Skip to main content

Sarcopenia in Liver Disease: Current Evidence and Issues to Be sResolved

  • Chapter
  • First Online:
Book cover Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Sarcopenia is a common clinical symptom in aging and patients with wasting diseases, characterized by a decreased skeletal muscle mass. As a consequence of lifestyle change, the nonalcoholic fatty liver disease (NAFLD) presents a rising trend. In the past three decades, increasing evidence has proved that sarcopenia is related to NAFLD. In this chapter, we will summarize the emerging evidence of the predictive role of sarcopenia in NAFLD and review the diagnosis value, feasible mechanism, and therapy strategies of sarcopenia in NAFLD. Sarcopenia is a potential risk factor for NAFLD, and targeting sarcopenia can benefit NAFLD to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. Journal of bone metabolism 20(1):1–10. https://doi.org/10.11005/jbm.2013.20.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsekoura M, Kastrinis A, Katsoulaki M, Billis E, Gliatis J (2017) Sarcopenia and its impact on quality of life. Adv Exp Med Biol 987:213–218. https://doi.org/10.1007/978-3-319-57379-3_19

    Article  PubMed  Google Scholar 

  3. Afilalo J (2016) Conceptual models of frailty: the sarcopenia phenotype. Can J Cardiol 32(9):1051–1055. https://doi.org/10.1016/j.cjca.2016.05.017

    Article  PubMed  Google Scholar 

  4. Aguiar R, Sequeira J, Meirinhos T, Ambrosio C, Barcelos A (2014) SARCOSPA – sarcopenia in spondyloarthritis patients. Acta Reumatol Port 39(4):322–326

    CAS  PubMed  Google Scholar 

  5. Poggiogalle E, Lubrano C, Sergi G, Coin A, Gnessi L, Mariani S, Lenzi A, Donini LM (2016) Sarcopenic obesity and metabolic syndrome in adult Caucasian subjects. J Nutr Health Aging 20(9):958–963. https://doi.org/10.1007/s12603-015-0638-1

    Article  CAS  PubMed  Google Scholar 

  6. Chung JH, Hwang HJ, Shin HY, Han CH (2016) Association between Sarcopenic obesity and bone mineral density in middle-aged and elderly Korean. Ann Nutr Metab 68(2):77–84. https://doi.org/10.1159/000442004

    Article  CAS  PubMed  Google Scholar 

  7. Baracos V, Kazemi-Bajestani SM (2013) Clinical outcomes related to muscle mass in humans with cancer and catabolic illnesses. Int J Biochem Cell Biol 45(10):2302–2308. https://doi.org/10.1016/j.biocel.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  8. Holecek M (2012) Muscle wasting in animal models of severe illness. Int J Exp Pathol 93(3):157–171. https://doi.org/10.1111/j.1365-2613.2012.00812.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung JY, Kang HT, Lee DC, Lee HR, Lee YJ (2013) Body composition and its association with cardiometabolic risk factors in the elderly: a focus on sarcopenic obesity. Arch Gerontol Geriatr 56(1):270–278. https://doi.org/10.1016/j.archger.2012.09.007

    Article  PubMed  Google Scholar 

  10. Seo JA, Cho H, Eun CR, Yoo HJ, Kim SG, Choi KM, Baik SH, Choi DS, Park MH, Han C, Kim NH (2012) Association between visceral obesity and sarcopenia and vitamin D deficiency in older Koreans: the Ansan geriatric study. J Am Geriatr Soc 60(4):700–706. https://doi.org/10.1111/j.1532-5415.2012.03887.x

    Article  PubMed  Google Scholar 

  11. Lim S, Kim JH, Yoon JW, Kang SM, Choi SH, Park YJ, Kim KW, Lim JY, Park KS, Jang HC (2010) Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean longitudinal study on health and aging (KLoSHA). Diabetes Care 33(7):1652–1654. https://doi.org/10.2337/dc10-0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim TN, Yang SJ, Yoo HJ, Lim KI, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2009) Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes (2005) 33(8):885–892. https://doi.org/10.1038/ijo.2009.130

    Article  CAS  Google Scholar 

  13. Dasarathy S (2016) Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol 32(3):159–165. https://doi.org/10.1097/MOG.0000000000000261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bjornsson E, Talwalkar J, Treeprasertsuk S, Kamath PS, Takahashi N, Sanderson S, Neuhauser M, Lindor K (2010) Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology (Baltimore, Md) 51(6):2040–2048. https://doi.org/10.1002/hep.23588

    Article  Google Scholar 

  15. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S, Beckerman R (2016) The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology (Baltimore, Md) 64(5):1577–1586. https://doi.org/10.1002/hep.28785

    Article  Google Scholar 

  16. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology (Baltimore, Md) 64(1):73–84. https://doi.org/10.1002/hep.28431

