Skip to main content

Invertase: An Enzyme with Importance in Confectionery Food Industry

  • Chapter
  • First Online:
Enzymes in Food Technology

Abstract

Invertases or β-d-fructofuranosidases are used to hydrolyze sucrose and polysaccharides, which have the same type of β-d-fructofuranosyl bond, to obtain fructose and glucose as final products. These enzymes are also able to perform this reaction in the reverse direction. The resulting mixture of the fructose and glucose is referred as “inverted sugar” because of the inversion of its optical property from the positive rotation to the negative rotation. Invertases are important in the food industry, especially in confectionery, as a catalytic agent in obtaining an artificial sweetener. Thus, it is used for the preparation of formulas that prevent crystallization of certain sweet preparations, employing in the chocolate industry. In some syrup, it is also employed to increase its sweetening properties such as manufacturing of soft caramel fillings. The most common form of this inverted sugar is honey, which is a supersaturated mixture of glucose and fructose. In addition, invertases are able to synthesize fructooligosaccharides through fructotransferase where sucrose is presented in high concentrations. The fructooligosaccharides are associated to improve human health. Invertases are produced by plants, bees, and microorganisms. But, the filamentous fungi belonging to the Aspergillus genus and yeast such as Saccharomyces cerevisiae and Candida utilis are the most prominent organisms used for invertase production. The purpose of this chapter is to compile results of recent advances on invertase including its production, application, and molecular characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta N, Beldarraín A, Rodríguez L, Alonso Y (2000) Characterization of recombinant invertase expressed in methylotrophic yeasts. Biotechnol Appl Biochem 32:179. https://doi.org/10.1042/BA20000064

    Article  CAS  PubMed  Google Scholar 

  • Acuña AF (2016) Química orgánica. Ed. Universidad Estatal a Distancia (EUNED), San José Costa Rica

    Google Scholar 

  • Aguiar TQ, Dinis C, Magalhaes F, Oliveira C, Wiebe MG, Penttila M, Domingues L (2014) Molecular and functional characterization of an invertase secreted by Ashbya gossypii. Mol Biotechnol 56:524–534. https://doi.org/10.1007/s12033-013-9726-9

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317. https://doi.org/10.1007/s00253-014-5732-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albacete A, Cantero-Navarro E, Grobkinsky DK, Arias CL, Balibrea ME, Bru-Martínez R, Fragner L, Ghanem ME, De La Cruz M, Hernández JA, Martínez-Andújar C, van der Graaf ER, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T (2015) Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. J Exp Bot 66:863–878

    Article  PubMed Central  PubMed  Google Scholar 

  • Álvaro-Benito M, Polo A, González B, Fernández-Lobato M, Sanz-Aparicio J (2010) Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding. J Biol Chem 285(18):13930–13941. https://doi.org/10.1074/jbc.M109.095430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andjelković U, Pićurić S, Vujčić Z (2010) Purification and characterisation of Saccharomyces cerevisiae external invertase isoforms. Food Chem 120:799–804

    Article  Google Scholar 

  • Avila-Fernandez A, Galicia-Lagunas N, Rodriguez-Alegria ME, Olvera C, Lopez-Munguia A (2011) Production of functional oligosaccharides through limited acid hydrolysis of agave fructans. Food Chem 129:380–386

    Article  CAS  PubMed  Google Scholar 

  • Balken JAM, Dooren TJGM, Tweel WJJ, Kamphuis J, Meijer EM (1991) Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1F -fructosyltransferase. Appl Microbiol Biotechnol 35:216–221 19

    Article  Google Scholar 

  • Bayramoglu G, Doz T, Ozalp VC, Arica MY (2007) Improvement stability and performance of invertase via immobilization on to salinized and polymer brush grafted magnetic nanoparticles. Food Chem 221:1442–1450

    Article  Google Scholar 

  • Bhalla TC, Thakur N, Thakur N (2017) Invertase of Saccharomyces cerevisiae SAA-612: production, characterization and application in synthesis of fructo- oligosaccharides. LWT Food Sci Technol 77:178–185. https://doi.org/10.1016/j.lwt.2016.11.034.

