Skip to main content

Extraction Techniques for Plant-Based Bio-active Compounds

  • Chapter
  • First Online:
Natural Bio-active Compounds

Abstract

Bio-active compounds include terpenoids, alkaloids, nitrogen-containing compounds, organosulfur compounds, and phenolics. Plant-based bio-active compounds show antimicrobial activity, anti-inflammatory activity, immunostimulatory activity, anticancer activity, antioxidant activity, etc. Due to higher benefits of bio-active compounds, they have been used for the manufacturing of food supplements and food additives and as an alternative to drugs and an ingredient for foods to increase their functionality. The extraction is the main step to obtain a desired bio-active compound from the plant materials. Since bio-active compounds are synthesized in small quantities in plants and embedded within the plant matrix, sometimes complexed with other compounds in the plant, their proper extraction method is very crucial. There are two main extraction methods used for bio-active compounds: classical or conventional methods and nonconventional methods. The classical methods include soxhlet extraction, maceration, infusion, percolation, digestion, decoction, steam, and hydrodistillation. The disadvantages of conventional methods include higher consumption of organic solvents with higher purity, higher cost, lower extraction efficiency, long processing time, and higher temperature. Therefore, as an alternative to classical extraction methods, nonconventional methods have been applied extensively so far. Nonconventional methods were referred to as green technologies. Since energy and organic solvent consumption are reduced, those methods can be regarded as beneficial to the environment. The most important methods are ultrasound-, enzyme-, microwave-, and pulsed electric field-assisted extraction, pressurized liquid extraction, and supercritical fluid extraction. The extraction yields of bio-active compounds are strongly bound on the extraction method, physicochemical properties of the plant material, extraction solvent, temperature, pressure, and time. The present chapter focuses on the technologies used for the extraction of plant-based bio-active compounds and comparison of advantages and disadvantages of the methods and summarizes the recent advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya K, Ghosh S, Biswas R (2018) Total phenolic contents and antioxidant effects of infusion and decoction from Lepista sordida (Schumach). FABAP J Pharm Sci 43:17–24

    Google Scholar 

  • Aguiar AC, Osorio-Tobón JF, Silva LPS, Barbero GF, Martinez J (2018) Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. J Supercrit Fluids 133:86–93

    Article  CAS  Google Scholar 

  • Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017) Phytochemicals: extraction, isolation, and ıdentification of bioactive compounds from plant extracts. Plan Theory 6:42

    Google Scholar 

  • AOAC (2012a) Official method 948.22. Fat (crude) in nuts and nut products. Gravimetric methods. In: Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg

    Google Scholar 

  • AOAC (2012b) Official method 960.39. Fat (crude) or ether extract in meat. In: Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg

    Google Scholar 

  • AOAC (2012c) Official method 991.36. Fat (crude) in meat. Solvent extraction (submersion) method. In: Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Arvindekar AU, Pereira GR, Laddha KS (2015) Assessment of conventional and novel extraction techniques on extraction efficiency of five anthraquinones from Rheum emodi. J Food Sci Technol 52:6574–6582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  • Azwanida NN (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 4:196. https://doi.org/10.4172/2167-0412.1000196

    Article  Google Scholar 

  • Bagheri H, Bin Abdul Manap MY, Solati Z (2014) Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta 121:220–228

    Article  CAS  PubMed  Google Scholar 

  • Baig S, Farooq R, Rehman F (2010) Sonochemistry and its industrial applications. World Appl Sci J 10:936–944

    CAS  Google Scholar 

  • Barbieri R, Coppoa E, Marchese A, Dagliac M, Eduardo Sobarzo-Sánchez E, Nabavif SF, Nabavif SM (2017) Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res 196:44–68

    Article  CAS  PubMed  Google Scholar 

  • Barbosa-Pereira L, Guglielmetti A, Zeppa G (2018) Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioprocess Technol 11:818–835

    Article  CAS  Google Scholar 

  • Berk Z (2018) Food process engineering, 3rd edn. Academic, London, p 689

    Google Scholar 

  • Bermerjo DV, Zahran F, Garcia-Risco MN, Reglero G (2017) Supercritical fluid extraction of Bulgarian Achillea millefolium. J Supercrit Fluids 119:283–288