    Article  Google Scholar 

  17. Beier JI, Banales JM (2018) Pyroptosis: an inflammatory link between NAFLD and NASH with potential therapeutic implications. J Hepatol 68:643. https://doi.org/10.1016/j.jhep.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zoli M, Marchesini G, Dondi C, Bianchi GP, Pisi E (1982) Myofibrillar protein catabolic rates in cirrhotic patients with and without muscle wasting. Clin Sci (Lond) 62(6):683–686

    Article  CAS  Google Scholar 

  19. Martin F, Ward K, Slavin G, Levi J, Peters TJ (1985) Alcoholic skeletal myopathy, a clinical and pathological study. Q J Med 55(218):233–251

    CAS  PubMed  Google Scholar 

  20. de Sousa C, Leung NW, Chalmers RA, Peters TJ (1988) Free and total carnitine and acylcarnitine content of plasma, urine, liver and muscle of alcoholics. Clin Sci (London, England : 1979) 75(4):437–440

    Article  Google Scholar 

  21. Weber FL Jr, Macechko PT, Kelson SR, Karajiannis E, Hassan MO (1992) Increased muscle protein catabolism caused by carbon tetrachloride hepatic injury in rats. Gastroenterology 102(5):1700–1706

    Article  CAS  PubMed  Google Scholar 

  22. Gayan-Ramirez G, van de Casteele M, Rollier H, Fevery J, Vanderhoydonc F, Verhoeven G, Decramer M (1998) Biliary cirrhosis induces type IIx/b fiber atrophy in rat diaphragm and skeletal muscle, and decreases IGF-I mRNA in the liver but not in muscle. J Hepatol 29(2):241–249

    Article  CAS  PubMed  Google Scholar 

  23. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA (2002) Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 76(2):473–481

    Article  CAS  PubMed  Google Scholar 

  24. Gowda C, Compher C, Amorosa VK, Lo Re V 3rd (2014) Association between chronic hepatitis C virus infection and low muscle mass in US adults. J Viral Hepat 21(12):938–943. https://doi.org/10.3748/wjg.v20.i25.806110.1111/jvh.12273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong HC, Hwang SY, Choi HY, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2014) Relationship between sarcopenia and nonalcoholic fatty liver disease: the Korean Sarcopenic obesity study. Hepatology (Baltimore, Md) 59(5):1772–1778. https://doi.org/10.1002/hep.26716

    Article  CAS  Google Scholar 

  26. Kim HY, Kim CW, Park CH, Choi JY, Han K, Merchant AT, Park YM (2016) Low skeletal muscle mass is associated with non-alcoholic fatty liver disease in Korean adults: the fifth Korea National Health and nutrition examination survey. Hepatobiliary Pancreat Dis Int: HBPD INT 15(1):39–47

    Article  PubMed  Google Scholar 

  27. Lee YH, Jung KS, Kim SU, Yoon HJ, Yun YJ, Lee BW, Kang ES, Han KH, Lee HC, Cha BS (2015) Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: Nationwide surveys (KNHANES 2008-2011). J Hepatol 63(2):486–493. https://doi.org/10.1016/j.jhep.2015.02.051

    Article  PubMed  Google Scholar 

  28. Lee YH, Kim SU, Song K, Park JY, Kim DY, Ahn SH, Lee BW, Kang ES, Cha BS, Han KH (2016) Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008-2011). Hepatology (Baltimore, Md) 63(3):776–786. https://doi.org/10.1002/hep.28376

    Article  CAS  Google Scholar 

  29. Hashimoto Y, Osaka T, Fukuda T, Tanaka M, Yamazaki M, Fukui M (2016) The relationship between hepatic steatosis and skeletal muscle mass index in men with type 2 diabetes. Endocr J 63(10):877–884. https://doi.org/10.1507/endocrj.EJ16-0124

    Article  PubMed  Google Scholar 

  30. Dasarathy S (2012) Consilience in sarcopenia of cirrhosis. J Cachexia Sarcopenia Muscle 3(4):225–237. https://doi.org/10.1007/s13539-012-0069-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Montano-Loza AJ (2014) Clinical relevance of sarcopenia in patients with cirrhosis. World J Gastroenterol 20(25):8061–8071. https://doi.org/10.1002/lt.2397810.3748/wjg.v20.i25.8061

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kalafateli M, Konstantakis C, Thomopoulos K, Triantos C (2015) Impact of muscle wasting on survival in patients with liver cirrhosis. World J Gastroenterol 21(24):7357–7361. https://doi.org/10.3748/wjg.v21.i24.7357

    Article  PubMed  PubMed Central  Google Scholar 

  33. Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, Sawyer MB (2012) Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 10(2):166–173. https://doi.org/10.1016/j.cgh.2011.08.028

    Article  PubMed  Google Scholar 

  34. Meza-Junco J, Montano-Loza AJ, Baracos VE, Prado CM, Bain VG, Beaumont C, Esfandiari N, Lieffers JR, Sawyer MB (2013) Sarcopenia as a prognostic index of nutritional status in concurrent cirrhosis and hepatocellular carcinoma. J Clin Gastroenterol 47(10):861–870. https://doi.org/10.1097/MCG.0b013e318293a825

