Skip to main content

ALDH2 and Cardiovascular Disease

  • Chapter
  • First Online:
Aldehyde Dehydrogenases

Abstract

Aldehyde dehydrogenase 2 (ALDH2) is a non-cytochrome P450 mitochondrial aldehyde oxidizing enzyme. It is best known for its role in the metabolism of acetaldehyde, a common metabolite from alcohol drinking. More evidences have been accumulated in recent years to indicate a greater role of ALDH2 in the metabolism of other endogenous and exogenous aldehydes, especially lipid peroxidation-derived reactive aldehyde under oxidative stress. Many cardiovascular diseases are associated with oxidative stress and mitochondria dysfunction. Considering that an estimated 560 million East Asians carry a common ALDH2 deficient variant which causes the well-known alcohol flushing syndrome due to acetaldehyde accumulation, the importance of understanding the role of ALDH2 in these diseases should be highlighted. There are several unfavorable cardiovascular conditions that are associated with ALDH2 deficiency. This chapter reviews the function of ALDH2 in various pathological conditions of the heart in relation to aldehyde toxicity. It also highlights the importance and clinical implications of interaction between ALDH2 deficiency and alcohol drinking on cardiovascular disease among the East Asians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldi S, Takano K, Tomita K, Koda K, Chan NY, Marino A, Salazar-Rodriguez M, Thurmond RL, Levi R (2014) Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C epsilon-dependent aldehyde dehydrogenase type-2 activation. J Pharmacol Exp Ther 349:508–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson EJ, Katunga LA, Willis MS (2012) Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 39:179–193

    Article  CAS  PubMed  Google Scholar 

  3. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group (2007) Carcinogenicity of alcoholic beverages. Lancet Oncol 8:292–293

    Article  PubMed  Google Scholar 

  4. Beretta M, Sottler A, Schmidt K, Mayer B, Gorren AC (2008) Partially irreversible inactivation of mitochondrial aldehyde dehydrogenase by nitroglycerin. J Biol Chem 283:30735–30744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhatnagar A (1995) Electrophysiological effects of 4-hydroxynonenal, an aldehydic product of lipid peroxidation, on isolated rat ventricular myocytes. Circ Res 76:293–304

    Article  CAS  PubMed  Google Scholar 

  6. Boden WE, Finn AV, Patel D, Peacock WF, Thadani U, Zimmerman FH (2012) Nitrates as an integral part of optimal medical therapy and cardiac rehabilitation for stable angina: review of current concepts and therapeutics. Clin Cardiol 35:263–271

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brooks PJ, Enoch MA, Goldman D, Li TK, Yokoyama A (2009) The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med 6:e50

    Article  PubMed  Google Scholar 

  8. Budas GR, Disatnik MH, Mochly-Rosen D (2009) Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target? Trends Cardiovasc Med 19:158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321:1493–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D (2014) Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 94:1–34

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen CH, Sun L, Mochly-Rosen D (2010) Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc Res 88:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Z, Stamler JS (2006) Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med 16:259–265

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Zhang J, Stamler JS (2002) Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci U S A 99:8306–8311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Daiber A, Oelze M, Wenzel P, Wickramanayake JM, Schuhmacher S, Jansen T, Lackner KJ, Torzewski M, Munzel T (2009) Nitrate tolerance as a model of vascular dysfunction: roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress. Pharmacol Rep 61:33–48

    Article  CAS  PubMed  Google Scholar 

  15. Doser TA, Turdi S, Thomas DP, Epstein PN, Li SY, Ren J (2009) Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction. Circulation 119:1941–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferreira JC, Boer BN, Grinberg M, Brum PC, Mochly-Rosen D (2012) Protein quality control disruption by PKCbetaII in heart failure; rescue by the selective PKCbetaII inhibitor, betaIIV5-3. PLoS One 7:e33175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferreira JC, Mochly-Rosen D (2012) Nitroglycerin use in myocardial infarction patients. Circ J 76:15–21