    Article  Google Scholar 

  • Bhatti HN, Asgher M, Abbas A, Nawaz R, Sheikh MA (2006) Studies on kinetics and thermostability of a novel acid invertase from Fusarium solani. J Agric Food Chem 54:4617–4623

    Article  CAS  PubMed  Google Scholar 

  • Boddy LM, Bergès T, Barreau C, Vainstein MH, Dobson MJ, Ballance DJ, Peberdy JF (1993) Purification and characterization of an Aspergillus niger invertase and its DNA sequence. Curr Genet 24:60–66

    Article  CAS  PubMed  Google Scholar 

  • Bratu MG, Stoica A, Buruleanu L (2008) A study on the behavior of a commercial invertase in different action conditions. Ind Appl Sci Stud Res 9:109–112

    CAS  Google Scholar 

  • Brown AJ (1902) Enzyme action. J Chem Soc 81:373

    Article  CAS  Google Scholar 

  • Cadena PG, Jeronimo RAS, Melo JM, Silva RA, Filho JLL, Pimentel MCB (2009) Covalent immobilization of invertase on polyurethane, plast-film and ferromagnetic dacron. Bioresour Technol 101:1595–1602. https://doi.org/10.1016/j.biortech.2009.10.044

    Article  CAS  PubMed  Google Scholar 

  • Cairns AJ, Ashton JE (1991) The interpretation of in vitro measurements of fructosyl transferase activity: an analysis of patterns of fructosyl transfer by fungal invertase. New Phytol 118:23–34 42

    Article  CAS  Google Scholar 

  • Chaven S (2014) Honey, confectionery and bakery products. In: Food safety management. Elsevier Inc, Waltham, pp 283–300. https://doi.org/10.1016/B978-0-12-381504-0.00011-1

    Chapter  Google Scholar 

  • Chávez FP, Rodriguez L, Díaz J, Delgado JM, Cremata JA (1997) Purification and characterization of an invertase from Candida utilis: comparison with natural and recombinant yeast invertases. J Biotechnol 53:67–74

    Article  PubMed  Google Scholar 

  • Chen Z, Gao K, Su X, Rao P, An X (2015) Genome-wide identification of the invertase gene family in Populus. PLoS One 10(9):e0138540. https://doi.org/10.1371/journal.pone.0138540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang CJ, Lee WC, Sheu DC, Duan KJ (1997) Immobilization of b-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Biotechnol Prog 13:577–582

    Article  CAS  PubMed  Google Scholar 

  • Chien C-S, Lee W-C, Lin T-J (2001) Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzym Microb Technol 29(4–5):252–257. https://doi.org/10.1016/S0141-0229(01)00384-2

    Article  CAS  Google Scholar 

  • Christophe KS, Courtin M, Verjans P, Delcour JA (2009) Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 112:831–837

    Article  Google Scholar 

  • Clarke MA (2003) Syrups. In: Encyclopedia of food sciences and nutrition, 2nd edn, pp 5711–5717. https://doi.org/10.1016/B0-12-227055-X/01175-5

    Chapter  Google Scholar 

  • Dapper TB, Arfelli VC, Henn C, Simões MR, dos Santos MF, Torre CLD, Silva JL d C, Simão R d CG, Kadowaki MK (2016) β-Fructofuranosidase production by Aspergillus versicolor isolated from Atlantic forest and grown on apple pomace. Afr J Microbiol Res 10:938–948. https://doi.org/10.5897/AJMR2016.8038

    Article  Google Scholar 

  • De Rezende ST, Felix CR (1999) Production and characterization of raffinose-hydrolysing and invertase activities of Aspergillus fumigatus. Folia Microbiol 44:191–195

    Article  CAS  Google Scholar 

  • Dinarvand M, Rezaee M, Foroughi M (2017) Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Braz J Microbiol 48(3):427–441. https://doi.org/10.1016/j.bjm.2016.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez A, Nobre C, Rodrigues LR, Peres AM, Torres D, Rocha I, Teixeira J (2012) New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydr Polym 89(4):1174–1179. https://doi.org/10.1016/j.carbpol.2012.03.091

    Article  CAS  PubMed  Google Scholar 

  • Du L, Pang H, Wang Z, Lu J, Wei Y, Huang R (2013) Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH. PLoS One 8:e62306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Echegaray DF, Carvalho JCM, Fernandes ANR, Sato S, Aquarone E, Vitolo M (2000) Fed-batch culture of Saccharomyces cerevisiae in sugar-cane blackstrap molasses: invertase activity of intact cells in ethanol fermentation. Biomass Bioenergy 19:39–50

    Article  CAS  Google Scholar 

  • Eduards WP (2003) Sweets and candies. In: Encyclopedia of food sciences and nutrition, 2nd edn. Academic, San Diego, pp 5703–5710

