Skip to main content

Arbuscular Mycorrhizal Colonization and Activation of Plant Defense Responses Against Phytopathogens

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Arbuscular mycorrhizal fungi (AMF) are potentially mutualistic biotrophs of plants and improve water supply and nutrient uptake in host plants. In exchange of this, it takes a part of photosynthate from the host plant to fulfill its metabolic requirements. Despite having its own immune system, plant gets attacked by various pathogens and therefore needs support to overcome such challenges and to become stabilized in such hostile environment. AMF colonization helps the plants either directly or indirectly to face the challenges of biotic and abiotic stresses. Several physiological and biochemical changes occur in the host plant and mycorrhizosphere following colonization of roots by AMF, and AMF colonization also affects interactions of the host plants with a diverse range of both above- and belowground organisms. Protective effects of AMF colonization against pests, pathogens, and stem or root parasitic plants were described in many agriculturally important crop species. These mechanisms not only improve plant nutrition consumption and competition but also play a significant role in plant defense activation. Successful establishment of mycorrhizal species on host leads to regulation of the JA and SA signaling pathways, and it itself explains the range of protection conferred by this symbiosis. Defense activation following colonization by mycorrhizal species is associated with moderate activation of host transcription factors such as MAP kinases. Further, several other defense-related compounds are also accumulated such as PR proteins, β-1,3-glucanases, phytoalexins, and phenolics, and deposition of callose also occurs leading to protection against various pathogens. In the present chapter, we discussed the major defense signaling aspects during plant-pathogen interactions mediated through mycorrhizal colonization in the host plant roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Toth R, Meier R, Weber HC (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular-arbuscular mycorrhizas in grasses. Can J Bot 67:2505–2513

    Article  Google Scholar 

  • Auge R (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Balestrini R, Berta G, Bonfante P (1992) The plant nucleus in mycorrhizal roots: positional and structural modifications. Biol Cell 75:235–243

    Article  Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1996) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Berta G, Sgorbati S, Soler V, Fusconi A, Trotta A, Citterio A, Scannerini S (1990) Variations in chromatin structure in host nuclei of a vesicular arbuscular mycorrhiza. New Phytol 114:199–205

    Article  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Alstrom S (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    Article  CAS  Google Scholar 

  • Blee E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–322

    Article  CAS  PubMed  Google Scholar 

  • Blee KA, Anderson AJ (1996) Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomos intraradices Schsnck & Smith. Plant Physiol 110:675–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blee KA, Anderson AJ (2000) Defence responses in plants to arbuscular mycorrhizal fungi. In: Podilla GK, Douds DD (eds) Current advances in mycorrhizas research. The American Phytopathological society, St. Paul, pp 45–59

    Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM (2000) Induction of Ltp (lipid transfer protein) and pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Bodker L, Kjoller R, Rosendahl S (1998) Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intra radices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174

    Article  CAS  Google Scholar 

  • Bolwell GP (2004) Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol 2:287–294

    Article  Google Scholar 

  • Bonfante-Fasolo P, Perotto S (1992) Plant and endomycorrhizal fungi: the cellular and molecular basis of their interaction. In: Verma DPS (ed) Molecular signal in plant microbe communication. CRC Press, Boca Raton, pp 445–470

    Google Scholar 

  • Bonfante-Fasolo P, Scannerini S (1992) In: Allen MJ (ed) The cellular basis of plant-fungus interchanges in mycorrhizal associations. Chapman and Hall, New York, pp 65–101

    Google Scholar 

  • Cervantes-Gamez RG, Bueno-Ibarra MA, Cruz-Mendivil A, Calderon- Vazquez CL, Ramirez-Douriet CM, Maldonado-Mendoza IE et al (2015) Arbuscular mycorrhizal symbiosis-induced expression changes in Solanum lycopersicum leaves revealed by RNA- seqanalysis. Plant Mol Biol Rep 23:1–14

    Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261(1–2):209–217

    Article  CAS  Google Scholar 

  • Collinge DB, Gregersen PL, Thordal-Christensen H (1994) The induction of gene expression in response to pathogenic microbes. In: Perspectives ASB (ed) Mechanisms of plant growth and lmproved productivity: modern approaches and. Marcel Dekker, New York, pp 391–433

    Google Scholar 

  • Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, Garcia-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A (2006) Priming: getting ready for Battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of roots tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359

    Article  PubMed  CAS  Google Scholar 

  • De Leon IP, Sanz A, Hamberg M, Castresana C (2002) Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant J 29:61–62

    Article  PubMed  Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondian A, Polverari A, Lamb C (2002) Reactive oxygen intermediates modulates nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiol Biochem 40:605–610

    Article  CAS  Google Scholar 

  • Dixon RA, Harrison MJ (1990) Activation, structure and organization of genes involved in microbial defense in plants. Adv Genet 28:165–234