    Article  PubMed  Google Scholar 

  35. Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A, Takai K, Shimizu M, Moriwaki H (2015) Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition (Burbank, Los Angeles County, Calif) 31(1):193–199. https://doi.org/10.1016/j.nut.2014.07.005

    Article  Google Scholar 

  36. Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, Esfandiari N, Baracos V, Montano-Loza AJ, Myers RP (2012) Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl 18(10):1209–1216. https://doi.org/10.1002/lt.23495

    Article  PubMed  Google Scholar 

  37. Toshima T, Shirabe K, Kurihara T, Itoh S, Harimoto N, Ikegami T, Yoshizumi T, Kawanaka H, Ikeda T, Maehara Y (2015) Profile of plasma amino acids values as a predictor of sepsis in patients following living donor liver transplantation: special reference to sarcopenia and postoperative early nutrition. Hepatol Res 45(12):1170–1177. https://doi.org/10.1111/hepr.12484

    Article  CAS  PubMed  Google Scholar 

  38. Reisinger KW, van Vugt JL, Tegels JJ, Snijders C, Hulsewe KW, Hoofwijk AG, Stoot JH, Von Meyenfeldt MF, Beets GL, Derikx JP, Poeze M (2015) Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann Surg 261(2):345–352. https://doi.org/10.1097/SLA.0000000000000628

    Article  PubMed  Google Scholar 

  39. Lucero C, Verna EC (2015) The role of sarcopenia and frailty in hepatic encephalopathy management. Clin Liver Dis 19(3):507–528. https://doi.org/10.1016/j.cld.2015.04.003

    Article  PubMed  Google Scholar 

  40. Kalaitzakis E, Olsson R, Henfridsson P, Hugosson I, Bengtsson M, Jalan R, Bjornsson E (2007) Malnutrition and diabetes mellitus are related to hepatic encephalopathy in patients with liver cirrhosis. Liver Int 27(9):1194–1201. https://doi.org/10.1111/j.1478-3231.2007.01562.x

    Article  PubMed  Google Scholar 

  41. Kim HY, Jang JW (2015) Sarcopenia in the prognosis of cirrhosis: going beyond the MELD score. World J Gastroenterol 21(25):7637–7647. https://doi.org/10.3748/wjg.v21.i25.7637

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hara N, Iwasa M, Sugimoto R, Mifuji-Moroka R, Yoshikawa K, Terasaka E, Hattori A, Ishidome M, Kobayashi Y, Hasegawa H, Iwata K, Takei Y (2016) Sarcopenia and Sarcopenic obesity are prognostic factors for overall survival in patients with cirrhosis. Intern Med (Tokyo, Japan) 55(8):863–870. https://doi.org/10.2169/internalmedicine.55.5676

    Article  CAS  Google Scholar 

  43. Bergerson JT, Lee JG, Furlan A, Sourianarayanane A, Fetzer DT, Tevar AD, Landsittel DP, DiMartini AF, Dunn MA (2015) Liver transplantation arrests and reverses muscle wasting. Clin Transpl 29(3):216–221. https://doi.org/10.1111/ctr.12506

    Article  Google Scholar 

  44. Mizuno Y, Ito S, Hattori K, Nagaya M, Inoue T, Nishida Y, Onishi Y, Kamei H, Kurata N, Hasegawa Y, Ogura Y (2016) Changes in muscle strength and six-minute walk distance before and after living donor liver transplantation. Transplant Proc 48(10):3348–3355. https://doi.org/10.1016/j.transproceed.2016.08.042

    Article  CAS  PubMed  Google Scholar 

  45. Montano-Loza AJ (2014) Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transpl 20(11):1424. https://doi.org/10.1002/lt.2395910.1002/lt.23978

    Article  PubMed  Google Scholar 

  46. Carias S, Castellanos AL, Vilchez V, Nair R, Dela Cruz AC, Watkins J, Barrett T, Trushar P, Esser K, Gedaly R (2016) Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J Gastroenterol Hepatol 31(3):628–633. https://doi.org/10.1111/jgh.13166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clark K, Cross T (2014) Sarcopenia and survival after liver transplantation. J Korean Med Sci 20(11):1423. https://doi.org/10.3346/jkms.2014.29.9.125310.1002/lt.23959

    Article  Google Scholar 

  48. Thorn SR, Baquero KC, Newsom SA, El Kasmi KC, Bergman BC, Shulman GI, Grove KL, Friedman JE (2014) Early life exposure to maternal insulin resistance has persistent effects on hepatic NAFLD in juvenile nonhuman primates. Diabetes 63(8):2702–2713. https://doi.org/10.2337/db14-0276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bambha K, Wilson LA, Unalp A, Loomba R, Neuschwander-Tetri BA, Brunt EM, Bass NM, Nonalcoholic Steatohepatitis Clinical Research Network (2014) Coffee consumption in NAFLD patients with lower insulin resistance is associated with lower risk of severe fibrosis. Liver Int 34(8):1250–1258. https://doi.org/10.1111/liv.12379