    Chapter  Google Scholar 

  • Essel KK, Osei YD (2014) Investigation of some kinetic properties of commercial invertase from yeast. Nat Prod Chem Res 2:152. https://doi.org/10.4172/2329-6836.1000152

    Article  CAS  Google Scholar 

  • Farine S, Versluis C, Bonnici P, Heck A, L’Homme C, Puigserver A, Biagini A (2001) Application of high performance anion exchange chromatography to study invertase-catalysed hydrolysis of sucrose and formation of intermediate fructan products. Appl Microbiol Biotechnol 55:55–60

    Article  CAS  PubMed  Google Scholar 

  • Flores-Gallegos AC, Contreras-Esquivel JC, Morlett-Chávez JA, Aguilar CN, Rodríguez-Herrera R (2015) Comparative study of fungal strains for thermostable inulinase production. J Biosci Bioeng 119:421–426. https://doi.org/10.1016/j.jbiosc.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi Y, Mohkam M, Ghasemian A, Rasoul-Amini S (2014) Experimental design of medium optimization for invertase production by Pichia sp. J Food Sci Technol 51:267–275. https://doi.org/10.1007/s13197-011-0494-x

    Article  CAS  PubMed  Google Scholar 

  • Giraldo MA, Gonçalves HB, Furriel R d PM, Jorge JA, Guimarães LHS (2014) Characterization of the co-purified invertase and β-glucosidase of a multifunctional extract from Aspergillus terreus. World J Microbiol Biotechnol 30:1501–1510. https://doi.org/10.1007/s11274-013-1570-3

    Article  CAS  PubMed  Google Scholar 

  • Goosen C, Yuan X-L, Van Munster JM, Ram AFJ, Van Der Maarel MJEC, Dijkhuizen L (2007) Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity. Eukaryot Cell 6:674–681. https://doi.org/10.1128/EC.00361-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guimarães LHS, Terenzi HF, Polizeli M d LT d M, Jorge JA (2007) Production and characterization of a thermostable extracellular β-d-fructofuranosidase produced by Aspergillus ochraceus with agroindustrial residues as carbon sources. Enzym Microb Technol 42:52–57. https://doi.org/10.1016/j.enzmictec.2007.07.021

    Article  CAS  Google Scholar 

  • Guo-Qing T, Lüscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11:177–189

    Article  Google Scholar 

  • Habibullah N, Muhammad-Hamid R, Muhammad-Hussnain S, Farrukh-Azeema, Saima M, Muhammad-Rizwan J, Muhammad-Amjad A, Ijaz R, Muhammad R (2015) Microbial invertases: a review on kinetics, thermodynamics, physiochemical properties. Process Biochem 50(8):1202–1210. https://doi.org/10.1016/j.procbio.2015.04.015

    Article  CAS  Google Scholar 

  • Hidaka H, Hirayama M, Sumi N (1988) A Fructooligosaccharide-producing enzyme. Agric Biol Chem 52(5):1181–1187

    CAS  Google Scholar 

  • Hinkova A, Bubnik Z, Kadlec P (2015) Chemical composition of sugar and confectionery products. In: Keung Cheung PCh (ed) Handbook of food chemistry. Springer, Berlin/Heidelberg. ISBN:978-3-642-41609-5 (Online), 37 p. https://doi.org/10.1007/978-3-642-41609-5_30-1; https://doi.org/10.1007/978-3-642-36605-5

  • Hirabayashi K, Nobuhiro K, Hiroshi T, Sachio H (2016) Production of the functional trisaccharide 1-kestose from cane sugar molasses using Aspergillus japonicus β-fructofuranosidase. Curr Microbiol 74:145–148. https://doi.org/10.1007/s00284-016-1154-1

    Article  CAS  PubMed  Google Scholar 

  • Hirayama M, Sumi N, Hidaka H (1989) Purification and properties of a Fructooligosaccharide-producing β-Fructofuranosidase from Aspergillus niger ATCC 20611. Agric Biol Chem 53:667–673. https://doi.org/10.1080/00021369.1989.10869350

    Article  CAS  Google Scholar 

  • Huang WC, Wang AY, Wang LT, Sung HY (2003) Expression and characterization of sweet potato invertase in Pichia pastoris. J Agric Food Chem 51:1494–1499

    Article  CAS  PubMed  Google Scholar 

  • Huazano-García A, López MG (2018) Enzymatic hydrolysis of agavins to generate branched fructooligosaccharides (a-FOS). Appl Biochem Biotechnol 184(1):25–34. https://doi.org/10.1007/s12010-017-2526-0