    Article  CAS  PubMed  Google Scholar 

  • Dumas-Gaudot E, Asselin A, Gianinaui-Pearson V, Gollotte A, Gianinaui S (1994) Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Sci 99:27–37

    Article  CAS  Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Ordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of host defence systems. In Arbuscular mycorrhizas: physiology and function, Kluwer Academic Publishers, Dordrecht, pp 173–200

    Chapter  Google Scholar 

  • El- Khallal SM (2007) Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (Jasmonic acid & Salicylic acid): 2-Changes in the antioxidant enzymes, phenolic compounds and pathogen related proteins. Aust J Basic Appl Sci 1:717–732

    CAS  Google Scholar 

  • Engstrom K, Widmark AK, Brishammar S, Helmersoon S (1999) Antifungal activity to Phytophthora infestans of sesquiterpenoids from infected potato tubers. Potato Res 42:43–50

    Article  CAS  Google Scholar 

  • Evans DG, Miller MH (1988) Vesicular arbuscular mycorrhizas and the soil induced reduction of nutrient absorption in maize, casual relation. New Phytol 110:67–74

    Article  Google Scholar 

  • Feussner I, Kühn H, Wasternack C (2001) Lipoxygenase dependent degradation of storage lipids. Trends Plant Sci 6:268–273

    Article  CAS  PubMed  Google Scholar 

  • Franken P, Gnadinger F (1994) Analysis of parsley arbuscular endomycorrhiza: lnfection development and mRNA levels of defense related genes. Plant-Microbe Interact 7:612–620

    Article  CAS  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MZ, Thordal-Christensen H, Pons Kuhnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez I, Quemada M, Gabriel JL, Hontoria C (2016) Arbuscular mycorrhizal fungal activity responses to winter cover crops in a sunflower and maize cropping system. Appl Soil Ecol 102:10–18

    Article  Google Scholar 

  • Garmendia I, Aguirreolea J, Goicoechea N (2006) Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl 51:293–310

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    Google Scholar 

  • Gaur A, Adholeya A (2002) Arbuscular–mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218

    Article  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14

    Article  Google Scholar 

  • Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant-Microbe Interact 22:763–772

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  CAS  PubMed  Google Scholar 

  • Jiao H, Yinglong C, Lin X, Liu R (2011) Diversity of arbuscular mycorrhizal fungi in greenhouse soils continuously planted to watermelon in North. China. Mycorrhiza 21:681–688

    Article  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226(2):227–234

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizo deposition. New Phytol 163:459–480

    Article  CAS  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kapoor R, Bhatnagar AK (2007) Attenuation of cadmium toxicity in mycorrhizal celery (Apium graveolens L.). World J Microbiol Biotechnol 23:1083–1089

    Article  CAS  Google Scholar 

  • Khan AG (1993) Occurrence and importance of mycorrhizas in aquatic trees of New South Wales Australia. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1992) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. III. Responses of microtubules and actin filaments in barley coleoptile cells to penetration attempts. Can J Bot 70(9):1815–1823

    Article  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U S A 105:9823–9828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Künkel BN, Brooks DM (2002) Cross talk between signaling pathway in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–257

    Article  CAS  PubMed  Google Scholar 

  • Lambais MR (2000) Regulation of plant defence-related genes in arbuscular mycorrhizas. In: Podilla GK, Douds DD (eds) Current advances in mycorrhizas research. The American Phytopathological Society, St. Paul, pp 45–59

    Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biró B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Leon Morcillo RJ, Ocampo JA, Garcia Garrido JM (2012) Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza. Plant Signal Behavior 7:1584–1588

    Article  CAS  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS, St Paul, pp 1–26

    Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Raez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Muller J (2000) Hormonal balance in plants during colonization be mycorrhizal fungi. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Amsterdam, pp 263–283

    Chapter  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick A, Kuster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact 17:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Marin M, Ybarra M, Fe A, Garcia-Ferriz L (2002) Effect of arbuscular mycorrhizal fungi and pesticides on Cynara cardunculus growth. Agric Food Sci Finland 11:245–251

    Article  CAS  Google Scholar 

  • McArthur DA, Knowles NR (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGonigle TP, Miller MH (1999) Winter survival of extra radical hyphae and spores of arbuscular mycorrhizal fungi in the field. Appl Soil Ecol 12:41–50

    Article  Google Scholar 

  • Meixner C, Ludwig-Muller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715

    Article  CAS  PubMed  Google Scholar 

  • Menendez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province. Argent. Biol. Fertil Soil 33:373–381

    Article  Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190

    Article  CAS  Google Scholar 

  • Miller MH, McGonigle TP, Addy HD (1995) Functional ecology if vesicular arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241–255

