Skip to main content

Numerical Modeling of Boiling

  • Chapter
  • First Online:
Two-Phase Flow for Automotive and Power Generation Sectors

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The phenomenon of boiling is visible all around us from cooking to power generation, but despite such all around usages many aspects of boiling are still not very well understood as it is a very complex process and occurs over a wide range of system scales. We often rely on empirical correlations when we want to evaluate different parameters connected with boiling phenomena. Along with the development of empirical correlations for engineering applications, considerable advances are there in understanding the fundamentals of the boiling process. Since the process is very complex and multiple thermal and fluid variables are involved, a complete theoretical model for predicting the boiling heat transfer is yet to be developed. Boiling phenomenon is still being intensively studied and is the focus of research activities in numerous institutions across the world. A better understanding of the physics of boiling can be achieved by either detailed measurements or high-resolution numerical simulation. These two approaches are now complementing each other in understanding the physics of boiling more completely. In recent years, numerical modeling has improved considerably thanks to ever-increasing computational power. With advancing computing capabilities and advent of new numerical techniques for two-phase flow, simulations of boiling heat transfer have become feasible. The main two approaches in numerical simulation of boiling are (i) interpenetrating media approach and (ii) single-fluid approach. In addition to this, some newer techniques like the phase field method and the lattice Boltzmann method have to some extent been used for simulating boiling flows. In this review, we look at the different approaches of numerical simulation of boiling currently being used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn HS, Kim MH (2012) A review on critical heat flux enhancement with nanofluids and surface modification. J Heat Transf 134(2):024001:1–13

    Google Scholar 

  • Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse interface methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165

    Article  MathSciNet  Google Scholar 

  • Anglart H, Nylund O (1996) CFD application to prediction of void distribution in two-phase bubbly flows in rod bundles. Nucl Sci Eng 163:81–98

    Article  Google Scholar 

  • Antal SP, Lahey RT Jr, Flaherty JE (1991) Analysis of phase distribution and turbulence in dispersed particle/liquid flows. Chem Eng Commun 174:85–113

    Google Scholar 

  • Ardron KH, Giustini G, Walker SP (2017) Prediction of dynamic contact angles and bubble departure diameters in pool boiling using equilibrium thermodynamics. Int J Heat Mass Transf 114:1274–1294

    Article  Google Scholar 

  • Bartolomei GG, Chanturiya VM (1967) Experimental study of true void fraction when boiling subcooled water in vertical tubes. Therm Eng 14(2):123–128

    Google Scholar 

  • Basu N (2003) Modeling and experiments for wall heat flux partitioning during subcooled flow boiling of water at low pressures. Ph.D. thesis, University of California, Los Angeles

    Google Scholar 

  • Bergles AE (1981a) Two-phase flow and heat transfer, 1756–1981, Heat Transfer Eng 101–114. 2nd edn. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Bergles AE (1981b) Two-phase flow and heat transfer: 1756–1981. Heat Transf Eng 2(3–4):101–114

    Google Scholar 

  • Bergles AE (1988) Fundamentals of boiling and evaporation. In: Kakac S et al (eds) Two phase flow heat exchangers: thermal-hydraulic fundamentals and design. Kluwer, The Netherlands, pp 159–200

    Chapter  Google Scholar 

  • Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335

    Article  MathSciNet  Google Scholar 

  • Cerne G, Petelin S, Iztok T (2001) Coupling of the interface tracking and the two-fluid models for simulation of incompressible two phase flows. J Comput Phys 171:776–804

    Article  Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  • Chen L, Kang Q, Mu Y, He YL, Tao WQ (2014) A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int J Heat Mass Transf 76:210–236

    Article  Google Scholar 

  • Cole R (1967) Bubble frequencies and departure volumes at sub atmospheric pressures. AIChE J 13:779–783