    Article  CAS  PubMed  Google Scholar 

  50. Chang CY (2011) Understanding the relationship between PNPLA3, NAFLD and insulin resistance: do ethnic differences bring more questions or more answers? Liver Int 31(9):1246–1249. https://doi.org/10.1111/j.1478-3231.2011.02612.x

    Article  CAS  PubMed  Google Scholar 

  51. Bril F, Sninsky JJ, Baca AM, Superko HR, Portillo Sanchez P, Biernacki D, Maximos M, Lomonaco R, Orsak B, Suman A, Weber MH, McPhaul MJ, Cusi K (2016) Hepatic steatosis and insulin resistance, but not steatohepatitis, promote Atherogenic dyslipidemia in NAFLD. J Clin Endocrinol Metab 101(2):644–652. https://doi.org/10.1210/jc.2015-3111

    Article  CAS  PubMed  Google Scholar 

  52. Oh C, Jeon BH, Reid Storm SN, Jho S, No JK (2017) The most effective factors to offset sarcopenia and obesity in the older Korean: physical activity, vitamin D, and protein intake. Nutrition (Burbank, Los Angeles County, Calif) 33:169–173. https://doi.org/10.1016/j.nut.2016.06.004

    Article  CAS  Google Scholar 

  53. Li H, Liu S, Yuan H, Niu Y, Fu L (2017) Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res 354(1):18–24. https://doi.org/10.1016/j.yexcr.2017.03.023

    Article  CAS  PubMed  Google Scholar 

  54. Gastaldelli A, Harrison SA, Belfort-Aguilar R, Hardies LJ, Balas B, Schenker S, Cusi K (2009) Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology (Baltimore, Md) 50(4):1087–1093. https://doi.org/10.1002/hep.23116

    Article  CAS  Google Scholar 

  55. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V, Pagano G, Ferrannini E, Rizzetto M (2005) Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48(4):634–642. https://doi.org/10.1007/s00125-005-1682-x

    Article  CAS  PubMed  Google Scholar 

  56. Kalyani RR, Corriere M, Ferrucci L (2014) Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2(10):819–829. https://doi.org/10.1016/S2213-8587(14)70034-8

    Article  PubMed  PubMed Central  Google Scholar 

  57. Guillet C, Boirie Y (2005) Insulin resistance: a contributing factor to age-related muscle mass loss? Diabetes Metab 31 Spec No 2:5S20–25S26

    Article  CAS  Google Scholar 

  58. Eliades M, Spyrou E, Agrawal N, Lazo M, Brancati FL, Potter JJ, Koteish AA, Clark JM, Guallar E, Hernaez R (2013) Meta-analysis: vitamin D and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 38(3):246–254. https://doi.org/10.1111/apt.12377

    Article  CAS  PubMed  Google Scholar 

  59. Maestro B, Davila N, Carranza MC, Calle C (2003) Identification of a vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 84(2–3):223–230

    Article  CAS  PubMed  Google Scholar 

  60. Abdalla M, Khairy E, Louka ML, Ali-Labib R, Ibrahim EA (2018) Vitamin D receptor gene methylation in hepatocellular carcinoma. Gene 653:65. https://doi.org/10.1016/j.gene.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  61. Del Pinto R, Ferri C, Cominelli F (2017) Vitamin D Axis in inflammatory bowel diseases: role, current uses and future perspectives. Int J Mol Sci 18(11). https://doi.org/10.3390/ijms18112360

    Article  PubMed Central  Google Scholar 

  62. Camperi A, Pin F, Costamagna D, Penna F, Menduina ML, Aversa Z, Zimmers T, Verzaro R, Fittipaldi R, Caretti G, Baccino FM, Muscaritoli M, Costelli P (2017) Vitamin D and VDR in cancer cachexia and muscle regeneration. Oncotarget 8(13):21778–21793. https://doi.org/10.18632/oncotarget.15583

    Article  PubMed  PubMed Central  Google Scholar 

  63. Beauregard ME, Provost S, Pineault R, Grimard D, Perez J, Fournier M (2018) Effects on patients of variations in the implementation of a cardiometabolic risk intervention program in Montreal. Health Promotion Chronic Dis Prev Can Res Pol Pract 38(2):64–77. https://doi.org/10.24095/hpcdp.38.2.03

    Article  Google Scholar 

  64. Jones JC, Coombes JS, Macdonald GA (2012.) Exercise capacity and muscle strength in patients with cirrhosis) Liver Transpl 18(2):146–151. https://doi.org/10.1002/lt.22472