    Article  CAS  Google Scholar 

  • Bimakr M, Rahman RA, Taip FS, Ali Ganjloo A, Salleha LM, Selamat J, Hamid A, Zaidul ISM (2011) Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod Process 89(1):67–72

    Article  Google Scholar 

  • Boulila A, Hassen I, Haouari L, Mejri F, Amor IB, Casabianca H, Hosni K (2015) Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind Crops Prod 74:485–493

    Article  CAS  Google Scholar 

  • Brachet A, Christen P, Veuthey JL (2002) Focused microwave assisted extraction of cocaein and benzoylecgonine from coca leaves. Phytochem Anal 13:162–169

    Article  CAS  PubMed  Google Scholar 

  • Capuzzo A, Maffei ME, Occhipinti A (2013) Supercritical fluid extraction of plant flavors and fragrances. Molecules 18:7194–7238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemat F, Tomao V, Virot M (2008) In: Otles S (ed) Handbook of food analysis instruments. Ultrasound-assisted extraction in food analysis. CRC Press, pp 85–94

    Google Scholar 

  • Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipurura B, Muchuweti M (2010) Effect of irradiation and high pressure processing technologies on the bioactive compounds and antioxidant capacities of vegetables. Asian J Clin Nutr 2:190–199

    Article  CAS  Google Scholar 

  • Chiremba C, Rooney L, Beta T (2012) Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. J Agric Food Chem 60:4735–4742

    Article  CAS  PubMed  Google Scholar 

  • Choi SK, Kim JH, Park YS, Kim YJ, Chang HI (2007) An efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous. J Microbiol Biotechnol 17:847–852

    CAS  PubMed  Google Scholar 

  • Choudhari SM, Ananthanarayan L (2007) Enzyme aided extraction of lycopene from tomato tissues. Food Chem 102:77–81

    Article  CAS  Google Scholar 

  • Chuyen HV, Nguyen MH, Roach PD, Golding JB, Parks SE (2018) Microwave-assisted extraction and ultrasound- assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Sci Nutr 6:189–196

    Article  CAS  PubMed  Google Scholar 

  • Cifa D, Skrt M, Pittia P, Mattia C, Ulrih NP (2018) Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci Nutr 6:1128–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corazza GO, Bilibio D, Zanella O, Nunes AL, Bender JP, Carniel N, Santos PP, Priamo WL (2018) Pressurized liquid extraction of polyphenols from Goldenberry: influence on antioxidant activity and chemical composition. Food Bioprod Process 112:63–68

    Article  CAS  Google Scholar 

  • Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innova Food Sci Emerg Technol 9:85–91

    Article  CAS  Google Scholar 

  • Cushniea TPT, Cushnie B, Lamb AL (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44:377–386

    Article  CAS  Google Scholar 

  • Delsart C, Ghidossi R, Poupot C, Cholet C, Grimi N, Vorobiev E, Milisic V, Peuchot MM (2012) Enhanced extraction of phenolic compounds from merlot grapes by pulsed electric field treatment. Am J Enol Viticul 63:205–211

    Article  CAS  Google Scholar 

  • Desmarchelier C, Borel P (2017) Overview of carotenoid bioavailability determinants: from dietary factors to host genetic variations. Trend Food Sci Technol 69:270–280

    Article  CAS  Google Scholar 

  • Devgun D, Nanda A, Ansari SH (2012) Comparison of conventional and non conventional methods of extraction of heartwood of Pterocarpus marsupium Roxb. Acta Pol Pharma Drug Res 69:475–485

    CAS  Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756

    Article  CAS  Google Scholar 

  • Dranca F, Oroian M (2016) Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason Sonochem 31:637–646

    Article  CAS  PubMed  Google Scholar 

  • Drosou K, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) A comparative study on different extraction techniques to recover redgrape pomace polyphenols from vinification byproducts. Ind Crops Prod 75:141–149

    Article  CAS  Google Scholar 

  • Ehlermann DAE (2002) Microwave processing. In: Henry CJK, Chapman C (eds) The nutrition handbook for food processors. CRC Press, New York, pp 396–406