    Article  CAS  PubMed  Google Scholar 

  18. Gomes KM, Bechara LR, Lima VM, Ribeiro MA, Campos JC, Dourado PM, Kowaltowski AJ, Mochly-Rosen D, Ferreira JC (2015) Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1. Int J Cardiol 179:129–138

    Article  PubMed  Google Scholar 

  19. Gomes KM, Campos JC, Bechara LR, Queliconi B, Lima VM, Disatnik MH, Magno P, Chen CH, Brum PC, Kowaltowski AJ, Mochly-Rosen D, Ferreira JC (2014) Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res 103:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gong D, Zhang Y, Zhang H, Gu H, Jiang Q, Hu S (2012) Aldehyde dehydrogenase-2 activation during cardioplegic arrest enhances the cardioprotection against myocardial ischemia-reperfusion injury. Cardiovasc Toxicol 12:350–358

    Article  PubMed  Google Scholar 

  21. Gu J, Li L (2014) Reply to: ALDH2 Glu504Lys polymorphism and susceptibility to coronary artery disease and myocardial infarction in East Asians: a meta-analysis. Arch Med Res 45:281

    Article  CAS  PubMed  Google Scholar 

  22. Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123:5371–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han H, Wang H, Yin Z, Jiang H, Fang M, Han J (2013) Association of genetic polymorphisms in ADH and ALDH2 with risk of coronary artery disease and myocardial infarction: a meta-analysis. Gene 526:134–141

    Article  CAS  PubMed  Google Scholar 

  24. Hu YF, Chang YT, Lin YJ, Chang SL, Lo LW, Huang YH, Liu TT, Chen CH, Tuan TC, Chao TF, Chung FP, Liao JN, Te ALD, Huang CF, Chen SA (2017) The roles of alcohol dehydrogenase in patients with atrial fibrillation. Pacing Clin Electrophysiol 40:1446–1453

    Article  PubMed  Google Scholar 

  25. Hung CL, Chang SC, Chang SH, Chi PC, Lai YJ, Wang SW, Wu YJ, Yeh HI, Lin SJ, Chen CH, Mochly-Rosen D, Wang LY, MAGNET Study Investigator (2017) Genetic polymorphisms of alcohol metabolizing enzymes and alcohol consumption are associated with asymptomatic cardiac remodeling and subclinical systolic dysfunction in large community-dwelling Asians. Alcohol Alcohol 52:638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hung CL, Goncalves A, Lai YJ, Lai YH, Sung KT, Lo CI, Liu CC, Kuo JY, Hou CJ, Chao TF, Bulwer BE, Lin SJ, Yeh HI, Lam CS (2016) Light to moderate habitual alcohol consumption is associated with subclinical ventricular and left atrial mechanical dysfunction in an asymptomatic population: dose-response and propensity analysis. J Am Soc Echocardiogr 29:1043–1051. e4

    Article  PubMed  Google Scholar 

  27. Jorgenson E, Thai KK, Hoffmann TJ, Sakoda LC, Kvale MN, Banda Y, Schaefer C, Risch N, Mertens J, Weisner C, Choquet H (2017) Genetic contributors to variation in alcohol consumption vary by race/ethnicity in a large multi-ethnic genome-wide association study. Mol Psychiatry 22:1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D (2018) Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 10:e8166

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kalinowski A, Humphreys K (2016) Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction 111:1293–1298

    Article  PubMed  Google Scholar 

  30. Karliner JS (2009) Lessons from the besotted heart. J Am Coll Cardiol 54:2197–2198

    Article  PubMed  Google Scholar 

  31. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, Tay WT, Chen CH, Zhang Y, Yamamoto K, Katsuya T, Yokota M, Kim YJ, Ong RT, Nabika T, Gu D, Chang LC, Kokubo Y, Huang W, Ohnaka K, Yamori Y, Nakashima E, Jaquish CE, Lee JY, Seielstad M, Isono M, Hixson JE, Chen YT, Miki T, Zhou X, Sugiyama T, Jeon JP, Liu JJ, Takayanagi R, Kim SS, Aung T, Sung YJ, Zhang X, Wong TY, Han BG, Kobayashi S, Ogihara T, Zhu D, Iwai N, Wu JY, Teo YY, Tai ES, Cho YS, He J (2011) Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in East Asians. Nat Genet 43:531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koda K, Salazar-Rodriguez M, Corti F, Chan NY, Estephan R, Silver RB, Mochly-Rosen D, Levi R (2010) Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells. Circulation 122:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, Sheng H, Liu Y, Yu J, Xie Y, Zhao Y, Lu D, Nebert DW, Harrison DC, Huang W, Jin L (2006) Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J Clin Invest 116:506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li YY, Wang H, Wu JJ, Kim HJ, Yang XX, Geng HY, Gong G (2018) ALDH2 gene G487A polymorphism and coronary artery disease: a meta-analysis including 5644 participants. J Cell Mol Med 22:1666–1674

    Article  CAS  PubMed  Google Scholar 

  35. Lu X, Wang L, Lin X, Huang J, Charles Gu C, He M, Shen H, He J, Zhu J, Li H, Hixson JE, Wu T, Dai J, Lu L, Shen C, Chen S, He L, Mo Z, Hao Y, Mo X, Yang X, Li J, Cao J, Chen J, Fan Z, Li Y, Zhao L, Li H, Lu F, Yao C, Yu L, Xu L, Mu J, Wu X, Deng Y, Hu D, Zhang W, Ji X, Guo D, Guo Z, Zhou Z, Yang Z, Wang R, Yang J, Zhou X, Yan W, Sun N, Gao P, Gu D (2015) Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet 24:865–874

    Article  CAS  PubMed  Google Scholar 

  36. Luo HR, Wu GS, Pakstis AJ, Tong L, Oota H, Kidd KK, Zhang YP (2009) Origin and dispersal of atypical aldehyde dehydrogenase ALDH2487Lys. Gene 435:96–103

    Article  CAS  PubMed  Google Scholar 

  37. Luo XJ, Liu B, Ma QL, Peng J (2014) Mitochondrial aldehyde dehydrogenase, a potential drug target for protection of heart and brain from ischemia/reperfusion injury. Curr Drug Targets 15:948–955

    CAS  PubMed  Google Scholar 

  38. Ma H, Guo R, Yu L, Zhang Y, Ren J (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J 32:1025–1038

    Article  CAS  PubMed  Google Scholar 

  39. Ma H, Li J, Gao F, Ren J (2009) Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol: role of protein phosphatase and forkhead transcription factor. J Am Coll Cardiol 54:2187–2196

    Article  CAS  PubMed  Google Scholar 

  40. Ma H, Yu L, Byra EA, Hu N, Kitagawa K, Nakayama KI, Kawamoto T, Ren J (2010) Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 49:322–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackenzie IS, Maki-Petaja KM, Mceniery CM, Bao YP, Wallace SM, Cheriyan J, Monteith S, Brown MJ, Wilkinson IB (2005) Aldehyde dehydrogenase 2 plays a role in the bioactivation of nitroglycerin in humans. Arterioscler Thromb Vasc Biol 25:1891–1895

    Article  CAS  PubMed  Google Scholar 

  42. Mak S, Lehotay DC, Yazdanpanah M, Azevedo ER, Liu PP, Newton GE (2000) Unsaturated aldehydes including 4-OH-nonenal are elevated in patients with congestive heart failure. J Card Fail 6:108–114

    Article  CAS  PubMed  Google Scholar 

  43. Mali VR, Palaniyandi SS (2014) Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 48:251–263

    Article  CAS  PubMed  Google Scholar 

  44. Marino A, Sakamoto T, Robador PA, Tomita K, Levi R (2017) S1P receptor 1-mediated anti-renin-angiotensin system cardioprotection: pivotal role of mast cell aldehyde dehydrogenase type 2. J Pharmacol Exp Ther 362:230–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mayer B, Beretta M (2008) The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles. Br J Pharmacol 155:170–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Menz V, Grimm W, Hoffmann J, Maisch B (1996) Alcohol and rhythm disturbance: the holiday heart syndrome. Herz 21:227–231