    Article  PubMed  Google Scholar 

  65. Kim TY, Kim MY, Sohn JH, Kim SM, Ryu JA, Lim S, Kim Y (2014) Sarcopenia as a useful predictor for long-term mortality in cirrhotic patients with ascites. J Korean Med Sci 29(9):1253–1259. https://doi.org/10.3346/jkms.2014.29.9.1253

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465. https://doi.org/10.1038/nrendo.2012.49

    Article  CAS  PubMed  Google Scholar 

  67. Miller AM, Wang H, Bertola A, Park O, Horiguchi N, Ki SH, Yin S, Lafdil F, Gao B (2011) Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient mice. Hepatology (Baltimore, Md) 54(3):846–856. https://doi.org/10.1002/hep.24517

    Article  CAS  Google Scholar 

  68. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106(48):20405–20410. https://doi.org/10.1073/pnas.0911570106

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468. https://doi.org/10.1038/nature10777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang HJ, Zhang XF, Ma ZM, Pan LL, Chen Z, Han HW, Han CK, Zhuang XJ, Lu Y, Li XJ, Yang SY, Li XY (2013) Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol 59(3):557–562. https://doi.org/10.1016/j.jhep.2013.04.030

    Article  CAS  PubMed  Google Scholar 

  71. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, Staels B, Kersten S, Muller M (2010) Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology (Baltimore, Md) 51(2):511–522. https://doi.org/10.1002/hep.23337

    Article  CAS  Google Scholar 

  72. Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Veniant MM (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58(1):250–259. https://doi.org/10.2337/db08-0392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Watts R, Ghozlan M, Hughey CC, Johnsen VL, Shearer J, Hittel DS (2014) Myostatin inhibits proliferation and insulin-stimulated glucose uptake in mouse liver cells. Biochemistry and cell biology = Biochimie et biologie cellulaire 92(3):226–234. https://doi.org/10.1139/bcb-2014-0004

    Article  CAS  PubMed  Google Scholar 

  74. Hu SL, Chang AC, Huang CC, Tsai CH, Lin CC, Tang CH (2017) Myostatin promotes interleukin-1beta expression in rheumatoid arthritis synovial fibroblasts through inhibition of miR-21-5p. Front Immunol 8:1747. https://doi.org/10.3389/fimmu.2017.01747

    Article  PubMed  PubMed Central  Google Scholar 

  75. Carvalho LP, Basso-Vanelli RP, Di Thommazo-Luporini L, Mendes RG, Oliveira-Junior MC, Vieira RP, Bonjorno-Junior JC, Oliveira CR, Luporini R, Borghi-Silva A (2017) Myostatin and adipokines: the role of the metabolically unhealthy obese phenotype in muscle function and aerobic capacity in young adults. Cytokine 107:118. https://doi.org/10.1016/j.cyto.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  76. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514. https://doi.org/10.1002/jcp.20757

    Article  CAS  PubMed  Google Scholar 

  77. Astorino TA, Harness ET, Witzke KA (2015) Chronic activity-based therapy does not improve body composition, insulin-like growth factor-I, adiponectin, or myostatin in persons with spinal cord injury. J Spinal Cord Med 38(5):615–625. https://doi.org/10.1179/2045772314Y.0000000236

    Article  PubMed  PubMed Central  Google Scholar 

  78. Suzuki ST, Zhao B, Yang J (2008) Enhanced muscle by myostatin propeptide increases adipose tissue adiponectin, PPAR-alpha, and PPAR-gamma expressions. Biochem Biophys Res Commun 369(2):767–773. https://doi.org/10.1016/j.bbrc.2008.02.092

    Article  CAS  PubMed  Google Scholar 

  79. Wilkes JJ, Lloyd DJ, Gekakis N (2009) Loss-of-function mutation in myostatin reduces tumor necrosis factor alpha production and protects liver against obesity-induced insulin resistance. Diabetes 58(5):1133–1143. https://doi.org/10.2337/db08-0245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N, Yuri Y, Hasegawa K, Nakano C, Nishimura T, Yoh K, Aizawa N, Sakai Y, Ikeda N, Takashima T, Takata R, Iijima H, Nishiguchi S (2017) Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle 8(6):915–925. https://doi.org/10.1002/jcsm.12212

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cabrera D, Ruiz A, Cabello-Verrugio C, Brandan E, Estrada L, Pizarro M, Solis N, Torres J, Barrera F, Arrese M (2016) Diet-induced nonalcoholic fatty liver disease is associated with sarcopenia and decreased serum insulin-like growth Factor-1. Dig Dis Sci 61(11):3190–3198. https://doi.org/10.1007/s10620-016-4285-0

    Article  CAS  PubMed  Google Scholar 

  82. Thandassery RB, Montano-Loza AJ (2016) Role of nutrition and muscle in cirrhosis. Curr Treat Options Gastroenterol 14(2):257–273. https://doi.org/10.1007/s11938-016-0093-z