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60(5):615–634. https://doi.org/10.1007/s00239-004-0242-1

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Ma Y, Chi Z, Liu GL, Chi ZM (2016) Production, purification, and gene cloning of a β-fructofuranosidase with a high inulin-hydrolyzing activity produced by a novel yeast Aureobasidium sp. P6 isolated from a mangrove ecosystem. Mar Biotechnol 18:500. https://doi.org/10.1007/s10126-016-9712-x

    Article  CAS  Google Scholar 

  • Jimenez-Estrada M, Merino-Aguilar H, Lopez-Fernandez A, Rojano-Vilchis NA, Roman-Ramos R, Alarcon-Aguilar FJ (2011) Chemical characterization and evaluation of the hypoglycemic effect of fructooligosaccharides from Psacalium decompositum. J Complement Integr Med 8. https://doi.org/10.2202/1553-3840.1413

  • Kadowaki MK, Simão R d CG, Da Conceição Silva JL, Osaku CA, Guimaraes LHS (2013) Biotechnological advances in fungal invertases. Fungal enzyme. CRC Press Taylor Francis Group, New York, pp 1–30

    Google Scholar 

  • Khandekar DC, Tapas P, Agarwal A, Bhattacharya PK (2014) Kinetics of sucrose conversion to fructo-oligosaccharides using enzyme (invertase) under free condition. Bioprocess Biosyst Eng 37:2529–2537. https://doi.org/10.1007/s00449-014-1230-5

    Article  CAS  PubMed  Google Scholar 

  • Kingston-Smith A, Walker RP, Pollock CJ (1999) Invertase in leaves: conundrum or control point? J Exp Bot 50:735–743

    CAS  Google Scholar 

  • Kotwal SM, Shankar V (2009) Immobilized invertase. Biotechnol Adv 27(4):311–322. https://doi.org/10.1016/j.biotechadv.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  • Kulshrestha S, Tyagi P, Sindhi V, Sharma K (2013) Invertase and its applications – a brief review. JOPR J Pharm Res 7(9):792–797. https://doi.org/10.1016/j.jopr.2013.07.014

    Article  CAS  Google Scholar 

  • Kurakake M, Hirotsu S, Shibata M, Takenaka Y, Kamioka T, Sakamoto T (2017) Effects of nonionic surfactants on pellet formation and the production of β-fructofuranosidases from Aspergillus oryzae KB. Food Chem 224:139–143. https://doi.org/10.1016/j.foodchem.2016.12.054

    Article  CAS  PubMed  Google Scholar 

  • L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84

    Article  PubMed  Google Scholar 

  • Lafraya A, Sanz-Aparicio J, Polaina J, Marin-Navarro J (2011) Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Appl Environ Microbiol 77:6148–6157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambertz C, Eckert C, Fischer R, Commandeur U (2016) Kluyveromyces lactis as an expression host for enzymes that degrade lignocellulosic biomass. Cellul Chem Technol 50:385–389

    CAS  Google Scholar 

  • Lees R (2012) Sugar confectionery and chocolate manufacture. Springer, London, 363p

    Google Scholar 

  • Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J, Xiao L, Zhang H (2013) Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J 11(9):1080–1091. https://doi.org/10.1111/pbi.12102

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Fang W, Lin L, Lu H-L, Leger RJS (2013) Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS One 8(10):e78118. https://doi.org/10.1371/journal.pone.0078118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linde D, Macias I, Fernández-Arrojo L, Plou FJ, Jiménez A, Fernández-Lobato M (2009) Molecular and biochemical characterization of β-fructofuranosidase from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 75:1065–1073. https://doi.org/10.1128/AEM.02061-08

    Article  CAS  PubMed  Google Scholar 

  • Lisi H, Jiale S, Xiaoqing L, Chang, Shangping C (2014) Cloning and expression of two soluble acid invertase gene isoforms from Rhododendron. JASHS 139(2):123–130

    Google Scholar 

  • Lorenzoni ASG, Aydos LF, Klein MP, Ayub MAZ, Rodrigues RC, Hertz PF (2015) Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: comparison between in fluidized and packed bed reactors. J Mol Catal B Enzym 111:51–55. https://doi.org/10.1016/j.molcatb.2014.11.002

