Skip to main content

Identification of Sphingolipid-binding Motif in G Protein-coupled Receptors

  • Chapter
  • First Online:
Biochemical and Biophysical Roles of Cell Surface Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1112))

Abstract

Sphingolipids correspond to a major class of lipids which serve as indispensable structural components of membranes and play an important role in various cellular functions. They constitute ~10–20% of total membrane lipids and are known to form segregated domains in biological membranes. Sphingolipids have been shown to play a vital role in the function of various G protein-coupled receptors (GPCRs). We report here the presence of sphingolipid-binding motif (SBM) in representative GPCRs such as cholecystokinin, oxytocin and secretin receptors, and subtypes of human serotonin receptors. We previously reported the importance of sphingolipids in the function of the serotonin1A receptor, a representative member of the GPCR superfamily, involved in behavioral, cognitive, and developmental functions. In this work, we show that the serotonin1A receptor contains a putative SBM, corresponding to amino acids 205 to 213. In addition, our analysis shows that SBM is an intrinsic characteristic feature of the serotonin1A receptor and is conserved throughout the course of natural evolution. Our results represent the first report on the presence of SBM in serotonin1A receptors and provide novel insight on the molecular mechanism of GPCR-sphingolipid interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRAC:

Cholesterol recognition/interaction amino acid consensus

GPCR:

G protein-coupled receptor

SBM:

Sphingolipid-binding motif

References

  • Alves ID, Salamon Z, Hruby VJ, Tollin G (2005) Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. Biochemistry 44:9168–9178

    Article  CAS  Google Scholar 

  • Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease-a review. J Lipid Res 49:1157–1175

    Article  CAS  Google Scholar 

  • Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H (2016) Regulation of sphingomyelin metabolism. Pharmacol Rep 68:570–581

    Article  Google Scholar 

  • Björkholm P, Ernst AM, Hacke M, Wieland F, Brügger B, von Heijne G (2014) Identification of novel sphingolipid-binding motifs in mammalian membrane proteins. Biochim Biophys Acta 1838:2066–2070

    Article  Google Scholar 

  • Brown RE (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay A (2014) GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol 2014:143023

    Article  Google Scholar 

  • Chattopadhyay A, Jafurulla M (2012) Role of membrane cholesterol in leishmanial infection. Adv Exp Med Biol 749:201–213

    Article  CAS  Google Scholar 

  • Chattopadhyay A, Paila YD, Shrivastava S, Tiwari S, Singh P, Fantini J (2012) Sphingolipid binding domain in the serotonin1A receptor. Adv Exp Med Biol 749:279–293

    Article  CAS  Google Scholar 

  • Contreras F-X, Ernst AM, Haberkant P, Björkholm P, Lindahl E, Gönen B, Tischer C, Elofsson A, von Heijne G, Thiele C, Pepperkok R, Wieland F, Brügger B (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481:525–529

    Article  CAS  Google Scholar 

  • Cooke RM, Brown AJH, Marshall FH, Mason JS (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20:1355–1364

    Article  CAS  Google Scholar 

  • Fantini J, Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 1788:2345–2361

    Article  CAS  Google Scholar 

  • Fiorino F, Severino B, Magli E, Ciano A, Caliendo G, Santagada V, Frecentese F, Perissutti E (2014) 5-HT1A receptor: an old target as a new attractive tool in drug discovery from central nervous system to cancer. J Med Chem 57:4407–4426

    Article  CAS  Google Scholar 

  • Haleem DJ (2015) 5-HT1A receptor-dependent control of nigrostriatal dopamine neurotransmission in the pharmacotherapy of Parkinson’s disease and schizophrenia. Behav Pharmacol 26:45–58

    Article  CAS  Google Scholar 

  • Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ (2005) Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem 280:2176–2185

    Article  CAS  Google Scholar 

  • Heilker R, Wolff M, Tautermann CS, Bieler M (2009) G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240

    Article  CAS  Google Scholar 

  • Holthuis JCM, Pomorski T, Raggers RJ, Sprong H, van Meer G (2001) The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 81:1689–1723

    Article  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  CAS  Google Scholar 

  • Huber T, Botelho AV, Beyer K, Brown MF (2004) Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J 86:2078–2100

    Article  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  Google Scholar 

  • Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98:541–555

    Article  CAS  Google Scholar 

  • Jafurulla M, Bandari S, Pucadyil TJ, Chattopadhyay A (2017) Sphingolipids modulate the function of human serotonin1A receptors: insights from sphingolipid-deficient cells. Biochim Biophys Acta 1859:598–604

    Article  CAS  Google Scholar 

  • Jafurulla M, Chattopadhyay A (2013) Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem 20:47–55

    Article  CAS  Google Scholar 

  • Jafurulla M, Chattopadhyay A (2015) Sphingolipids in the function of G protein-coupled receptors. Eur J Pharmacol 763:241–246