    Article  Google Scholar 

  • Collier JG, Thome JR (2001) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Colombo M, Fairweather M (2016) Accuracy of Eulerian-Eulerian, two-fluid CFD boiling models of subcooled boiling flows. Int J Heat Mass Transf 103:28–44

    Article  Google Scholar 

  • Cooper MG, Lloyd AJP (1969) The microlayer in nucleate pool boiling. Int J Heat Mass Transf 12:895–913

    Article  Google Scholar 

  • Del Valle VHM, Kenning DBR (1985) Subcooled flow boiling at high heat flux. Int J Heat Mass Transf 28:1907–1920

    Article  Google Scholar 

  • Dhir VK (1998) Boiling heat transfer. Annu Rev Fluid Mech 30:365–401

    Article  Google Scholar 

  • Dhir VK (2001) Numerical simulations of pool-boiling heat transfer. AIChE J 47:813–834

    Article  Google Scholar 

  • Dong EK, Dong IY, Dong WJ, Moo HK, Ho S (2015) A review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp Thermal Fluid Sci 66:173–196

    Article  Google Scholar 

  • Drew DA, Lahey RT Jr (1979) Application of general constitutive principles to the derivation of multi-dimensional two-phase flow equation. Int J Multiph Flow 5:243–264

    Article  Google Scholar 

  • Duan X, Phillips B, McKrell T, Buongiorno J (2013) Synchronized high-speed video, infrared thermometry, and particle image velocimetry data for validation of interface-tracking simulations of nucleate boiling phenomena. Exp Heat Transf 26:169–197

    Article  Google Scholar 

  • Esmaeeli A, Tryggvason G (2004) Computations of film boiling. Part I: numerical method. Int J Heat Mass Transf 47:5451–5461

    Article  Google Scholar 

  • Frank X, Funfschilling D, Midoux N, Li H (2006) Bubbles in a viscous liquid: lattice Boltzmann simulation and experimental validation. J Fluid Mech 546:113–122

    Article  Google Scholar 

  • Gong S, Cheng P (2015) Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int J Heat Mass Transf 80:206–216

    Article  Google Scholar 

  • Han C-Y, Griffith P (1965a) The mechanism of heat transfer in nucleate pool boiling—part I: bubble initiation, growth and departure. Int J Heat Mass Transf 8:887–904

    Article  Google Scholar 

  • Han C-Y, Griffith P (1965b) The mechanism of heat transfer in nucleate pool boiling—part II: the heatflux-temperature difference relation. Int J Heat Mass Transf 8:905–914

    Article  Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189

    Article  MathSciNet  Google Scholar 

  • Hewitt GF (1998a) Boiling, part one. In: Handbook of heat transfer, ed: McGraw-Hill

    Google Scholar 

  • Hewitt GF (1998b) Boiling, part two. In: Handbook of heat transfer, ed: McGraw-Hill

    Google Scholar 

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  • Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all speeds. J Comput Phys 14:227–253

    Article  Google Scholar 

  • Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two phase flow, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J 25:843–855

    Article  Google Scholar 

  • Ivey HJ (1967) Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling. Int J Heat Mass Transf 10:1023–1040

    Article  Google Scholar 

  • Jacqmin D (1999) Calculation of two-phase Navier-Stokes flows using phase-field modeling. J Comput Phys 155:96–127

    Article  MathSciNet  Google Scholar 

  • Jakob M, Fritz W (1931) Versuche über den Verdampfungsvorgang. Forsch Geb Ingenieurwes 2:435–447

    Article  Google Scholar 

  • Jung S, Kim H (2014) An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. Int J Heat Mass Transf 73:365–375

    Article  Google Scholar 

  • Jung S, Kim H (2018) Hydrodynamic formation of a microlayer underneath a boiling bubble. Int J Heat Mass Transf 120:1229–1240

    Article  Google Scholar 

  • Kakaç S, Bergles AE, Fernandes EO (1988) Two-phase flow heat exchangers: thermal-hydraulic fundamentals and design. Kluwer, Dordrecht