    Chapter  Google Scholar 

  • Ergen N, Hosbas S, Orhan DD, Aslasn M, Sezik E, Atalay A (2018) Evaluation of the lifespan extension effects of several Turkish medicinal plants in Caenorhabditis elegans.Turk. J Biol 42:163–173

    CAS  Google Scholar 

  • Eskilsson CS, Bjorklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250

    Article  CAS  PubMed  Google Scholar 

  • Espada-Bellido E, Ferreiro-González M, Barbero GF, Carrera C, Palma M, Barroso CG (2018) Alternative extraction method of bioactive compounds from mulberry (Morus nigra L.) pulp using pressurized-liquid extraction. Food Anal Methods 11:2384–2395

    Article  Google Scholar 

  • European Union (2009) European Union Directive (2009/32/EC of the European Parliament and the Council of 23 April 2009 on the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients

    Google Scholar 

  • Fabricant D, Farnsworth N (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farhat A, Ginies C, Romdhane M, Chemat F (2009) Eco-friendly and cleaner process for isolation of essential oil using microwave energy: experimental and theoretical study. J Chromatogr A 1216:5077–5085

    Article  CAS  PubMed  Google Scholar 

  • Ferhat MA, Tigrine-Kordjani N, Chemat S, Meklati BY, Chemat F (2007) Rapid extraction of volatile compounds using a new simultaneous microwave distillation: solvent extraction device. Chromatographia 65:217–222

    Article  CAS  Google Scholar 

  • Fincan M, De Vito F, Dejmek P (2004) Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. J Food Eng 64:381–388

    Article  Google Scholar 

  • Fox M, Esveld D, Boom R (2007) Conceptual design of a mass parallelized PEF microreactor. Trend Food Sci Technol 18:484–491

    Article  CAS  Google Scholar 

  • Ganavinthan A (2013) Introduction to major bioactives present in fruit. In: Skinner M, Hunter D (eds) Bioactives in fruit: health benefits and functional foods. Wiley, New York

    Google Scholar 

  • García-Sarrió MJ, Sanz ML, Sanz J, González-Coloma A, Cristina Soria A (2018) A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids. Electrophoresis (Online). https://doi.org/10.1002/elps.201800115

    Article  CAS  Google Scholar 

  • Ghafoor K, Choi YH, Jeon JY, Jo IH (2009) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and Anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem 57:4988–4994. https://doi.org/10.1021/jf9001439

    Article  CAS  PubMed  Google Scholar 

  • Ghafoor K, Hui T, Choi YH (2011) Optimization of ultrasound-assisted extraction of total anthocyanins from grape peel. J Food Biochem 35:735–746

    Article  CAS  Google Scholar 

  • Ghafoor K, AL-Juhaimi FY, Choi YH (2012) Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds. Plant Foods Human Nutr 67:407–414

    Article  CAS  Google Scholar 

  • Gil-Chavez GJ, Villa JA, Ayala-Zavala F, Heredia JB, Sepulveda D, Yahia EM, Gonz’alez-Aguilar GA (2013) Technologies for extraction and productionof bioactive compounds to be used as nutraceuticals and food ingredients:Anoverview. Compr Rev Food Sci Food Saf 12:5–23

    Article  CAS  Google Scholar 

  • Golmakani MT, Rezaei K (2008) Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem 109:925–930

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Montelongo R, Gloria Lobo M, Gonzalez M (2010) Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chem 119:1030–1039

    Article  CAS  Google Scholar 

  • Goyeneche R, Fanovich A, Rodrigues CR, Scala KD (2018) Supercritical CO2 extraction of bioactive compounds from radish leaves: yield, antioxidant capacity and cytotoxicity. J Supercrit Fluids 135:78–83

    Article  CAS  Google Scholar 

  • Grigonis D, Venskutonis PR, Sivik B, Sandahl M, Eskilsson CS (2005) Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierochloe odorata). J Supercrit Fluids 33:223–233

    Article  CAS  Google Scholar 

  • Guderjan M, Töpfl S, Angersbach A, Knorr D (2005) Impact of pulsed electric field treatment on the recovery and quality of plant oils. J Food Eng 67:281–287