    Article  PubMed  Google Scholar 

  83. Periyalwar P, Dasarathy S (2012) Malnutrition in cirrhosis: contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis 16(1):95–131. https://doi.org/10.1016/j.cld.2011.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen LK, Lee WJ, Peng LN, Liu LK, Arai H, Akishita M, Asian Working Group for S (2016) Recent advances in sarcopenia research in Asia: 2016 update from the Asian working group for sarcopenia. J Am Med Dir Assoc 17(8):e761–e767. https://doi.org/10.1016/j.jamda.2016.05.016

    Article  Google Scholar 

  85. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc 15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  Google Scholar 

  86. Soysal P, Isik AT (2016) Comment on “cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition”. Clin Nutr (Edinburgh, Scotland) 35(6):1586. https://doi.org/10.1016/j.clnu.2016.09.007

    Article  Google Scholar 

  87. Bahat G, Tufan A, Tufan F, Kilic C, Akpinar TS, Kose M, Erten N, Karan MA, Cruz-Jentoft AJ (2016) Cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition. Clin Nutr (Edinburgh, Scotland) 35(6):1557–1563. https://doi.org/10.1016/j.clnu.2016.02.002

    Article  Google Scholar 

  88. da Silva Alexandre T, de Oliveira Duarte YA, Ferreira Santos JL, Wong R, Lebrao ML (2014) Sarcopenia according to the European working group on sarcopenia in older people (EWGSOP) versus Dynapenia as a risk factor for disability in the elderly. J Nutr Health Aging 18(5):547–553. https://doi.org/10.1007/s12603-013-0424-x

    Article  PubMed  Google Scholar 

  89. Lera L, Albala C, Sanchez H, Angel B, Hormazabal MJ, Marquez C, Arroyo P (2017) Prevalence of sarcopenia in community-dwelling Chilean elders according to an adapted version of the European working group on sarcopenia in older people (EWGSOP) criteria. J Frailty Aging 6(1):12–17. https://doi.org/10.14283/jfa.2016.117

    Article  CAS  PubMed  Google Scholar 

  90. Kim YP, Kim S, Joh JY, Hwang HS (2014) Effect of interaction between dynapenic component of the European working group on sarcopenia in older people sarcopenia criteria and obesity on activities of daily living in the elderly. J Am Med Dir Assoc 15(5):371 e371–371 e375. https://doi.org/10.1016/j.jamda.2013.12.010

    Article  Google Scholar 

  91. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bahat G, Tufan A, Kilic C, Karan MA, Cruz-Jentoft AJ (2017) Methodological issues in determination of low muscle mass reference cut-off values: reply to comment on “cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition”. Clin Nutr (Edinburgh, Scotland) 36(3):903–904. https://doi.org/10.1016/j.clnu.2017.02.023

    Article  Google Scholar 

  93. Giusto M, Lattanzi B, Albanese C, Galtieri A, Farcomeni A, Giannelli V, Lucidi C, Di Martino M, Catalano C, Merli M (2015) Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastroenterol Hepatol 27(3):328–334. https://doi.org/10.1097/meg.0000000000000274

    Article  PubMed  Google Scholar 

  94. Tanimoto Y, Watanabe M, Sun W, Sugiura Y, Hayashida I, Kusabiraki T, Tamaki J (2014) Sarcopenia and falls in community-dwelling elderly subjects in Japan: defining sarcopenia according to criteria of the European working group on sarcopenia in older people. Arch Gerontol Geriatr 59(2):295–299. https://doi.org/10.1016/j.archger.2014.04.016

    Article  PubMed  Google Scholar 

  95. Tandon P, Low G, Mourtzakis M, Zenith L, Myers RP, Abraldes JG, Shaheen AA, Qamar H, Mansoor N, Carbonneau M, Ismond K, Mann S, Alaboudy A, Ma M (2016) A model to identify sarcopenia in patients with cirrhosis. Clin Gastroenterol Hepatol 14 (10):1473–1480.e1473. doi:https://doi.org/10.1016/j.cgh.2016.04.040

    Article  PubMed  Google Scholar 

  96. Hiraoka A, Michitaka K, Ueki H, Kaneto M, Aibiki T, Okudaira T, Kawakami T, Yamago H, Suga Y, Tomida H, Miyamoto Y, Azemoto N, Mori K, Miyata H, Tsubouchi E, Ninomiya T, Hirooka M, Abe M, Matsuura B, Hiasa Y (2016) Sarcopenia and two types of presarcopenia in Japanese patients with chronic liver disease. Eur J Gastroenterol Hepatol 28(8):940–947. https://doi.org/10.1097/MEG.0000000000000661

    Article  PubMed  Google Scholar 

  97. Patel HP, Syddall HE, Jameson K, Robinson S, Denison H, Roberts HC, Edwards M, Dennison E, Cooper C, Aihie Sayer A (2013) Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS). Age Ageing 42(3):378–384. https://doi.org/10.1093/ageing/afs197

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tsien C, Shah SN, McCullough AJ, Dasarathy S (2013) Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol 25(1):85–93. https://doi.org/10.1097/MEG.0b013e328359a759