    Book  Google Scholar 

  • Kern J, Stephan P (2003) Theoretical model for nucleate boiling heat and mass transfer of binary mixtures. ASME J Heat Transf 125:1106–1115

    Article  Google Scholar 

  • Kern J, Stephan P (2004) Evaluation of heat and mass transfer phenomena in nucleate boiling. Int J Heat Fluid Flow 25:140–148

    Article  Google Scholar 

  • Kim H (2011) Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review. Nanoscale Res Lett 6:415–422

    Article  Google Scholar 

  • Klausner JF, Mei R, Bernhard DM, Zeng LZ (1993) Vapor bubble departure in forced convection boiling. Int J Heat Mass Transf 36:651–662

    Article  Google Scholar 

  • Koffman LD, Plesset MS (1983) Experimental observations of the microlayer in vapor bubble growth on a heated solid. J Heat Transf 105:625–632

    Article  Google Scholar 

  • Koncar B, Kljenak I, Mavko B (2004) Modeling of local two-phase flow parameters in upward subcooled flow at low pressure. Int J Heat Mass Transf 47:1499–1513

    Article  Google Scholar 

  • Kurul N, Podowski MZ (1990) Multidimensional effects in forced convection subcooled boiling. In: Proceedings of the 9th international heat transfer conference, Jerusalem, Israel, vol 2. Hemisphere Publishing Corporation, New York, pp 21–26

    Google Scholar 

  • Kutateladze SS (1961) Boiling heat transfer. Int J Heat Mass Transf 4:31–45

    Article  Google Scholar 

  • Li Q, Kang QJ, Francois MM, He YL, Luo KH (2015) Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Int J Heat Mass Transf 85:787–796

    Article  Google Scholar 

  • Liang G, Mudawar I (2018a) Pool boiling critical heat flux (CHF)—part 1: review of mechanisms, models, and correlations. Int J Heat Mass Transf 117:1352–1367

    Article  Google Scholar 

  • Liang G, Mudawar I (2018b) Pool boiling critical heat flux (CHF)—part 2: assessment of models and correlations. Int J Heat Mass Transf 117:1368–1383

    Article  Google Scholar 

  • Lo S (2005) Modeling multiphase flow with an Eulerian approach. VKI lecture series-industrial two-phase flow CFD. von Karman Institute

    Google Scholar 

  • Manglik RM (2006) On the advancements in boiling, two-phase flow heat transfer, and interfacial phenomena. J Heat Transf 128:1237–1241

    Article  Google Scholar 

  • McAdams WH, Kennel WE, Mindon CS, Carl R, Picornel PM, Dew JE (1949) Heat transfer to water with surface boiling. Ind Eng Chem 41:1945–1953

    Article  Google Scholar 

  • McHale JP, Garimella SV (2010) Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int J Multiph Flow 36:249–260

    Article  Google Scholar 

  • Mohamad AA (2011) Lattice Boltzmann method. Springer, London

    Book  Google Scholar 

  • Nandi K, Date AW (2009a) Formulation of fully implicit method for simulation of flows with interfaces using primitive variables. Int J Heat Mass Transf 52:3217–3224

    Article  Google Scholar 

  • Nandi K, Date AW (2009b) Validation of fully implicit method for simulation of flows with interfaces using primitive variables. Int J Heat Mass Transf 52:3225–3234

    Article  Google Scholar 

  • Nishikawa K (1987) Historical developments in the research of boiling heat transfer. JSME Int J Ser III 30(264):897–905

    Google Scholar 

  • Nukiyama S (1934) The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. J JSME 37:367–374

    Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, New York

    Book  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  Google Scholar 

  • Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25:493–500

    Article  MathSciNet  Google Scholar 

  • Plesset MS, Zwick SA (1955) On the dynamics of small vapor bubbles in liquids. J Math Phys 33:308–330