    Article  Google Scholar 

  • Handa SS (2008) An overview of extraction techniques for medicinal and aromatic plants in extraction technologies for medicinal and aromatic plants. In: Handa SS, Khanuja SPS, Longo G, Rakesh DD (eds) Extraction technologies for medicinal and aromatic plants. United Nations Industrial Development Organization and the International Centre for Science and High Technology, Trieste, pp 21–52

    Google Scholar 

  • Harbourne N, Marete E, Jacquier JC, O’Riordan D (2013) Conventional extraction techniques for phytochemicals. In: Tiwari BK, Brunton NP, Brennan CS (eds) Handbook of plant food phytochemicals: sources, stability and extraction, 1st edn. Wiley, Chichester, pp 400–411

    Google Scholar 

  • Hayouni A, Abedrabba M, Bouix M, Hamdi M (2007) The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem 105:1126–1134

    Article  CAS  Google Scholar 

  • Hernández Y, Lobo MG, González M (2009) Factors affecting sample extraction in the liquid chromatographic determination of organic acids in papaya and pineapple. Food Chem 114:734–741

    Article  CAS  Google Scholar 

  • Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes M (ed) Marine bioactive compounds: sources, characterization and applications. Springer, Berlin/Heidelberg, pp 55–98

    Chapter  Google Scholar 

  • Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT (2017) Plant-derived anticancer agents: a green anticancer approach. Asian Pac Trop Biomed 70:1129–1150

    Article  Google Scholar 

  • Ivanovic J, Tadic V, Dimitrijevic S, Stamenic M, Petrovic S, Zizovic I (2014) Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar Bcacanska Bestrna. Ind Crop Prod 53:274–281

    Article  CAS  Google Scholar 

  • Juhaimi FA, Ozcan MM (2018) Effect of cold press and soxhlet extraction systems on fattyacid, tocopherol contents, and phenolic compounds of various grape seed oils. J Food Process Preserv 42:1–8

    Google Scholar 

  • Kantar S, Boussetta N, Lebovka N, Foucart F, Rajha HN, Maroun RG, Louka N, Vorobiev E (2018) Pulsed electric field treatment of citrus fruits: improvement of juice and polyphenols extraction. Innov Food Sci Emerg Technol 46:153–161

    Article  CAS  Google Scholar 

  • Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Methods 2:41–60

    Article  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Hanhong Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11:82–991

    Article  CAS  Google Scholar 

  • Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurized solvent extraction. Phytochem Anal 13:105–113

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Singh S, Singh RS, Shwarz WH (2010) Hydrolysis of citrus peel naringin by recombinant a-L-rhamnosidase from Clostridium stercorarium. J Chem Technol Biotechnol 85:1419–1422

    Article  CAS  Google Scholar 

  • Kumoro C, Hartati I (2015) Microwave assisted extraction of dioscorin from Gadung (Dioscorea hispida Dennst) tuber flour. Procedia Chem 14:47–55

    Article  CAS  Google Scholar 

  • Kurmudle NN, Bankar SB, Bajaj IB, Bule MV, Singhal RS (2011) Enzyme-assisted three phase partitioning: a novel approach for extraction of turmeric oleoresin. Process Biochem 46:423–426

    Article  CAS  Google Scholar 

  • Leong SY, Burritt DJ, Oey I (2016) Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chem 196:833–841

    Article  CAS  PubMed  Google Scholar 

  • Leyva-Jiméneza FJ, Lozano-Sáncheza J, Borrás-Linaresa I, Arráez-Romána DA, Segura-Carreteroa A (2018) Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Res Int 109:213–222

    Article  CAS  Google Scholar 

  • Li B, Smith B, Hossain M (2006) Extraction of phenolics from citrus peels: I. Solvent extraction method. Sep Purif Technol 48:182–188

    Article  CAS  Google Scholar 

  • Li Y, Fabiano-Tixier AS, Chemat F (2014) Essential oils: from conventional to green extraction, SpringerBriefs in green chemistry for sustainability, pp 9–20

    Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479–3485

    Article  Google Scholar 

  • Liu ZW, Zeng XA, Ngadi M (2018) Enhanced extraction of phenolic compounds from onion by pulsed electric field (PEF). J Food Process Preserv (Online). https://doi.org/10.1111/jfpp.13755