    CAS  PubMed  Google Scholar 

  47. Miura T, Nishinaka T, Terada T, Yonezawa K (2017) Vasodilatory effect of nitroglycerin in Japanese subjects with different aldehyde dehydrogenase 2 (ALDH2) genotypes. Chem Biol Interact 276:40–45

    Article  CAS  PubMed  Google Scholar 

  48. Munger TM, Wu LQ, Shen WK (2014) Atrial fibrillation. J Biomed Res 28:1–17

    PubMed  Google Scholar 

  49. Munzel T, Daiber A, Gori T (2011) Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation 123:2132–2144

    Article  PubMed  Google Scholar 

  50. Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S, Yamamoto M, Miyaji K, Saito H, Morita H, Emori T, Matsubara H, Toyokuni S, Ohe T (2002) Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 105:2867–2871

    Article  CAS  PubMed  Google Scholar 

  51. Nakamura K, Miura D, Kusano KF, Fujimoto Y, Sumita-Yoshikawa W, Fuke S, Nishii N, Nagase S, Hata Y, Morita H, Matsubara H, Ohe T, Ito H (2009) 4-hydroxy-2-nonenal induces calcium overload via the generation of reactive oxygen species in isolated rat cardiac myocytes. J Card Fail 15:709–716

    Article  CAS  PubMed  Google Scholar 

  52. Nakano Y, Ochi H, Onohara Y, Sairaku A, Tokuyama T, Matsumura H, Tomomori S, Amioka M, Hironomobe N, Motoda C, Oda N, Chayama K, Chen CH, Gross ER, Mochly-Rosen D, Kihara Y (2016) Genetic variations of aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B are associated with the etiology of atrial fibrillation in Japanese. J Biomed Sci 23:89

    Article  PubMed  PubMed Central  Google Scholar 

  53. Opelt M, Wolkart G, Eroglu E, Waldeck-Weiermair M, Malli R, Graier WF, Kollau A, Fassett JT, Schrammel A, Mayer B, Gorren ACF (2018) Sustained formation of nitroglycerin-derived nitric oxide by aldehyde dehydrogenase-2 in vascular smooth muscle without added reductants: implications for the development of nitrate tolerance. Mol Pharmacol 93:335–343

    Article  CAS  PubMed  Google Scholar 

  54. Pang J, Wang J, Zhang Y, Xu F, Chen Y (2017) Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure—recent insights and perspectives. Biochim Biophys Acta 1863:1933–1941

    Article  CAS  Google Scholar 

  55. Pang JJ, Barton LA, Chen YG, Ren J (2015) Mitochondrial aldehyde dehydrogenase in myocardial ischemia-reperfusion injury: from bench to bedside. Sheng Li Xue Bao 67:535–544

    CAS  PubMed  Google Scholar 

  56. Perez-Miller S, Younus H, Vanam R, Chen CH, Mochly-Rosen D, Hurley TD (2010) Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat Struct Mol Biol 17:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ren J (2007) Acetaldehyde and alcoholic cardiomyopathy: lessons from the ADH and ALDH2 transgenic models. Novartis Found Symp 285:69–76; discussion 76–9, 198–9

    Article  CAS  PubMed  Google Scholar 

  58. Robador PA, Seyedi N, Chan NY, Koda K, Levi R (2012) Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cepsilon. J Pharmacol Exp Ther 343:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roede JR, Jones DP (2010) Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environ Mol Mutagen 51:380–390

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sakata S, Yoshihara T, Arima H, Shiraishi F, Oniki H, Takahashi-Yanaga F, Matsumura K, Sasaguri T (2011) Differential effects of organic nitrates on arterial diameter among healthy Japanese participants with different mitochondrial aldehyde dehydrogenase 2 genotypes: randomised crossover trial. BMJ Open 1:e000133