    Article  CAS  Google Scholar 

  • Jafurulla M, Pucadyil TJ, Chattopadhyay A (2008) Effect of sphingomyelinase treatment on ligand binding activity of human serotonin1A receptors. Biochim Biophys Acta 1778:2022–2025

    Article  CAS  Google Scholar 

  • Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404:569–573

    Article  CAS  Google Scholar 

  • Kalipatnapu S, Chattopadhyay A (2007) Membrane organization and function of the serotonin1A receptor. Cell Mol Neurobiol 27:1097–1116

    Article  CAS  Google Scholar 

  • Kaufman J, DeLorenzo C, Choudhury S, Parsey RV (2016) The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol 26:397–410

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  Google Scholar 

  • Kumar GA, Jafurulla M, Chattopadhyay A (2016) The membrane as the gatekeeper of infection: cholesterol in host-pathogen interaction. Chem Phys Lipids 199:179–185

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Masserini M, Ravasi D (2001) Role of sphingolipids in the biogenesis of membrane domains. Biochim Biophys Acta 1532:149–161

    Article  CAS  Google Scholar 

  • Müller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81:133–178

    Article  Google Scholar 

  • Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466

    Article  CAS  Google Scholar 

  • Paila YD, Ganguly S, Chattopadhyay A (2010) Metabolic depletion of sphingolipids impairs ligand binding and signaling of human serotonin1A receptors. Biochemistry 49:2389–2397

    Article  CAS  Google Scholar 

  • Paila YD, Tiwari S, Chattopadhyay A (2009) Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim Biophys Acta 1788:295–302

    Article  CAS  Google Scholar 

  • Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A (2010) Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 41:314–340

    Article  CAS  Google Scholar 

  • Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A (2016) The ganglioside GM1 interacts with the serotonin1A receptor via the sphingolipid binding domain. Biochim Biophys Acta 1858:2818–2826

    Article  CAS  Google Scholar 

  • Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S (2011) Secondary alterations of sphingolipid metabolism in lysosomal storage diseases. Neurochem Res 36:1654–1668

    Article  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333

    Article  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007) Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol 23:49–53

    Article  CAS  Google Scholar 

  • Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005) The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 25:553–580

    Article  CAS  Google Scholar 

  • Riethmüller J, Riehle A, Grassmé H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147

    Article  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  Google Scholar 

  • Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. J Mol Biol 296:921–936

    Article  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  Google Scholar 

  • Singh P, Chattopadhyay A (2012) Removal of sphingomyelin headgroup inhibits the ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 419:321–325

    Article  CAS  Google Scholar 

  • Singh P, Paila YD, Chattopadhyay A (2012) Role of glycosphingolipids in the function of human serotonin1A receptors. J Neurochem 123:716–724

    Article  CAS  Google Scholar 

  • Sjögren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Acta Physiol 190:47–53

    Article  Google Scholar 

  • Slotte JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52:424–437

    Article  CAS  Google Scholar 

  • Snook CF, Jones JA, Hannun YA (2006) Sphingolipid-binding proteins. Biochim Biophys Acta 1761:927–946

    Article  CAS  Google Scholar 

  • Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY (2007) Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res 95:158–168

    Article  Google Scholar 

  • Tan SKH, Hartung H, Sharp T, Temel Y (2011) Serotonin-dependent depression in Parkinson’s disease: a role for the subthalamic nucleus. Neuropharmacology 61:387–399

    Article  CAS  Google Scholar 

  • van Echten-Deckert G, Herget T (2006) Sphingolipid metabolism in neural cells. Biochim Biophys Acta 1758:1978–1994

    Article  Google Scholar 

  • van Echten-Deckert G, Walter J (2012) Sphingolipids: critical players in Alzheimer’s disease. Prog Lipid Res 51:378–393

    Article  Google Scholar 

  • Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102:391–407

    Article  CAS  Google Scholar 

  • Wirth A, Holst K, Ponimaskin E (2017) How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 151:35–56

    Article  CAS  Google Scholar 

  • Wu G, Lu Z-H, Kulkarni N, Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90:1997–2008

    Article  CAS  Google Scholar 

  • Zeidan YH, Hannun YA (2007) Translational aspects of sphingolipid metabolism. Trends Mol Med 13:327–336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Engineering Research Board (Govt. of India) project (EMR/2016/002294). A.C. gratefully acknowledges J.C. Bose Fellowship from the Department of Science and Technology, Govt. of India. A.C. is an Adjunct Professor of Tata Institute of Fundamental Research (Mumbai), RMIT University (Melbourne, Australia), Indian Institute of Technology (Kanpur), and Indian Institute of Science Education and Research (Mohali). We thank members of the Chattopadhyay laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, S., Jafurulla, M., Tiwari, S., Chattopadhyay, A. (2018). Identification of Sphingolipid-binding Motif in G Protein-coupled Receptors. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_10

Download citation

Publish with us

Policies and ethics