    Article  CAS  Google Scholar 

  • Locatelli DA, Nazareno MA, Camargo AB (2017) Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem 220:219–214

    Article  CAS  PubMed  Google Scholar 

  • Lopez N, Puertolas E, Condon S, Alvarez I, Raso J (2008) Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innov Food Sci Emerg Technol 9:477–482

    Article  CAS  Google Scholar 

  • Lu LZ, Zhou YZ, Zhang YQ, Ma YL, Zhou LX, Li L, Zhou ZZ, He TZ (2010) Anthocyanin extracts from purple sweet potato by means of microwave baking and acidified electrolysed water and their antioxidation in vitro. Int J Food Sci Technol 45:1378–1385

    Article  CAS  Google Scholar 

  • Lucchesi ME, Chemat F, Smalja J (2004) Solvent free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydrodistillation. J Chromatogr A 1043:323–327

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Cui J, Zhang H, Duan Y, Zhang D, Cai M, Chen G (2018) Ultrasound assisted extraction of polyphenolic compounds from red sorghum (Sorghum bicolor L.) bran and their biological activities and polyphenolic compositions. Ind Crops Prod 112:296–304

    Article  CAS  Google Scholar 

  • Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Xu RR, Lu Y, Ren DF, Lu J (2018) Composition, antimicrobial and antioxidant activity of supercritical fluid extract of Elsholtzia ciliata. TEOP 21:556–562

    CAS  Google Scholar 

  • Machado AP, Pasquel-Reátegui JL, Barbero GF, Martinez J (2017) Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chem 231:1–10

    Article  CAS  PubMed  Google Scholar 

  • Martínez JM, Delso C, Angulo J, Álvarez I, Raso J (2018) Pulsed electric field-assisted extraction of carotenoids from fresh biomass of Rhodotorula glutinis. Innov Food Sci Emerg Technol 47:421–427

    Article  CAS  Google Scholar 

  • Miron T, Plaza M, Bahrim G, Ibanez E, Herrero M (2010) Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J Chromatogr 1218:4918–4927

    Article  CAS  Google Scholar 

  • Moreira MM, Morais S, Barros AA, Delerue-Matos C, Guido LF (2012) A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Anal Bioanal Chem 403:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Mousavi M, Bimakr M, Ghoreishi SM, Ganjloo A (2018) Supercritical carbon dioxide extraction of bioactive compounds from Feijoa (Feijoa sellowiana) leaves. Nutr Food Sci Res 5:23–31

    Google Scholar 

  • Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18

    Article  CAS  PubMed  Google Scholar 

  • Nagendra PK, Hassan FA, Yang B, Kong KW, Ramanan RN, Azlan A, Ismail A (2011) Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm peels. Food Chem 128:1121–1127

    Article  CAS  Google Scholar 

  • Nipornram S, Tochampa W, Rattanatraiwong P, Singanusong R (2018) Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chem 241:338–345

    Article  CAS  PubMed  Google Scholar 

  • Oosthuizen D, Goosen NJ, Stander MA, Ibrahim AD, Pedavoah MM, Usman GO, Aderinola T (2018) Solvent extraction of polyphenolics from the indigenous African Fruit Ximenia caffra and characterization by LC-HRMS. Antioxidants 7:103

    Article  PubMed Central  CAS  Google Scholar 

  • Özer Z, Kilic T, Çarikçi S, Yilmaz H (2018) Investigation of phenolic compounds and antioxidant activity of Teucrium polium L. decoction and infusion. BAUN Fen Bil Enst Dergisi 20:212–218

    Google Scholar 

  • Pan X, Niu G, Liu H (2003) Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochem Eng J 12:71–77

    Article  Google Scholar 

  • Pasquet V, Cherouvrier JR, Farhat F, Thiery V, Piot JM, Berard JB, Kaas R, Serive B, Patrice T, Cadoret JP (2011) Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochem 46:59–67

    Article  CAS  Google Scholar 

  • Patil Sachin BS, Wakte PS, Shinde DB (2013) Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design. J Adv Res 5:629–635