    Article  CAS  Google Scholar 

  • Madhusudhan MC, Raghavarao KSMS (2014) Aqueous two phase extraction of invertase from baker’s yeast: effect of process parameters on partitioning. Process Biochem 46(10):2014–2020. https://doi.org/10.1016/j.procbio.2011.07.014

    Article  CAS  Google Scholar 

  • Madrigal (2007) La inulina y derivados como ingredientes claves en alimentos funcionales. Organo Oficial de La Sociedad Latinoamericana de Nutrición 57(2):387–396

    CAS  Google Scholar 

  • Maiorano AE, Piccoli RM, Da Silva ES, De Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30(11):1867–1877. https://doi.org/10.1007/s10529-008-9793-3

    Article  CAS  PubMed  Google Scholar 

  • Manley D (2000) Technology of biscuits, crackers and cookies, 3rd edn. Woodhead Publishing Limited, Sawston, 528p

    Google Scholar 

  • Marquez LDS, Cabral BV, Freitas FF, Cardoso VL, Ribeiro EJ (2008) Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis. J Mol Catal B Enzyme 51:86–92

    Article  CAS  Google Scholar 

  • Menéndez C, Martínez D, Trujillo LE, Mazola Y, González E, Pérez ER, Hernández L (2013) Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Appl Microbiol Biotechnol 97:1201–1212. https://doi.org/10.1007/s00253-012-4270-2

    Article  CAS  PubMed  Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  • Mishra SS, Ray RC, Rosell CM, Panda D (2017) Microbial enzymes in food applications. In: Microbial enzyme technology in food applications. CRC Press, Boca Raton, pp 3–18

    Google Scholar 

  • Mohandesi N, Ranaei-Siadat SO, Haghbeen K, Hesampour A (2016) Cloning and expression of Saccharomyces cerevisiae SUC2 gene in yeast platform and characterization of recombinant enzyme biochemical properties. 3 Biotech 6:129. https://doi.org/10.1007/s13205-016-0441-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68(3):587–597. https://doi.org/10.1016/j.carbpol.2006.12.011

    Article  CAS  Google Scholar 

  • Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA (2009) Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydr Res 344(6):795–800. https://doi.org/10.1016/j.carres.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI, Prata MB, Rodrigues LR, Teixeira JA (2012) Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. Eur Food Res Technol 235(1):13–22. https://doi.org/10.1007/s00217-012-1728-5

    Article  CAS  Google Scholar 

  • Mussatto SI, Ballesteros LF, Martins S, Maltos AF, Aguilar CN, Teixeira JA (2013) Maximization of Fructooligosaccharides and β-Fructofuranosidase production by Aspergillus japonicus under solid-state fermentation conditions. Food Bioprocess Technol 6(8):2128–2134. https://doi.org/10.1007/s11947-012-0873-y

    Article  CAS  Google Scholar 

  • Nadeau J (2016) Introduction to experimental biophysics: biological methods for physical scientific. CRC Press, Boca Raton, 764p

    Book  Google Scholar 

  • Nadeem H, Rashid MH, Riaz M, Asma B, Javed MR, Perveen R (2009) Invertase from hyper producer strain of Aspergillus niger: physiochemical properties, thermodynamics and active site residues heat of ionization. Protein Pept Lett 16:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Nadeem H, Rashid MH, Siddique MH, Azeem F, Muzammil S, Javed MR, Ali MA, Rasul I, Riaz M (2015) Microbial invertases: a review on kinetics, thermodynamics, physiochemical properties. Process Biochem 50:1202–1210. https://doi.org/10.1016/j.procbio.2015.04.015

    Article  CAS  Google Scholar 

  • Nelson J, Bloomfield G (1924) The hydrolysis of concentrated sugar solutions by invertase. J Am Chem Soc 48:1025

    Article  Google Scholar 

  • Nelson JM, Larson HW (1927) Kinetics of invertase action. J Biol Chem 73:223

    CAS  Google Scholar 

  • Neumann NP, Lampen JO (1967) Purification and properties of yeast invertase. Biochemistry 6(2):468–475

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QD, Rezessy-Szabó JM, Bhat MK, Hoschke Á (2005) Purification and some properties of β-fructofuranosidase from Aspergillus niger IMI303386. Process Biochem 40:2461–2466. https://doi.org/10.1016/j.procbio.2004.09.012

    Article  CAS  Google Scholar 

  • Pek HB, Klement M, Ang KS, Chung BKS, Ow DSW, Lee DY (2015) Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli. Enzym Microb Technol 75-76:57–63. https://doi.org/10.1016/j.enzmictec.2015.04.008

