooz M (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int J Agric Biol 11:343–350

    CAS  Google Scholar 

  • Baatour O, Maha Z, Nada B, Zeineb OA (2018) Effects of NaCl on plant growth and antioxidant activities in fenugreek (Trigonella foenum-graecum L.). Biosci J 34:683–696

    Article  Google Scholar 

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 38:209–215

    Article  CAS  Google Scholar 

  • Bao F, Li J (2002) Evidence that the auxin signaling pathway interacts with plant stress response. Acta Bot Sin 44:532–536

    CAS  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192

    Article  CAS  Google Scholar 

  • Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, Du BX, Zhang JS, Chen SY (2006) Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 29:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signal Behav 3:761–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  • Chow B, McCourt P (2004) Hormone signalling from a developmental context. J Exp Bot 55:247–251

    Article  CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Quarrie SA (2002) Corrigendum to: abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct Plant Biol 29:535–535

    Article  CAS  PubMed  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Understanding salinity responses and adopting ‘omics-based’approaches to generate salinity tolerant cultivars of rice. Front Plant Sci 6:712

    PubMed  PubMed Central  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333–342

    Article  CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. Nat Biotechnol 26:131–136

    CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eaton FM (1942) Toxicity and accumulation of chloride and sulfate salts in plants. J Agric Res 64:357–399

    CAS  Google Scholar 

  • El-Tayeb M (2005) Response of barley grains to the interactive e. ect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Esna-Ashari M, Gholami M (2010) The effect of increased chloride (Cl) content in nutrient solution on yield and quality of strawberry (Fragaria ananassa Duch.) fruits. J Fruit Ornam Plant Res 18:37–44

    CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A (2013) Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiol Plant 35:2037–2053

    Article  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 87:7713–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302

    Article  CAS  PubMed  Google Scholar 

  • Geilfus CM (2018) Review on the significance of chlorine for crop yield and quality. Plant Sci 270:114–122

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and-sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51:71–81

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2013) Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 32:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Gurmani AR, Bano A, Ullah N, Khan H, Jahangir M, Flowers TJ (2013) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa). Aust J Crop Sci 7:1219–1226

    Google Scholar 

  • Hadiarto T, Tran LSP (2011) Progress studies of drought responsive genes in rice. Plant Cell Rep 30:297–310

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  PubMed  Google Scholar 

  • Harrison MA (2012) Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Khan N, Nazar R, Iqbal N, Anjum N (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin/Heidelberg, pp 49–76

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hayat S, Ahmad A, Mobin M, Hussain A, Fariduddin Q (2000) Photosynthetic rate, growth, and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38:469–471

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010a) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010b) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    Article  CAS  Google Scholar 

  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil 179:25–33

    Article  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  CAS  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. Plant Growth Regul 26:290–300

    Article  CAS  Google Scholar 

  • Hussain S, Khaliq A, Matloob A, Wahid MA, Afzal I (2013) Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ 32:36–43

    CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A, Ur-Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress. J Integr Plant Biol 48:181–189

    Article  CAS  Google Scholar 

  • Iqbal N, Nazar R, Khan MIR, Masood A, Khan NA (2011) Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Iqbal N, Masood A, Khan NA (2012) Phytohormones in salinity tolerance: ethylene and gibberellins cross talk. In: Khan N, Nazar R, Iqbal N, Anjum N (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin/Heidelberg, pp 77–98

    Chapter  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618

    Article  CAS  PubMed  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Park CM (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 6:1198–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Bosa K, Kościelniak J, Żuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim K, Shin D, Park S, Jang S, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    Article  CAS  Google Scholar 

  • Kaur N, Pati PK (2017) Integrating classical with emerging concepts for better understanding of salinity stress tolerance mechanisms in rice. Front Environ Sci Eng 5:42. https://doi.org/10.3389/fenvs.2017.00042

    Article  Google Scholar 

  • Kaya C, Kirnak H, Higgs D, Saltali K (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci Hort 93:65–74

    Article  CAS  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. J Plant Biochem Physiol 1:e113. https://doi.org/10.4172/2329-9029.1000e113

    Article  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plant Anal 31:2763–2774

    Article  CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121. https://doi.org/10.1007/s11738-009-0387-z