    Article  Google Scholar 

  • Paz M, Gúllon P, Barroso MF, Carvalho AP, Domingues VF, Gomes AM, Becker H, Longhinotti E, Delerue-Matos C (2015) Brazilian fruit pulps as functional foods and additives: evaluation of bioactive compounds. Food Chem 172:462–468

    Article  CAS  PubMed  Google Scholar 

  • Pereira CG, Meireles M (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioproc Technol 3:340–372

    Article  CAS  Google Scholar 

  • Pereira MG, Hamerski F, Andrade EF, Scheer AP, Corazza ML (2017) Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. J Supercrit Fluid 128:338–348

    Article  CAS  Google Scholar 

  • Pereira DTV, Tarone AG, Cazarin CBB (2019) Pressurized liquid extraction of bioactive compounds from grape marc. J Supercrit Fluids 128:112–120

    Google Scholar 

  • Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez JL, Arráez-Román D, Martínez-Férez A, Segura-Carretero A (2018) Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. J Pharma Biomed Anal 156:313–322

    Article  CAS  Google Scholar 

  • Plaza L, Sanchez-Moreno C, De Ancos B, Elez-Martinez P, Martin-Belloso O, Pilar Cano M (2011) Carotenoid and flavanone content during refrigerated storage of orange juice processed by highpressure, pulsed electric fields and low pasteurization. Lwt-Food Sci Technol 44:834–839

    Article  CAS  Google Scholar 

  • Purev U, Chung MJ, Oh DH (2012) Individual differences on immunostimulatory activity of raw and black garlic extract in human primary immune cells. Immunopharmacol Immunotoxicol 34:651–660

    Article  PubMed  Google Scholar 

  • Puri M, Kaur A, Shwarz WH, Singh S, Kennedy JF (2011) Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. Int J Biol Macromol 48:58–62

    Article  CAS  PubMed  Google Scholar 

  • Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trend Biotechnol 30:37–44

    Article  CAS  Google Scholar 

  • Puttarak P, Panichayupakaranant P (2013) A new method for preparing pentacyclic triterpene rich Centella asiatica extracts. Nat Prod Res 27:684–686

    Article  CAS  PubMed  Google Scholar 

  • Radojkovic M, Moreira MM, Soares C, Barroso MF, Cvetanovic A, Švarc-Gajic J, Morais S, Delerue-Matos C (2018) Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: optimization and characterization of the antioxidant activity and phenolic composition. J Chem Technol Biotechnol 93:1684–1693

    Article  CAS  Google Scholar 

  • Ramos L, Kristenson EM, Brinkman UAT (2002) Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J Chromatogr A 975:3–29

    Article  CAS  PubMed  Google Scholar 

  • Rassem HA, Nour AH, Yunus MR (2016) Techniques for extraction of essential oils from plants: a review. Aust J Basic Appl Sci 10:117–127

    CAS  Google Scholar 

  • Rodendo D, Venturini ME, Luengo E, Arias E (2018) Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innov Food Sci Emerg Technol 45:335–343

    Article  CAS  Google Scholar 

  • Rodríguez-Pérez C, Quirantes-Piné R, Fernández-Gutiérrez A, Segura-Carretero A (2015) Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera lam leaves. Ind Crops Prod 66:246–254

    Article  CAS  Google Scholar 

  • Rodriguez-Rojo S, Visentin A, Maestri D, Cocero M (2012) Assisted extraction of rosemary antioxidants with green solvents. J Food Eng 109:98–103

    Article  CAS  Google Scholar 

  • Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F (2015) Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem 183:235–258

    Article  CAS  PubMed  Google Scholar 

  • Rostagno AM, Palma M, Barroso CG (2003) Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A 1012:119–128

    Article  CAS  PubMed  Google Scholar 

  • Rostagno MA, Palma M, Barraso CG (2004) Pressurized liquid extraction of isoflavones from soybeans. Anal Chim Acta 522:169–177

    Article  CAS  Google Scholar 

  • Sahne F, Mohammadi M, Najafpour GD, Moghadamnia AA (2017) Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): isolation, purification and analysis of curcumin. Ind Crops Prod 95:686–694