    Article  PubMed  Google Scholar 

  99. Sinclair M, Gow PJ, Grossmann M, Angus PW (2016) Review article: sarcopenia in cirrhosis–aetiology, implications and potential therapeutic interventions. Aliment Pharmacol Ther 43(7):765–777. https://doi.org/10.1111/apt.13549

    Article  CAS  PubMed  Google Scholar 

  100. Fyfe JJ, Bishop DJ, Stepto NK (2014) Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 44(6):743–762. https://doi.org/10.1007/s40279-014-0162-1

    Article  PubMed  Google Scholar 

  101. Damas F, Phillips S, Vechin FC, Ugrinowitsch C (2015) A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 45(6):801–807. https://doi.org/10.1007/s40279-015-0320-0

    Article  PubMed  Google Scholar 

  102. Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A 103(12):4741–4746. https://doi.org/10.1073/pnas.0600678103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dunn MA, Josbeno DA, Schmotzer AR, Tevar AD, DiMartini AF, Landsittel DP, Delitto A (2016) The gap between clinically assessed physical performance and objective physical activity in liver transplant candidates. Liver Transpl 22(10):1324–1332. https://doi.org/10.1002/lt.24506

    Article  PubMed  Google Scholar 

  104. Nishikawa H, Osaki Y (2015) Liver cirrhosis: evaluation, nutritional status, and prognosis. Mediators Inflamm 2015:872152. https://doi.org/10.1155/2015/872152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McDaniel J, Davuluri G, Hill EA, Moyer M, Runkana A, Prayson R, van Lunteren E, Dasarathy S (2016) Hyperammonemia results in reduced muscle function independent of muscle mass. Am J Physiol Gastrointest Liver Physiol 310(3):G163–G170. https://doi.org/10.1152/ajpgi.00322.2015

    Article  PubMed  Google Scholar 

  106. Amodio P, Bemeur C, Butterworth R, Cordoba J, Kato A, Montagnese S, Uribe M, Vilstrup H, Morgan MY (2013) The nutritional management of hepatic encephalopathy in patients with cirrhosis: international society for hepatic encephalopathy and nitrogen metabolism consensus. Hepatology (Baltimore, Md) 58(1):325–336. https://doi.org/10.1002/hep.26370

    Article  CAS  Google Scholar 

  107. Plauth M, Cabre E, Riggio O, Assis-Camilo M, Pirlich M, Kondrup J, Dgem FP, Holm E, Vom Dahl S, Muller MJ, Nolte W, Espen (2006) ESPEN guidelines on enteral nutrition: liver disease. Clin Nutr (Edinburgh, Scotland) 25(2):285–294. https://doi.org/10.1016/j.clnu.2006.01.018

    Article  CAS  Google Scholar 

  108. Plauth M, Merli M, Kondrup J, Weimann A, Ferenci P, Muller MJ, Group EC (1997) ESPEN guidelines for nutrition in liver disease and transplantation. Clin Nutr (Edinburgh, Scotland) 16(2):43–55

    Article  CAS  Google Scholar 

  109. Dasarathy S, Merli M (2016) Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 65(6):1232–1244. https://doi.org/10.1016/j.jhep.2016.07.040

    Article  PubMed  PubMed Central  Google Scholar 

  110. Toshikuni N, Arisawa T, Tsutsumi M (2014) Nutrition and exercise in the management of liver cirrhosis. World J Gastroenterol 20(23):7286–7297. https://doi.org/10.3748/wjg.v20.i23.7286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Juakiem W, Torres DM, Harrison SA (2014) Nutrition in cirrhosis and chronic liver disease. Clin Liver Dis 18(1):179–190. https://doi.org/10.1016/j.cld.2013.09.004

    Article  PubMed  Google Scholar 

  112. Metcalfe EL, Avenell A, Fraser A (2014) Branched-chain amino acid supplementation in adults with cirrhosis and porto-systemic encephalopathy: systematic review. Clin Nutr (Edinburgh, Scotland) 33(6):958–965. https://doi.org/10.1016/j.clnu.2014.02.011

    Article  CAS  Google Scholar 

  113. Alexander WF, Spindel E, Harty RF, Cerda JJ (1989) The usefulness of branched chain amino acids in patients with acute or chronic hepatic encephalopathy. Am J Gastroenterol 84(2):91–96

    CAS  PubMed  Google Scholar 

  114. Gluud LL, Dam G, Borre M, Les I, Cordoba J, Marchesini G, Aagaard NK, Risum N, Vilstrup H (2013) Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J Nutr 143(8):1263–1268. https://doi.org/10.3945/jn.113.174375

    Article  CAS  PubMed  Google Scholar 

  115. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. https://doi.org/10.1126/science.1157535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945. https://doi.org/10.1038/ncb1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, Schulze JM, Barnes D, McCullough AJ, Engelen MP, Deutz NE, Dasarathy S (2015) Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology (Baltimore, Md) 61(6):2018–2029. https://doi.org/10.1002/hep.27717