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shin MJ, Cho Y, Davey Smith G (2017) Alcohol consumption, aldehyde dehydrogenase 2 gene polymorphisms, and cardiovascular health in Korea. Yonsei Med J 58:689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun L, Ferreira JC, Mochly-Rosen D (2011) ALDH2 activator inhibits increased myocardial infarction injury by nitroglycerin tolerance. Sci Transl Med 3:107ra111

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sung YF, Lu CC, Lee JT, Hung YJ, Hu CJ, Jeng JS, Chiou HY, Peng GS (2016) Homozygous ALDH2*2 is an independent risk factor for ischemic stroke in Taiwanese men. Stroke 47:2174–2179

    Article  PubMed  Google Scholar 

  64. Takeuchi F, Yokota M, Yamamoto K, Nakashima E, Katsuya T, Asano H, Isono M, Nabika T, Sugiyama T, Fujioka A, Awata N, Ohnaka K, Nakatochi M, Kitajima H, Rakugi H, Nakamura J, Ohkubo T, Imai Y, Shimamoto K, Yamori Y, Yamaguchi S, Kobayashi S, Takayanagi R, Ogihara T, Kato N (2012) Genome-wide association study of coronary artery disease in the Japanese. Eur J Hum Genet 20:333–340

    Article  CAS  PubMed  Google Scholar 

  65. Tan A, Sun J, Xia N, Qin X, Hu Y, Zhang S, Tao S, Gao Y, Yang X, Zhang H, Kim ST, Peng T, Lin X, Li L, Mo L, Liang Z, Shi D, Huang Z, Huang X, Liu M, Ding Q, Trent JM, Zheng SL, Mo Z, Xu J (2012) A genome-wide association and gene-environment interaction study for serum triglycerides levels in a healthy Chinese male population. Hum Mol Genet 21:1658–1664

    Article  CAS  PubMed  Google Scholar 

  66. Ueta CB, Campos JC, Albuquerque RPE, Lima VM, Disatnik MH, Sanchez AB, Chen CH, Medeiros MHG, Yang W, Mochly-Rosen D, Ferreira JCB (2018) Cardioprotection induced by a brief exposure to acetaldehyde: role of aldehyde dehydrogenase 2. Cardiovasc Res 114(7):1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wenzel P, Muller J, Zurmeyer S, Schuhmacher S, Schulz E, Oelze M, Pautz A, Kawamoto T, Wojnowski L, Kleinert H, Munzel T, Daiber A (2008) ALDH-2 deficiency increases cardiovascular oxidative stress—evidence for indirect antioxidative properties. Biochem Biophys Res Commun 367:137–143

    Article  CAS  PubMed  Google Scholar 

  68. Wenzl MV, Beretta M, Griesberger M, Russwurm M, Koesling D, Schmidt K, Mayer B, Gorren AC (2011) Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation. Mol Pharmacol 80:258–266

    Article  CAS  PubMed  Google Scholar 

  69. Wood AM, Kaptoge S, Butterworth AS, Willeit P, Warnakula S, Bolton T, Paige E, Paul DS, Sweeting M, Burgess S, Bell S, Astle W, Stevens D, Koulman A, Selmer RM, Verschuren WMM, Sato S, Njolstad I, Woodward M, Salomaa V, Nordestgaard BG, Yeap BB, Fletcher A, Melander O, Kuller LH, Balkau B, Marmot M, Koenig W, Casiglia E, Cooper C, Arndt V, Franco OH, Wennberg P, Gallacher J, De La Camara AG, Volzke H, Dahm CC, Dale CE, Bergmann MM, Crespo CJ, Van Der Schouw YT, Kaaks R, Simons LA, Lagiou P, Schoufour JD, Boer JMA, Key TJ, Rodriguez B, Moreno-Iribas C, Davidson KW, Taylor JO, Sacerdote C, Wallace RB, Quiros JR, Tumino R, Blazer DG 2nd, Linneberg A, Daimon M, Panico S, Howard B, Skeie G, Strandberg T, Weiderpass E, Nietert PJ, Psaty BM, Kromhout D, Salamanca-Fernandez E, Kiechl S, Krumholz HM, Grioni S, Palli D, Huerta JM, Price J, Sundstrom J, Arriola L, Arima H, Travis RC, Panagiotakos DB, Karakatsani A, Trichopoulou A, Kuhn T, Grobbee DE, Barrett-Connor E, Van Schoor N, Boeing H, Overvad K, Kauhanen J, Wareham N, Langenberg C, Forouhi N, Wennberg M, Despres JP, Cushman M, Cooper JA, Rodriguez CJ, Sakurai M, Shaw JE, Knuiman M, Voortman T, Meisinger C et al (2018) Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391:1513–1523