    Article  CAS  Google Scholar 

  • Sánchez-Camargo AP, Pleite N, Herrero M, Cifuentes A, Ibanez E, Gilbert-López B (2017) New approaches for the selective extraction of bioactive compounds employing bio-based solvents and pressurized green processes. J Supercrit Fluids 128:112–120

    Article  CAS  Google Scholar 

  • Sapkale GN, Patil SM, Surwase US, Bhatbhage PK (2010) Supertical fluid extraction. Int J Chem Sci 8:729–743

    CAS  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga-Latha L (2011) Extraction, isolation and characterızatıon of bioactive compounds from plants’ extracts. Afr J Tradit Compl Altern Med 8:1–10

    CAS  Google Scholar 

  • Seidel V (2006) Initial and bulk extraction. In: Sarker SD, Latif Z, Gray AI (eds) Natural products isolation methods in molecular biology, vol 864. Springer Science, Totowa, pp 27–46

    Chapter  Google Scholar 

  • Silva RPFF, Rocha-Santos TAP, Duarte AC (2016) Supercritical fluid extraction of bioactive compounds. Trac Trend Analy Chem 76:40–51

    Article  CAS  Google Scholar 

  • Simsek M, Sumnu G, Sahin S (2012) Microwave-assisted extraction of phenolic compounds from sour cherry pomace. Sep Sci Technol 47:1248–1254

    Article  CAS  Google Scholar 

  • Singh J, Jayaprakasha GK, Patil BS (2018) An optimized solvent extraction and characterization of unidentified flavonoid glucuronide derivatives from spinach by UHPLC-HR-QTOF-MS. Talanta 188:763–771

    Article  CAS  PubMed  Google Scholar 

  • Solana M, Boschiero I, Dall’Acqua S, Bertucco A (2015) A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. J Supercrit Fluids 100:201–208

    Article  CAS  Google Scholar 

  • Soquetta MB, Terra LM, Bastos CP (2018) Green technologies for the extraction of bioactive compounds in fruits and vegetables. J Food 16(1):400–412

    CAS  Google Scholar 

  • Sowbhagya HB, Chitra VN (2010) Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit Rev Food Sci Nutr 50:146–161

    Article  CAS  PubMed  Google Scholar 

  • Spigno G, Tramelli L, De-Faveri DM (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 81:200–208

    Article  CAS  Google Scholar 

  • Stevigny C, Rolle L, Valentini N, Zeppa G (2007) Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. J Sci Food Agric 87:2817–2822

    Article  CAS  Google Scholar 

  • Sumere BR, Souza MC, Santos MP, Bezerra RMN, Cunha DT, Martinez J, Rostagno MA (2018) Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochem 48:151–162

    Article  CAS  Google Scholar 

  • Sun T, Ho H (2005) Antioxidant activities of buckwheat extracts. Food Chem 90:743–749

    Article  CAS  Google Scholar 

  • Tatke P, Rajan M (2014) Comparison of conventional and novel extraction techniques for the extraction of scopoletin from Convolvulus pluricaulis. Indian J Pharma Edu Res 48:27–31

    Article  Google Scholar 

  • Teixeira GL, Ghazani SM, Corazza ML, Marangoni AG, Ribani RH (2018) Assessment of subcritical propane, supercritical CO2 and Soxhlet extraction of oil from sapucaia (Lecythis pisonis) nuts. J Supercrit Fluids 133:122–132

    Article  CAS  Google Scholar 

  • Thitiratsakul B, Anprung P (2014) Prebiotic activity score and bioactive compounds in longan (Dimocarpus longan Lour.): influence of pectinase in enzyme-assisted extraction. J Food Sci Technol 51:1947–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari BK, Brunton NP, Brennan CS (2013) Handbook of PlantFood phytochemicals sources, stability and extraction. Wiley-Blackwell, pp 1–510

    Google Scholar 

  • Tiwari BK (2015) Ultrasound: a clean, green extraction technology. Trend Analy Chem 71:100–109

    Article  CAS  Google Scholar 

  • Torres-Ossandón MJ, Vega-Gálvez A, López J, Stucken K, Romero J, Scala K (2018) Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). J Supercrit Fluids 138:215–220