    Article  CAS  Google Scholar 

  • Pérez JA, Rodríguez J, Rodríguez L, Ruiz T (1996) Cloning and sequence analysis of the invertase gene INV 1 from the yeast Pichia anomala. Curr Genet 29(3):234–240

    Article  PubMed  Google Scholar 

  • Pessoni RAB, Braga MR, Figueiredo-Ribeiro R d CL (2007) Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources. Mycologia 99:493–503. https://doi.org/10.1080/15572536.2007.11832543

    Article  CAS  PubMed  Google Scholar 

  • Pessoni RAB, Tersarotto CC, Mateus CAP, Zerlin JK, Simões K, de Cássia L, Figueiredo-Ribeiro R, Braga MR (2015) Fructose affecting morphology and inducing β-fructofuranosidases in Penicillium janczewskii. Springerplus 4:487. https://doi.org/10.1186/s40064-015-1298-7

  • Plascencia-Espinosa M, Santiago-Hernández A, Pavón-Orozco P, Vallejo-Becerra V, Trejo-Estrada S, Sosa-Peinado A, Benitez-Cardoza CG, Hidalgo-Lara ME (2014) Effect of deglycosylation on the properties of thermophilic invertase purified from the yeast Candida guilliermondii MpIIIa. Process Biochem 49:1480–1487. https://doi.org/10.1016/j.procbio.2014.05.022

    Article  CAS  Google Scholar 

  • Reddy PP, Reddy GSN, Sulochana MB (2010) Highly thermostable β-fructofuranosidase from Aspergillus niger PSSF21 and its application in the synthesis of fructooligosaccharides from agro industrial residue. Asian J Biotechnol 2:86–96. https://doi.org/10.3923/ajbkr.2010.86.98

    Article  CAS  Google Scholar 

  • Robledo-Olivo A (2004) Effect of concentration of sucrose and glucose-sucrose on the fungal invertase production by submerged culture. Degree thesis, University of Coahuila

    Google Scholar 

  • Roitsch T, Balibrea M, Hofmann M, Proels R, Sinha K (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    Article  CAS  PubMed  Google Scholar 

  • Rubio MC, Maldonado MC (1995) Purification and characterization of invertase from Aspergillus niger. Curr Microbiol 31:80–83. https://doi.org/10.1007/BF00294280

    Article  CAS  Google Scholar 

  • Safarika I, Sabatkova Z, Safarikova M (2009) Invert sugar formation with Saccharomyces cerevisiae cells encapsulated in magnetically responsive alginate microparticles. J Magn Magn Mater 321:1478–1481

    Article  Google Scholar 

  • Sakamoto T, Masuda D, Nishimura K, Ikeshita Y (2013) Relationship between invertase gene expression and sucrose concentration in the tuberous roots of sweet potato (Ipomoea batatas L. Lam.) during cold storage. J Hortic Sci Biotechnol 89(2):229–235. https://doi.org/10.1080/14620316.2014.11513073

    Article  Google Scholar 

  • Sánchez OF, Rodriguez AM, Silva E, Caicedo LA (2008) Sucrose biotransformation to fructooligosaccharides by Aspergillus sp. N74 free cells. Food Bioprocess Technol 3(5):662–673. https://doi.org/10.1007/s11947-008-0121-7

    Article  CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2004a) Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochem 39(6):755–760. https://doi.org/10.1016/S0032-9592(03)00186-9

    Article  CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2004b) Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol 65(5):530–537. https://doi.org/10.1007/s00253-004-1618-2

    Article  CAS  PubMed  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    Article  CAS  Google Scholar 

  • Seker DC, Zain NAM (2014) Response surface optimization of glucose production from liquid pineapple waste using immobilized invertase in PVA-alginate-sulfate beads. Sep Purif Technol 133:48–54. https://doi.org/10.1016/j.seppur.2014.06.018

    Article  CAS  Google Scholar 

  • Shankar T, Thangamathi P, Rama R, Sivakumar T (2013) Optimization of invertase production using Saccharomyces Cerevisiae MK under varying cultural conditions. Int J Biochem Biophys 1:47–56. https://doi.org/10.13189/ijbb.2013.010301

    Article  CAS  Google Scholar 

  • Sikander A (2007) Kinetics of invertase production by Saccharomyces cerevisiae in batch culture. Pak J Bot 39:907–912

    Google Scholar 

  • Sivakumar T, Ravikumar M, Prakash M, Shanmugaraju V (2013) Production of extracellular invertase from Saccharomyces cerevisiae strain isolated from grapes. Int J Curr Res Acad Rev 1:72–83