    Article  Google Scholar 

  • Miranda JCC, Harris PJ (1994) Effects of soil P on spore germination and hyphal growth of fungi. New Phytol 128:103–108

    Article  CAS  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae with an emendation of Glomaceae. Mycotaxon 37:471–492

    Google Scholar 

  • Mozafar A, Anken T, Ruh R, Frossard E (2000) Tillage intensity, mycorrhizal and non mycorrhizal fungi and nutrient concentrations in maize, wheat and canola. Agron J 92:1117–1124

    Article  CAS  Google Scholar 

  • Muller J, Staehelin C, Xie JP, Neuhaus-Url G, Boller T (2000) Nod factors and chitooligomers elicit an increase in cytosolic calcium in aequorin expressing soybean cells. Plant Physiol 124:733–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navazio L, Baldan B, Moscatiello R, Zuppini A, Woo SL, Mariani P, Lorito M (2007) Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biol 7:41–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Njeru EM, Avio L, Bocci G, Sbrana C, Turrini A, Barberi P, Giovannetti M, Oehl F (2015) Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol Fertil Soils 51:151–166

    Article  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Plenchette C, Furlan V, Fortin JA (1982) Comparative effects of different endomycorrhizal fungi on five host plants grown on calcined montmorillonite clay. J Am Soc Hortic Sci 107:535–538

    Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) β-1, 3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Pozo MJ, Loon LCV, Pieterse CMJ (2004) Jasmonates – signals in plant–microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Mycorrhizas-functional processes and ecological impact. Springer, Berlin/Heidelberg, pp 123–135

    Chapter  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G (2015) Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci Horticult 188:97–105

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant-Microbe Interact 12:976–984

    Article  CAS  Google Scholar 

  • Salzer P, Boller T (2000) Elicitor-induced reactions in mycorrhizas and their suppression. In: Podila GK, Douds DD (eds) Current advances in mycorrhizas research. The American Phytopathological Society, St. Paul, pp 1–10

    Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  CAS  PubMed  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1069–1073

    Article  Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Sheng PP, Liu RJ, Li M (2012) Inoculation with an arbuscular mycorrhizal fungus and intercropping with pepper can improve soil quality and watermelon crop performance in a system previously managed by monoculture. Am Eurasian J Agri Environ Sci 12:1462–1468

    Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188

    Article  CAS  Google Scholar 

  • Singh RK, Dai O, Nimasow G (2011) Effect of arbuscular mycorrhizal (AM) inoculation on growth of chili plant in organic manure amended soil. Afr J Micorbiol Res 28:5004–5012

    Google Scholar 

  • Smith GS (1987) Interactions of nematodes with mycorrhizal fungi. In: Veech JA, Dickon DW (eds) Vistas on nematology. Society of Nematology, Hyattsville, pp 292–300

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants. Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    PubMed  PubMed Central  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97:10625–10630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strange RN (2003) Introduction to plant pathology. Wiley, England

    Google Scholar 

  • Strittmatter G, Gheysen G, Gianinaui-Pearson V, Hahn K, Niebel A, Rohde W, Tacke E (1996) Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gstl gene. Mol Plant-Microbe Interact 9:68–73

    Article  CAS  PubMed  Google Scholar 

  • Stumpe M, Carsjens JG, Stenzel I, Gobel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66:781–791

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological response in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    Article  CAS  Google Scholar 

  • Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizas of Mojave Desert plants. Western N Amer Naturalist 62:327–334

    Google Scholar 

  • Torres MA, Jonathan DG, Dangl JL (2006) Reactive oxygen species signalling in response to pathogen. Plant Physiol 141:373–378

    Google Scholar 

  • Toussaint J, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    Article  PubMed  Google Scholar 

  • Vierheilig H, Piche Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer Academic/Plenum Publishers, New York, pp 23–39

    Chapter  Google Scholar 

  • Vierheilig H, Alt M, Mohr U, Boller T, Wiemken A (1994) Ethylene biosynthesis and activities of chitinase and β-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143:337–343

    Article  CAS  Google Scholar 

  • Vos CM, Yang Y, DeConinck B, Cammue BPA (2014) Fungal (−like) biocontrol organisms in tomato disease control. Biol Control 74:65–81

    Article  Google Scholar 

  • Waaland ME, Allen EB (1987) Relationships between VA mycorrhizal fungi and plant cover following surface mining in Wyoming. J Range Manag 40:271–276

    Article  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canad J Bot 82:1198–1227

    Article  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibit Ralstonia Solanacearum. J Phytopathol 152:537–546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maharshi, A., Kumar, G., Mukherjee, A., Raghuwanshi, R., Singh, H.B., Sarma, B.K. (2019). Arbuscular Mycorrhizal Colonization and Activation of Plant Defense Responses Against Phytopathogens. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8391-5_8

Download citation

Publish with us

Policies and ethics