    Article  CAS  Google Scholar 

  • Tripodo G, Ibanez E, Cifuentes A, Gilbert-Lopez B, Fanali C (2018) Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds. Electrophoresis 39:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Turkmen N, Sari F, Velioglu YS (2006) Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem 99:835–841

    Article  CAS  Google Scholar 

  • Upadhyay R, Ramalakshmi K, Mohan J, Rao L (2012) Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem 130:184–188

    Article  CAS  Google Scholar 

  • Uribe E, Delgadillo A, Giovagnoli-Vicuña C, Quispe-Fuentes I, Zura-Bravo L (2015) Extraction techniques for bioactive compounds and antioxidant capacity determination of Chilean Papaya (Vasconcellea pubescens) fruit. J Chem 2015:347532. https://doi.org/10.1155/2015/347532

    Article  CAS  Google Scholar 

  • Vajic UJ, Grujic-Milanovic J, Zivkovic J, Savikin K, Godevac D, Miloradovic Z (2015) Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind Crops Prod 74:912–917

    Article  CAS  Google Scholar 

  • Verma A, Hartonen K, Riekkola MJ (2008) Optimisation of supercritical fluid extraction of indole alkaloids from Catharanthus roseus using experimental design methodology-comparison with other extraction techniques. Phytochem Anal 19:52–63

    Article  CAS  PubMed  Google Scholar 

  • Villanueva-Bermejo D, Zahran F, Troconis D, Villalva M, Reglero G, Fornari T (2017) Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J Supercrit Fluids 120:52–58

    Article  CAS  Google Scholar 

  • Villa-Rodriguez J, Molina-Corral F, Ayala-Zavala J, Olivas G, Gonzalez-Aguilar G (2011) Effect of maturity stage on the content of fatty acids and antioxidant activity of Hass avocado. Food Res Int 44:1231–1237

    Article  CAS  Google Scholar 

  • Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  • Wang T, Jonsdottir R, Kristinsson HG, Hreggvidsson GO, Jonsson JO, Thorkelsson G, Olafsdottir G (2010) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Sci Technol 43:1387–1393

    Article  CAS  Google Scholar 

  • Wijekoon M, Bhat R, Karim AA (2010) Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack) inflorescence. J Food Comps Anal 24:615–619

    Article  CAS  Google Scholar 

  • Wijngaard H, Trifunovic O, Bongers P (2011) Novel extraction techniques for phytochemicals. In: Tiwari BK, Brunton NP, Brennan CS (eds) Handbook of plant food phytochemicals: sources, stability and extraction, First edn. John Wiley & Sons Ltd., pp 412–433

    Google Scholar 

  • Wu Y, Cui SV, Tang C, Gu X (2007) Optimization of extraction process of crude polysaccharides from boatfruited sterculia seeds by response surface methodology. Food Chem 105:1599–1605

    Article  CAS  Google Scholar 

  • Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li BH (2017) Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 217:552–559

    Article  CAS  PubMed  Google Scholar 

  • Xue D, Farid MM (2015) Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus). Innov Food Sci Emerg Technol 29:178–186

    Article  CAS  Google Scholar 

  • Yang Z, Zhai W (2010) Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innov Food Sci Emerg Technol 11:470–476

    Article  CAS  Google Scholar 

  • Yang L, Wang H, Zu YG, Zhao C, Zhang L, Chen X, Zhang Z (2011) Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem Eng J 172:705–712

    Article  CAS  Google Scholar 

  • Yuan G, Wahlqvist ML, He G, Yang M, Li D (2006) Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 15:143–152

    CAS  PubMed  Google Scholar 

  • Zekovic Z, Pintac D, Majkic T, Vidovic S, Mimica-Dukic N, Teslic N, Versari A, Pavlic B (2017) Utilization of sage by-products as raw material for antioxidants recovery-ultrasound versus microwave-assisted extraction. Ind Crops Prod 99:49–59

    Article  CAS  Google Scholar 

  • Zhang HF, Yang XH, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perihan Yolci Omeroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yolci Omeroglu, P., Acoglu, B., Özdal, T., Tamer, C.E., Çopur, Ö.U. (2019). Extraction Techniques for Plant-Based Bio-active Compounds. In: Swamy, M., Akhtar, M. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7205-6_18

Download citation

Publish with us

Policies and ethics