    CAS  Google Scholar 

  • Somiari RI, Brzeski H, Tate R, Bieleck S, Polak J (1997) Cloning and sequencing of an Aspergillus niger gene coding for β-fructofuranosidase. Biotechnol Lett 19(12):1243–1247

    Article  CAS  Google Scholar 

  • Taskin M, Ortucu S, Unver Y, Canli O (2016) Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Saf Environ Protect Instit Chem Eng 103:136–143. https://doi.org/10.1016/j.psep.2016.07.006

    Article  CAS  Google Scholar 

  • Tereshchenko AG (2015) Deliquescence: hygroscopicity of water-soluble crystalline solids. J Pharm Sci 104(11):3639–3652. https://doi.org/10.1002/jps.24589

    Article  CAS  PubMed  Google Scholar 

  • The Sugar Association (2016) Sugar’s functional roles in cooking & food preparation

    Google Scholar 

  • Tomotani EJ, Vitolo M (2007) Production of high-fructose syrup using immobilized invertase in a membrane reactor. J Food Eng 80(2:662–667. https://doi.org/10.1016/j.jfoodeng.2006.07.002

    Article  CAS  Google Scholar 

  • Tripathi P, Chandra R, Singh P, Singh SK (2015) Cloning and expression of invertase gene from invertase producing bacteria to non-producing bacteria. Int J Adv Res Bio-Technol 3(1):1–5

    Google Scholar 

  • Trollope KM, Görgens J-F, Volschenk H (2015) Semirational directed evolution of loop regions in Aspergillus japonicus -fructofuranosidase for improved fructooligosaccharide production. Appl Environ Microbiol 81:7319–7329. https://doi.org/10.1128/AEM.02134-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschopp JF, Sverlow G, Kosson R, Craig W, Grinna L (1987) High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris. Nat Biotechnol 5:1305–1308. https://doi.org/10.1038/nbt1287-1305

    Article  CAS  Google Scholar 

  • Uma C, Kumar KC (2010) Purification and characterization of invertase from Aspergillus fumigatus and Penicillium brevicompactum. Biosci Biotechnol Res Asia 7:347–352

    CAS  Google Scholar 

  • Uma C, Gomathi D, Muthulakshmi C, Gopalakrishnan VK (2010) Production, purification and characterization of invertase by Aspergillus flavus using fruit peel waste as substrate. Adv Biol Res (Rennes) 4:31–36

    CAS  Google Scholar 

  • Uma C, Gomathi D, Ravikumar G, Kalaiselvi M, Palaniswamy M (2012) Production and properties of invertase from a Cladosporium cladosporioides in SmF using pomegranate peel waste as substrate. Asian Pac J Trop Biomed 2:S605–S611

    Article  Google Scholar 

  • Upadhyay LSB, Verma N (2014) Highly efficient production of inverted syrup in an analytical column with immobilized invertase. J Food Sci Technol 51:4120–4125. https://doi.org/10.1007/s13197-013-0957-3

    Article  CAS  PubMed  Google Scholar 

  • Uzun K, Çevik E, Şenel M, Sözeri H, Baykal A, Abasıyanık MF, Toprak MS (2010) Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. J Nanopart Res 12:3057–3067. https://doi.org/10.1007/s11051-010-9902-9

    Article  CAS  Google Scholar 

  • Van der Nest MA, Steenkamp ET, McTaggart AR, Trollip C, Godlonton T, Sauerman E, Roodt D, Naidoo K, Coetzee MPA, Wilken PM, Wingfield MJ, Wingfield BD (2015) Saprophytic and pathogenic fungi in the Ceratocystidaceae differ in their ability to metabolize plant-derived sucrose. BMC Evol Biol 15:273. https://doi.org/10.1186/s12862-015-0550-7

  • Vargas LHM, Pião ACS, Domingos RN, Carmona EC (2004) Ultrasound effects on invertase from Aspergillus niger. World J Microbiol Biotechnol 20:137–142

    Article  CAS  Google Scholar 

  • Veana F, Fuentes-Garibay JA, Aguilar CN, Rodríguez-Herrera R, Guerrero-Olazarán M, Viader-Salvadó JM (2014a) Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris. Enzym Microb Technol 63:28–33. https://doi.org/10.1016/j.enzmictec.2014.05.001 ISSN:0141-0229