    Article  CAS  Google Scholar 

  118. Carroll B, Korolchuk VI, Sarkar S (2015) Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids 47(10):2065–2088. https://doi.org/10.1007/s00726-014-1775-2

    Article  CAS  PubMed  Google Scholar 

  119. Guo F, Cavener DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5(2):103–114. https://doi.org/10.1016/j.cmet.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  120. Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ (2016) Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol 65(5):906–913. https://doi.org/10.1016/j.jhep.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  121. Moller S, Becker U, Gronbaek M, Juul A, Winkler K, Skakkebaek NE (1994) Short-term effect of recombinant human growth hormone in patients with alcoholic cirrhosis. J Hepatol 21(5):710–717

    Article  CAS  PubMed  Google Scholar 

  122. Bucuvalas JC, Cutfield W, Horn J, Sperling MA, Heubi JE, Campaigne B, Chernausek SD (1990) Resistance to the growth-promoting and metabolic effects of growth hormone in children with chronic liver disease. J Pediatr 117(3):397–402

    Article  CAS  PubMed  Google Scholar 

  123. Orr R, Fiatarone Singh M (2004) The anabolic androgenic steroid oxandrolone in the treatment of wasting and catabolic disorders: review of efficacy and safety. Drugs 64(7):725–750

    Article  CAS  PubMed  Google Scholar 

  124. Sinclair M, Grossmann M, Angus PW, Hoermann R, Hey P, Scodellaro T, Gow PJ (2016) Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J Gastroenterol Hepatol 31(3):661–667. https://doi.org/10.1111/jgh.13182

    Article  CAS  PubMed  Google Scholar 

  125. Han HQ, Zhou X, Mitch WE, Goldberg AL (2013) Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol 45(10):2333–2347. https://doi.org/10.1016/j.biocel.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  126. Rose CF (2012) Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther 92(3):321–331. https://doi.org/10.1038/clpt.2012.112

    Article  CAS  PubMed  Google Scholar 

  127. Marchesini G, Bianchi G, Zoli M (1991) Oral BCAA in the treatment of chronic hepatic encephalopathy. J Hepatol 12(2):267

    Article  CAS  PubMed  Google Scholar 

  128. Caballeria Rovira E, Arago Lopez JV, Masso Ubeda RM, Vidal Clemente JL, Sanchis Closa A (1987) [Treatment of hepatic encephalopathy with branched-chain amino acids (BCAA) by oral route: II. Chronic hepatic encephalopathy]. Revista espanola de las enfermedades del aparato digestivo 72(3):201–205

    Google Scholar 

  129. Freund HR, Fischer JE (1986) The use of branched chain amino acids (BCAA) in acute hepatic encephalopathy. Clin Nutr (Edinburgh, Scotland) 5(3):135–138

    Article  CAS  Google Scholar 

  130. Hadjihambi A, Rose CF, Jalan R (2014) Novel insights into ammonia-mediated neurotoxicity pointing to potential new therapeutic strategies. Hepatology (Baltimore, Md) 60(3):1101–1103. https://doi.org/10.1002/hep.27282

    Article  CAS  Google Scholar 

  131. Dam G, Ott P, Aagaard NK, Vilstrup H (2013) Branched-chain amino acids and muscle ammonia detoxification in cirrhosis. Metab Brain Dis 28(2):217–220. https://doi.org/10.1007/s11011-013-9377-3

    Article  CAS  PubMed  Google Scholar 

  132. Holecek M (2014) Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis 29(1):9–17. https://doi.org/10.1007/s11011-013-9428-9

    Article  CAS  PubMed  Google Scholar 

  133. Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, Moreau R, Vilgrain V, Valla D (2014) Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol 60(6):1151–1157. https://doi.org/10.1016/j.jhep.2014.02.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from Shanghai Municipal Commission of Health and Family Planning (201540082 to Q. Liu), National Natural Science Foundation of China (81670571 and 81370559 to C. Yang; 81400635 to F. Wang), Joint Projects in Major Diseases funding from Shanghai Municipal Commission of Health and Family Planning (2014ZYJB0201 to C. Yang), Joint Projects for Novel Frontier Technology in Shanghai Municipal Hospital from Shanghai Municipal Commission of Health and Family Planning (SHDC12014122 to C. Yang), Shanghai Medical Guide Project from Shanghai Science and Technology Committee (14411971500 to F. Wang), grants from Chinese Foundation for Hepatitis Prevention and Control (TQGB20140141 to F. Wang), and funds from Shanghai Innovation Program (12431901002 to C. Yang).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Wang or Changqing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, M., Xia, L., Liu, Q., Sun, M., Wang, F., Yang, C. (2018). Sarcopenia in Liver Disease: Current Evidence and Issues to Be sResolved. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_19

Download citation

Publish with us

Policies and ethics