    Article  CAS  Google Scholar 

  • Kholghi M, Toorchi M, Bandeh-Hagh A, Shakiba MR (2018) An evaluation of canola genotypes under salinity stress at vegetative stage via morphological and physiological traits. Pak J Bot 50:447–455

    CAS  Google Scholar 

  • Kirkham MB, Gardner W, Gerloff G (1974) Internal water status of kinetin-treated, salt-stressed plants. Plant Physiol 53:241–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper D, Schuit J, Kuiper P (1990) Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil 123:243–250

    Article  CAS  Google Scholar 

  • Kumar IS, Rao SR, Vardhini B (2015) Role of phytohormones during salt stress tolerance in plants. Curr Trends Biotechnol Pharm 9:334–343

    Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants. FEBS J 262:247–257

    CAS  Google Scholar 

  • Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS (2009) The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Integr Plant Biol 51:825–833

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts down stream of ABI3 to execute an ABA-dependent growth arrest during germination. The Plant J 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Ma T, Zeng W, Li Q, Yang X, Wu J, Huang J (2017) Shoot and root biomass allocation of sunflower varying with soil salinity and nitrogen applications. Agron J 109:2545–2555

    Article  CAS  Google Scholar 

  • Mahouachi J (2018) Long-term salt stress influence on vegetative growth and foliar nutrient changes in mango (Mangifera indica L.) seedlings. Sci Hort 234:95–100

    Article  CAS  Google Scholar 

  • Maischak H, Zimmermann MR, Felle HH, Boland W, Mithöfer A (2010) Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav 5:988–990

    Article  PubMed  PubMed Central  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  CAS  Google Scholar 

  • Melgar J, Benlloch M, Fernández-Escobar R (2006) Calcium increases sodium exclusion in olive plants. Sci Hortic 109:303–305

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave. Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2009) GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052. https://doi.org/10.1093/aobpla/pls052

    Article  CAS  PubMed  Google Scholar 

  • Mustafa Z, Pervez MA, Ayyub CM, Matloob A, Khaliq A, Hussain S, Ihsan MZ, Butt M (2014) Morpho-physiological characterization of chilli genotypes under NaCl salinity. Plant Soil Environ 33:133–141

    Google Scholar 

  • Naqvi S, Ansari R, Khanzada A (1982) Response of salt-stressed wheat seedlings to kinetin. Plant Sci Lett 26:279–283

    Article  CAS  Google Scholar 

  • Naz T, Akhtar J, Anwar-ul-Haq M, Saqib M, Iqbal MM, Shahid M (2018) Interaction of salinity and boron in wheat affects physiological attributes, growth and activity of antioxidant enzymes. Pak J Agric Sci 55:339–347

    Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317

    PubMed  Google Scholar 

  • Ntatsi G, Aliferis KA, Rouphael Y, Napolitano F, Makris K, Kalala G, Katopodis G, Savvas D (2017) Salinity source alters mineral composition and metabolism of Cichorium spinosum. Environ Exp Bot 141:113–123

    Article  CAS  Google Scholar 

  • Panta S, Doyle R, Hardie M, Lane P, Flowers T, Haros G, Shabala S (2018) Can highly saline irrigation water improve sodicity and alkalinity in sodic clayey subsoils. J Soils Sediments 18:3290–3302

    Article  CAS  Google Scholar 

  • Papadopoulos I, Rendig V (1983) Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant Soil 73:47–57

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics 15:760. https://doi.org/10.1186/1471-2164-15-760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Ribeiro I, Reisinger V, Planchon S, Veloso M, Renaut J, Eichacker L, Ricardo C (2018) Salinity effect on germination, seedling growth and cotyledon membrane complexes of a Portuguese salt marsh wild beet ecotype. Theor Exp Plant Physiol 30:113–127

    Article  CAS  Google Scholar 

  • Plett DC, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626

    Article  CAS  Google Scholar 

  • Purty RS, Kumar G, Singla-Pareek SL, Pareek A (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu R, Jing Y, Liu C, Yang Z, Wang Z (2017) Response of hot pepper yield, fruit quality, and fruit ion content to irrigation water salinity and leaching fractions. Hort Sci 52:979–985