    Article  CAS  Google Scholar 

  • Veana F, Rodríguez-Reyna DG, Aréchiga-Carvajal ET, Aguilar CN, Rodríguez-Herrera R (2014b) Isolation of a putative invertase gene from the xerophilic Aspergillus niger GH1 strain. Mycopathologia 12:77–82

    Google Scholar 

  • Veana-Hernandez F, Aguilar CN, Rodríguez-Herrera R (2011) Kinetic studies of invertase production by xerophilic Aspergillus and Penicillium strains under submerged culture. Micología Aplicada International 23(2):37–45

    Google Scholar 

  • Voet D, Voet JG (2006) Bioquímica, 3rd edn. Editorial Médica Panamericana, Buenos Aires, 1700p

    Google Scholar 

  • Wade LG Jr (2004) Organic chemistry, 5th edn. Pearson Prentice Hall, Madrid, 1262p

    Google Scholar 

  • Waifalkar PP, Parit SB, Chougale AD, Sahoo SC, Patil PS, Patil PB (2016) Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation. J Colloid Interface Sci 482:159–164. https://doi.org/10.1016/j.jcis.2016.07.082

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Rakshit SK (1999) Improved extracellular transferase enzyme production by Aspergillus foetidus for synthesis of isooligosaccharides. Bioprocess Eng 20(5):429–434

    Google Scholar 

  • Wang LT, Wang AY, Hsieh CW, Chen CY, Sung HY (2005) Vacuolar invertases in sweet potato: molecular cloning, characterization and analysis of gene expression. J Agric Food Chem 53:3672–3678

    Article  CAS  PubMed  Google Scholar 

  • Wolf B (2016) Confectionery and sugar-based foods. In: Reference module in food science. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-100596-5.03452-1 ISBN:978-0-08-100596-5

    Chapter  Google Scholar 

  • Xie Y, Zhou H, Liu C, Zhang J, Li N, Zhao Z, Sun G, Zhong Y (2017) A molasses habitat-derived fungus Aspergillus tubingensis XG21 with high β-fructofuranosidase activity and its potential use for fructooligosaccharides production. AMB Express 7:128. https://doi.org/10.1186/s13568-017-0428-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang D, Lu L, Jin L, Liu J, Song D, Guo Z, Xiao M, Wang XL, Lu D, Liu JL (2014) Purification, cloning, characterization, and N-glycosylation analysis of a novel β-fructosidase from Aspergillus oryzae FS4 synthesizing levan-and neolevan-type fructooligosaccharides. PLoS One 9:e114793. https://doi.org/10.1371/journal.pone.0114793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang BY, Montgomery R (2007) Alkaline degradation of invert sugar from molasses. Bioresour Technol 98:3084–3089. https://doi.org/10.1016/j.biortech.2006.10.033

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Xiao-Hui W, Meng-Ting G, Rui-Mei L, Jiao L, Xin-Wen H, Jian-Chun G (2014) Cloning, 3D modeling and expression analysis of three vacuolar invertase genes from cassava (Manihot Esculenta Crantz). Molecules 19:6228–6245. https://doi.org/10.3390/molecules19056228

    Article  CAS  Google Scholar 

  • Zain NAM, Suardi SM, Idris A (2010) Hydrolysis of liquid pineapple waste by invertase immobilized in PVA–alginate matrix. Biochem Eng J 50:83–89. https://doi.org/10.1016/j.bej.2010.02.009

    Article  CAS  Google Scholar 

  • Zhang YL, Zhang AH, Jiang J (2013) Gene expression patterns of invertase gene families and modulation of the inhibitor gene in tomato sucrose metabolism. Genet Mol Res 12(3):3412–3420

    CAS  PubMed  Google Scholar 

  • Zhou J, He L, Gao Y, Han N, Zhang R, Wu Q, Li J, Tang X, Xu B, Ding J, Huang Z (2016) Characterization of a novel low temperature-active, alkaline and sucrose-tolerant invertase. Sci Rep 6:32081. https://doi.org/10.1038/srep32081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AMGM and MMM want to thank the National Council of Science and Technology (CONACyT), Mexico, for the financial support for their postgraduate studies in Science and Technology at the Universidad Autonoma de Coahuila. This study was financially supported by the Secretariat of Public Education (SPE) through the project UACOAH-PTC-382.

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Rodríguez-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veana, F. et al. (2018). Invertase: An Enzyme with Importance in Confectionery Food Industry. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_10

Download citation

Publish with us

Policies and ethics