Skip to main content

Metal Accumulation in Estuarine Plants: Investigating the Effect on the Levels of Non-protein Thiols in Roots of Different Salt Marsh Plants

  • Chapter
  • First Online:
Plants Under Metal and Metalloid Stress

Abstract

In natural environment, plants are exposed to constant biotic and abiotic stresses (including exposure to trace metals) which may unbalance their equilibrium. As a result, plants have developed important defense mechanisms as, for instance, the production of low molecular weight thiols such as cysteine (Cys) and reduced glutathione (GSH). Much effort has been put into studying the response of soil plants continuously exposed to metals, in terms of thiols production. However, research on this topic involving salt marsh plants is still relatively scarce. Therefore, more information is needed on the contents of thiol compounds as well as on the factors that influence their production in plants inhabiting estuarine environments. Therefore, the levels of non-protein thiols (NPT) (namely, cysteine (Cys), reduced glutathione (GSH), oxidized glutathione (GSSG)) and total acid-soluble SH compounds (Total Thiols) in roots of several salt marsh plants (Phragmites australis (Cav.) Trin. ex Steud., Juncus maritimus Lam., Triglochin striata Ruiz & Pav. and Halimione portulacoides L. Aelen) collected at two River estuaries subjected to different anthropogenic pressures were determined. A possible relationship between the content of each NPT in root tissues and that of a trace metal accumulated was also assessed. The content of thiolic compounds varied in function of the plant species and the sediment colonized by the plants. T. striata was the marsh plant presenting tendentiously higher contents of GSH and GSSG and containing the highest levels of Total Thiols (in specimens from both estuaries). Significant correlations were found between GSH and Cu concentration and between GSSG and Cd and Pb concentration. Results suggest that GSH plays a prominent role in the protection of salt marsh plants cells against metal toxicity, feature of great relevance for application of these plants in phytoremediation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aksoy AD, Demirezen, Duman F (2005) Bioaccumulation, detection and analyses of heavy metal pollution in sultan marsh and its environment. Water Air Soil Pollut 164:241–255

    Article  CAS  Google Scholar 

  • Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M (2016) Native-invasive plants vs. halophytes in mediterranean salt marshes: stress tolerance mechanisms in two related species. Front Plant Sci 7:473. https://doi.org/10.3389/fpls.2016.00473

  • Almeida CMR, Mucha AP, Vasconcelos MTSD (2004) influence of the sea rush Juncus maritimus on metal concentration & speciation in estuarine sediment colonized by the plant. Environ Sci Technol 38:3112–3118

    Article  CAS  Google Scholar 

  • Almeida CMR, Mucha AP, Vasconcelos MTSD (2006) Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ Pollut 142:151–159

    Article  CAS  Google Scholar 

  • Almeida CMR, Mucha AP, Bordalo AA, Vasconcelos MTSD (2008) Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments. Sci Total Environ 403:188–195

    Article  CAS  Google Scholar 

  • Almeida CMR, Mucha AP, Teresa Vasconcelos MTSD (2011) Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar Coast Shelf Sci 91:243–249

    Article  CAS  Google Scholar 

  • Almeida CMR, Santos F, Ferreira ACF, Gomes CR, Basto MCP, Mucha AP (2017) Constructed wetlands for the removal of metals from livestock wastewater – can the presence of veterinary antibiotics affect removals? Ecotoxicol Environ Saf 137:143–148

    Article  CAS  Google Scholar 

  • Alvarez-Legorreta T, Mendoza-Cozatl D, Moreno-Sanchez R, Gold-Bouchot G (2008) Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex König) in response to cadmium exposure. Aquat Toxicol 86:12–19

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anjum NA, Duarte AC, Pereira E, Ahmad I (2015) Juncus maritimus root biochemical assessment for its mercury stabilization potential in Ria de Aveiro coastal lagoon (Portugal). Environ Sci Pollut Res 22:2231–2238

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen soecies: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Aygun S, Ozdener Y, Aydin B, Demir E, Ustaosman B (2011) Copper effetcs on the antioxidative responses of copper-tolerant Hirschfeldia incana (L.) leaves. Fresenius Environ Bull 20:2050–2058

    CAS  Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64

    Article  CAS  Google Scholar 

  • Ben Ammar W, Mediouni C, Tray B, Ghorbel M, Jemal F (2008) Glutathione and phytochelatin contents in tomato plants exposed to cadmium. Biol Plant 52:314–320

    Article  CAS  Google Scholar 

  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225

    Article  CAS  Google Scholar 

  • Birch G, Taylor S (1999) Source of heavy metals in sediments of the Port Jackson estuary, Australia. Sci Total Environ 227:123–138

    Article  CAS  Google Scholar 

  • Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants. J Biol Chem 280:38803–38813

    Article  CAS  Google Scholar 

  • Boorman LA (2003) Salt marsh review: an overview of coastal saltmarshes, their dynamic and JNCC report sensitivity characteristics for conservation and management. J Rep. Peterborough No. 334