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xu F, Sun Y, Shang R, Li M, Cui L, Cui Z, Chen Y (2014) The Glu504Lys polymorphism of aldehyde dehydrogenase 2 contributes to development of coronary artery disease. Tohoku J Exp Med 234:143–150

    Article  CAS  PubMed  Google Scholar 

  71. Yoshida A (1992) Molecular genetics of human aldehyde dehydrogenase. Pharmacogenetics 2:139–147

    Article  CAS  PubMed  Google Scholar 

  72. Yoval-Sanchez B, Rodriguez-Zavala JS (2012) Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol 25:722–729

    Article  CAS  PubMed  Google Scholar 

  73. Yun KE, Chang Y, Yun SC, Davey Smith G, Ryu S, Cho SI, Chung EC, Shin H, Khang YH (2017) Alcohol and coronary artery calcification: an investigation using alcohol flushing as an instrumental variable. Int J Epidemiol 46:950–962

    PubMed  Google Scholar 

  74. Zakhari S (2006) Overview: how is alcohol metabolized by the body? Alcohol Res Health 29:245–254

    PubMed  PubMed Central  Google Scholar 

  75. Zhang LL, Wang YQ, Fu B, Zhao SL, Kui Y (2015) Aldehyde dehydrogenase 2 (ALDH2) polymorphism gene and coronary artery disease risk: a meta-analysis. Genet Mol Res 14:18503–18514

    Article  CAS  PubMed  Google Scholar 

  76. Zhang R, Wang J, Xue M, Xu F, Chen Y (2017a) ALDH2—the genetic polymorphism and enzymatic activity regulation: their epidemiologic and clinical implications. Curr Drug Targets 18:1810–1816

    CAS  PubMed  Google Scholar 

  77. Zhang Y, Ren J (2011) ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther 132:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Y, Wang C, Zhou J, Sun A, Hueckstaedt LK, Ge J, Ren J (2017b) Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochim Biophys Acta 1863:1919–1932

    Article  CAS  Google Scholar 

  79. Zhao J, You L, Wang DW, Cui W (2016) Impacts of common variants in ALDH2 on coronary artery disease patients. Gene 585:104–109

    Article  CAS  PubMed  Google Scholar 

  80. Zhu Y, Zhang D, Zhou D, Li Z, Li Z, Fang L, Yang M, Shan Z, Li H, Chen J, Zhou X, Ye W, Yu S, Li H, Cai L, Liu C, Zhang J, Wang L, Lai Y, Ruan L, Sun Z, Zhang S, Wang H, Liu Y, Xu Y, Ling J, Xu C, Zhang Y, Lv D, Yuan Z, Zhang J, Zhang Y, Shi Y, Lai M (2017) Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: a multi-stage genome-wide association study. J Cell Mol Med 21:1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Che-Hong Chen is supported by R37 MERIT award NIH AAA11147 to Daria Mochly-Rosen, Department of Chemical and Systems Biology, Stanford University, School of Medicine, and Julio C.B. Ferreira is supported by FAPESP 2017/16694-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Mochly-Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, CH., Ferreira, J.C.B., Mochly-Rosen, D. (2019). ALDH2 and Cardiovascular Disease. In: Ren, J., Zhang, Y., Ge, J. (eds) Aldehyde Dehydrogenases. Advances in Experimental Medicine and Biology, vol 1193. Springer, Singapore. https://doi.org/10.1007/978-981-13-6260-6_3

Download citation

Publish with us

Policies and ethics