    Article  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13:73–82

    Article  CAS  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  CAS  PubMed  Google Scholar 

  • Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids–a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res 17:139–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy M (1986) Changes in pigment composition. Hill reaction activity and saccharides metabolism in bajra (Penisetum typhoides) leaves under NaCl salinity. Photosynthetica 20:50–55

    CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155

    Article  CAS  Google Scholar 

  • Saeng-ngam S, Takpirom W, Buaboocha T, Chadchawan S (2012) The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol 55:198–208

    Article  CAS  Google Scholar 

  • Sakhabutdinova A, Fatkhutdinova D, Bezrukova M, Shakirova F (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian J Plant Physiol 21:314–319

    Google Scholar 

  • Sanchez-Casas P, Klessig DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable Catalase activity are present in a variety of plant species. Plant Physiol 106:1675–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasse JM (1997) Recent progress in brassinosteroid research. Physiol Plant 100:696–701

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.). Plant Growth Regul 55:51–64

    Article  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    Article  CAS  PubMed  Google Scholar 

  • Shi Y-F, Wang D-L, Wang C, Culler AH, Kreiser MA, Suresh J, Cohen JD, Pan J, Baker B, Liu J-Z (2015) Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol Plant 8:1350–1365

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H, Zhou W, Ding J, Du J, Liu J (2017) Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8:1372. https://doi.org/10.3389/fpls.2017.01372

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui M, Khan M, Mohammad F, Khan M (2008) Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci 194:214–224

    Article  CAS  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32:1135–1144

    Article  Google Scholar 

  • Sultana N, Ikeda T, Itoh R (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot 42:211–220

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KFJ, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:6. https://doi.org/10.1186/1939-8433-5-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Van Loon C, Van den Berg W (2003) The effect of chloride fertilization on blackspot susceptibility and other quality characteristics and on yield of potato. Potato Res 46:147–154

    Article  Google Scholar 

  • Velitchkova M, Fedina I (1998) Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica 35:89–97

    Article  CAS  Google Scholar 

  • Wang X (1999) The role of phospholipase D in signaling cascades. Plant Physiol 120:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang T, Li K, Li X (2008) Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regul 54:261–269

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wassmann R, Jagadish S, Heuer S, Ismail A, Redona E, Serraj R, Singh R, Howell G, Pathak H, Sumfleth K (2009) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59–122

    Article  Google Scholar 

  • Wen FP, Zhang ZH, Bai T, Xu Q, Pan YH (2010) Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots. Plant Sci 178:170–175

    Article  CAS  Google Scholar 

  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  CAS  PubMed  Google Scholar 

  • Wi SJ, Jang SJ, Park KY (2010) Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Molecules and Cells 30:37–49

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, He J, Chen J, Yang S, Zha D (2014) Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena mill.) growth under salt stress. Protoplasma 251:169–176

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, David A, Baluška F, Bhatla SC (2013) Rapid auxin-induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls. Plant Signal Behav 8:e23196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Zu Y-G, Tang Z-H (2013) Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot 86:60–69

    Article  CAS  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    Article  CAS  PubMed  Google Scholar 

  • Yong-Ping G, Bonham-Smith PC, Gusta LV (2002) The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. J Plant Physiol 159:951–958

    Article  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Zahir Z, Asghar H, Arshad M (2001) Cytokinin and its precursors for improving growth and yield of rice. Soil Biol Biochem 33:405–408

    Article  CAS  Google Scholar 

  • Zdunek E, Lips SH (2001) Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J Exp Bot 52:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Liu J, Liu YL (2004) Nitric oxide alleviates growth inhibition of maize seedlings under NaCl stress. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30:455–459

    CAS  PubMed  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie X, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    Article  CAS  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA 106:4543–4548

    Article  CAS  Google Scholar 

  • Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192

    Article  CAS  PubMed  Google Scholar 

  • Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580:1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:227–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Amir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amir, R., Munir, F., Khan, M., Iqbal, T. (2019). Use of Plant Hormones for the Improvement of Plant Growth and Production Under Salt Stress. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer, Singapore. https://doi.org/10.1007/978-981-13-8801-9_3

Download citation

Publish with us

Policies and ethics