    Google Scholar 

  • Bruns INA, Sutter K, Menge S, Neumann D, Krauss G-J (2001) Cadmium lets increase the glutathione pool in bryophytes. J Plant Physiol 158:79–89

    Article  CAS  Google Scholar 

  • Caçador MI, Vale C, Catarino F (1996) Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the tagus estuary salt marshes, Portugal. Estuar Coast Shelf Sci 42:393–403

    Article  Google Scholar 

  • Chamseddine M, Wided B, Guy H, Marie-Edith C, Fatma J (2009) Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul 57:89–99

    Article  CAS  Google Scholar 

  • Chen KM, Gong HJ, Wang SM, Zhang CL (2007) Antioxidant defense system in Phragmites communis Trin. ecotypes. Biol Plant 51:754–758

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Coelho CA (2005) Caracterização da ictiofauna do Estuário do Rio Cávado, com particular incidência na fase juvenil. Master Thesis. Faculdade de Ciências da Universidade do Porto

    Google Scholar 

  • Costa-Dias S, Sousa R, Antunes C (2010) Ecological quality assessment of the lower Lima Estuary. Mar Pollut Bull 61:234–239

    Article  CAS  Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  Google Scholar 

  • Di Baccio D, Kopriva S, Sebastiani L, Rennenberg H (2005) Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytol 167:73–80

    Article  Google Scholar 

  • Diopan V, Shestivska V, Zitka O, Galiova M, Adam V, Kaiser J, Horna A, Novotny K, Liska M, Havel L, Zehnalek J, Kizek R (2010) Determination of plant thiols by liquid chromatography coupled with coulometric and amperometric detection in lettuce treated by lead(ii) ions. Electroanalysis 22:1248–1259

    Article  CAS  Google Scholar 

  • Duarte B, Caetano M, Almeida PR, Vale C, Caçador MI (2010) Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668

    Article  CAS  Google Scholar 

  • Duarte B, Silva V, Caçador I (2012) Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicol Environ Saf 83:1–7

    Article  CAS  Google Scholar 

  • Duarte B, Santos D, Caçador I (2013) Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker. Funct Plant Biol 40:922–930

    Article  CAS  Google Scholar 

  • Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463

    Article  CAS  Google Scholar 

  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121:66–74

    Article  CAS  Google Scholar 

  • Farzi A, Borghei SM, Vossoughi M (2017) The use of halophytic plants for salt phytoremediation in constructed wetlands. Int J Phytoremediation 19:643–650

    Article  CAS  Google Scholar 

  • Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J Plant Physiol 159:265–271

    Article  CAS  Google Scholar 

  • Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Pollut 123:67–74

    Article  CAS  Google Scholar 

  • França S, Vinagre C, Caçador MI, Cabral HN (2005) Heavy metal concentrations in sediment, benthic invertebrates and fish in three salt marsh areas subjected to different pollution loads in the Tagus Estuary (Portugal). Mar Pollut Bull 50:998–1003

    Article  Google Scholar 

  • Gonçalves EPR, Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1994) Seasonal variations of heavy metals in sediments and aquatic mosses from the Cávado river basin (Portugal). Sci Total Environ 142:143–156

    Article  Google Scholar 

  • Gravato C, Guimarães L, Santos J, Faria M, Alves A, Guilhermino L (2010) Comparative study about the effects of pollution on glass and yellow eels (Anguilla anguilla) from the estuaries of Minho, Lima and Douro Rivers (NW Portugal). Ecotoxicol Environ Saf 73:524–533

    Article  CAS  Google Scholar 

  • Guimarães MA, Santana TA, Silva EV, Zenzen IL, Loureiro ME (2008) Toxicidade e tolerância ao cádmio em plantas. Rev Tróp Ciências Agrár Biol 2:58–68

    Google Scholar 

  • Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  Google Scholar 

  • Hesse H, Nikiforova V, Gakière B, Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot 55:1283–1292

    Article  CAS  Google Scholar 

  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    Article  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  CAS  Google Scholar 

  • Jarosz-Wilkołazka A, Grąz M, Braha B, Menge S, Schlosser D, Krauss G-J (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals 19:39–49

    Article  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  Google Scholar 

  • Ju XH, Tang S, Jia Y, Guo J, Ding Y, Song Z, Zhao Y (2011) Determination and characterization of cysteine, glutathione and phytochelatins (PC2–6) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection. J Chromatogr B 879:1717–1724

    Article  CAS  Google Scholar 

  • Klapheck S (1988) Homoglutathione: isolation, quantification and occurrence in legumes. Physiol Plant 74:727–732

    Article  CAS  Google Scholar 

  • Koprivova A, Meyer AJ, Schween G, Herschbach C, Reski R, Kopriva S (2002) Functional knockout of the adenosine 5′-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation. J Biol Chem 277:32195–32201

    Article  CAS  Google Scholar 

  • Krystofova O, Shestivska V, Galiova M, Novotny K, Kaiser J, Zehnalek J, Babula P, Opatrilova R, Adam V, Kizek R (2009) Sunflower plants as bioindicators of environmental pollution with lead (ii) ions. Sensors 9:5040–5058

    Article  CAS  Google Scholar 

  • Lee SV, Cundy AB (2001) Heavy metal contamination and mixing processes in sediments from the humber estuary, eastern England. Estuar Coast Shelf Sci 53:619–636

    Article  CAS  Google Scholar 

  • Long E, Macdonald D, Smith S, Calder F (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528

    Article  CAS  Google Scholar 

  • MacFarlane GR, Pulkownik A, Burchett MD (2003) Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: biological indication potential. Environ Pollut 123:139–151

    Article  CAS  Google Scholar 

  • Mahmood T (2010) Phytoextraction of heavy metals-the process and scope for remediation of contaminated soils. Soil Environ 29:91–109

    CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2010) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  Google Scholar 

  • Negrin VL, Teixeira B, Godinho RM, Mendes R, Vale C (2017) Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance. Mar Pollut Bull 121:78–84

    Article  CAS  Google Scholar 

  • Newton GL, Fahey RC (1995) Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods Enzymol 251:148–166

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  Google Scholar 

  • Nunes da Silva M, Mucha AP, Rocha AC, Silva C, Carli C, Gomes CR, Almeida CMR (2014) Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuar Coast Shelf Sci 141:78–84

    Article  CAS  Google Scholar 

  • Nunes da Silva M, Mucha AP, Rocha AC, Gomes CR, Almeida CMR (2015) Response of two salt marsh plants to short- and long-term contamination of sediment with cadmium. J Soils Sediments 15:722–731

    Article  CAS  Google Scholar 

  • Padinha C, Santos R, Brown MT (2000) Evaluating environmental contamination in Ria Formosa (Portugal) using stress indexes of Spartina maritima. Mar Environ Res 49:67–78

    Article  CAS  Google Scholar 

  • Påhlsson A-MB (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47:287–319

    Article  Google Scholar 

  • Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16

    Article  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (cav.) trin. ex steudel. Plant Physiol 133:829–837

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador MI (2007a) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146:147–154

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador MI (2007b) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere 69:1655–1661

    Article  CAS  Google Scholar 

  • Rocha ACS, Almeida CMR, Basto MCP, Vasconcelos MTSD (2014a) Antioxidant response of Phragmites australis to Cu and Cd contamination. Ecotoxicol Environ Saf 109:152–160

    Article  CAS  Google Scholar 

  • Rocha ACS, Almeida CMR, Basto MCP, Vasconcelos MTSD (2014b) Phragmites australis response to Cu in terms of low molecular weight organic acids (LMWOAs) exudation: influence of the physiological cycle. Estuar Coast Shelf Sci 146:76–82

    Article  CAS  Google Scholar 

  • Rocha ACS, Almeida CMR, Basto MCP, Vasconcelos MTSD (2015) Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots. J Sea Res 95:180–187

    Article  Google Scholar 

  • Rother M, Krauss GJ, Grass G, Wesenberg D (2006) Sulphate assimilation under Cd2+ stress in Physcomitrella patens-combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29:1801–1811

    Article  CAS  Google Scholar 

  • Schröder P, Fischer C, Debus R, Wenzel A (2003) Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Environ Sci Pollut Res 10:225–234

    Article  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346

    Article  CAS  Google Scholar 

  • Sousa R, Dias S, Antunes C (2007) Subtidal macrobenthic structure in the lower Lima estuary, NW of Iberian Peninsula. Ann Zool Fenn 44:303–313

    Google Scholar 

  • Sousa AI, Caçador MI, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857

    Article  CAS  Google Scholar 

  • Sundby B, Vale C, Caetano M, Luther GW (2003) Redox chemistry in the root zone of a salt marsh sediment in the tagus estuary, Portugal. Aquat Geochem 9:257–271

    Article  CAS  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  Google Scholar 

  • Válega M, Lima AIG, Figueira EMAP, Pereira E, Pardal MA, Duarte AC (2009) Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74:530–536

    Article  Google Scholar 

  • Valiela I, Cole M, McClelland J, Hauxwell J, Cebrian J, Joye S (2000) Role of salt marshes as part of coastal landscapes. In: Weinstein M, Kreeger D (eds) Concepts and controversies in tidal marsh ecology. Springer, Dordrecht, pp 23–36

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocha, A.C.S., Cavenati, S., Vasconcelos, M.T.S.D., Basto, M.C.P., Almeida, C.M.R. (2018). Metal Accumulation in Estuarine Plants: Investigating the Effect on the Levels of Non-protein Thiols in Roots of Different Salt Marsh Plants. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Plants Under Metal and Metalloid Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-2242-6_6

Download citation

Publish with us

Policies and ethics