    MathSciNet  MATH  Google Scholar 

  • Prosperetti A (2017) Vapor bubbles. Annu Rev Fluid Mech 49:221–248

    Article  MathSciNet  Google Scholar 

  • Prosperetti A, Plesset MS (1978) Vapour-bubble growth in a superheated liquid. J Fluid Mech 85:349–354

    Article  Google Scholar 

  • Prosperrotti A, Trygvassion G (2007) Computational methods for multiphase flow. Cambridge University Press, New York

    Book  Google Scholar 

  • Ramaswamy C, Joshi Y, Nakayama W, Johnson WB (2002) High-speed visualization of boiling from an enhanced structure. Int J Heat Mass Transf 45:4761–4771

    Article  Google Scholar 

  • Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag Ser 6 34:94–98

    Google Scholar 

  • Sato Y, Niceno B (2015) A depletable micro-layer model for nucleate pool boiling. J Comput Phys 300:20–52

    Article  MathSciNet  Google Scholar 

  • Sato Y, Niceno B (2018) Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux. Int J Heat Mass Transf 125:876–890

    Article  Google Scholar 

  • Schweizer N, Stephan P (2009) Experimental study of bubble behavior and local heat flux in pool boiling under variable gravitational conditions. Multiph Sci Technol 21:329–350

    Article  Google Scholar 

  • Scriven LE (1958) On the dynamics of phase growth. Chem Eng Sci 10:1–13

    Article  Google Scholar 

  • Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815

    Article  Google Scholar 

  • Shojaeian M, Kosar A (2015) Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp Thermal Fluid Sci 63:45–73

    Article  Google Scholar 

  • Son G, Dhir VK (1998) Numerical simulation of film boiling near critical pressures with a level set method. J Heat Transf 120:183–192

    Article  Google Scholar 

  • Son G, Dhir VK, Ramanujapu N (1999) Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. J Heat Transf 121:623–631

    Article  Google Scholar 

  • Sun DL, Tao WQ (2010) A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows. Int J Heat Mass Transf 53:645–655

    Article  Google Scholar 

  • Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162:301–320

    Article  MathSciNet  Google Scholar 

  • Thorncroft GE, Klausner JF, Mei R (1998) An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling. Int J Heat Mass Transf 41:3857–3871

    Article  Google Scholar 

  • Tomar G, Biswas G, Sharma A, Agrawal A (2005) Numerical simulation of bubble growth in film boiling using a coupled level-set and volume-of-fluid method. Phys Fluids 17:112113

    Article  Google Scholar 

  • Tryggvasson G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N (2001) A front tracking method for the computations of multiphase flows. J Comput Phys 169:708–759

    Article  MathSciNet  Google Scholar 

  • Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100:25–37

    Article  Google Scholar 

  • van Stralen S, Cole R (1979) Boiling phenomena, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Wagner E, Sodtke C, Schweizer N, Stephan P (2006) Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements. Heat Mass Transf 42:875–883

    Article  Google Scholar 

  • Welch SWJ, Radichi T (2002) Numerical computation of film boiling including conjugate heat transfer. Numer Heat Transf Part B 42:35–53

    Article  Google Scholar 

  • Welch SWJ, Wilson J (2000) A volume of fluid based method for fluid flows with phase change. J Comput Phys 160:662–682

    Article  Google Scholar 

  • Yeoh GH, Tu JY (2005) A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow. Nucl Eng Des 235:1251–1265

    Article  Google Scholar 

  • Yeoh GH, Tu JY (2010) Computational techniques for multiphase flows. Elsevier, UK

    Google Scholar 

  • Zuber N (1958) On the stability of boiling heat transfer. Trans ASME 80:711–720

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandi, K., Giustini, G. (2019). Numerical Modeling of Boiling. In: Saha, K., Kumar Agarwal, A., Ghosh, K., Som, S. (eds) Two-Phase Flow for Automotive and Power Generation Sectors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3256-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3256-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3255-5

  • Online ISBN: 978-981-13-3256-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics