Skip to main content

The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Muscle atrophy in aging is characterized by progressive loss of muscle mass and function. Muscle mass is determined by the balance of synthesis and degradation of protein, which are regulated by several signaling pathways such as ubiquitin-proteasome system, autophagy-lysosome systems, oxidative stress, proinflammatory cytokines, hormones, and so on. Sufficient nutrition can enhance protein synthesis, while exercise can improve the quality of life in the elderly. This chapter will discuss the epidemiology, pathogenesis, as well as the current treatment for aging-induced muscular atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiGirolamo DJ, Kiel DP, Esser KA (2013) Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 28(7):1509–1518. https://doi.org/10.1002/jbmr.1969

    Article  PubMed  Google Scholar 

  2. Bann D, Chen H, Bonell C, Glynn NW, Fielding RA, Manini T, King AC, Pahor M, Mihalko SL, Gill TM, Life Study i (2016) Socioeconomic differences in the benefits of structured physical activity compared with health education on the prevention of major mobility disability in older adults: the LIFE study. J Epidemiol Community Health 70(9):930–933. https://doi.org/10.1136/jech-2016-207321

    Article  PubMed  Google Scholar 

  3. Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, Espeland MA, Fielding RA, Gill TM, Groessl EJ, King AC, Kritchevsky SB, Manini TM, McDermott MM, Miller ME, Newman AB, Rejeski WJ, Sink KM, Williamson JD, Investigators LS (2014) Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA 311(23):2387–2396. https://doi.org/10.1001/jama.2014.5616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palus S, Springer JI, Doehner W, von Haehling S, Anker M, Anker SD, Springer J (2017) Models of sarcopenia: short review. Int J Cardiol 238:19–21. https://doi.org/10.1016/j.ijcard.2017.03.152

    Article  CAS  PubMed  Google Scholar 

  5. Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57(12):M772–M777

    Article  PubMed  Google Scholar 

  6. Santos VRD, Gomes IC, Bueno DR, Christofaro DGD, Freitas IF Jr, Gobbo LA (2017) Obesity, sarcopenia, sarcopenic obesity and reduced mobility in Brazilian older people aged 80 years and over. Einstein 15(4):435–440. https://doi.org/10.1590/S1679-45082017AO4058

    Article  PubMed  PubMed Central  Google Scholar 

  7. Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896

    Article  PubMed  Google Scholar 

  8. Vidan MT, Blaya-Novakova V, Sanchez E, Ortiz J, Serra-Rexach JA, Bueno H (2016) Prevalence and prognostic impact of frailty and its components in non-dependent elderly patients with heart failure. Eur J Heart Fail 18(7):869–875. https://doi.org/10.1002/ejhf.518

    Article  CAS  PubMed  Google Scholar 

  9. Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 5(3):129–142

    Article  CAS  PubMed  Google Scholar 

  10. Kob R, Fellner C, Bertsch T, Wittmann A, Mishura D, Sieber CC, Fischer BE, Stroszczynski C, Bollheimer CL (2015) Gender-specific differences in the development of sarcopenia in the rodent model of the ageing high-fat rat. J Cachexia Sarcopenia Muscle 6(2):181–191. https://doi.org/10.1002/jcsm.12019

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo AY, Leung KS, Siu PM, Qin JH, Chow SK, Qin L, Li CY, Cheung WH (2015) Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8). Exp Anim 64(4):425–433. https://doi.org/10.1538/expanim.15-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohira Y, Yoshinaga T, Ohara M, Kawano F, Wang XD, Higo Y, Terada M, Matsuoka Y, Roy RR, Edgerton VR (2006) The role of neural and mechanical influences in maintaining normal fast and slow muscle properties. Cells Tissues Organs 182(3–4):129–142. https://doi.org/10.1159/000093963

    Article  CAS  PubMed  Google Scholar 

  13. Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 15(2):322–332. https://doi.org/10.1096/fj.00-0320com

    Article  CAS  PubMed  Google Scholar 

  14. Kachaeva EV, Shenkman BS (2012) Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations. J Biomed Biotechnol 2012:493618. https://doi.org/10.1155/2012/493618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27(8):1266–1276. https://doi.org/10.1038/emboj.2008.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101(52):18135–18140. https://doi.org/10.1073/pnas.0404341102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tskhovrebova L, Trinick J (2005) Muscle disease: a giant feels the strain. Nat Med 11(5):478–479. https://doi.org/10.1038/nm0505-478

    Article  CAS  PubMed  Google Scholar 

  18. Labeit S, Kohl CH, Witt CC, Labeit D, Jung J, Granzier H (2010) Modulation of muscle atrophy, fatigue and MLC phosphorylation by MuRF1 as indicated by hindlimb suspension studies on MuRF1-KO mice. J Biomed Biotechnol 2010:693741. https://doi.org/10.1155/2010/693741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chaudhary P, Suryakumar G, Prasad R, Singh SN, Ali S, Ilavazhagan G (2012) Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains. Mol Cell Biochem 364(1–2):101–113. https://doi.org/10.1007/s11010-011-1210-x

    Article  CAS  PubMed  Google Scholar 

  20. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, Nawaz Z, Shimojima T, Wang H, Yang Y, Shen Z, Zhang Y, Zhang X, Nicosia SV, Zhang Y, Pledger JW, Chen J, Bai W (2009) MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 284(21):13987–14000. https://doi.org/10.1074/jbc.M901758200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, Huang H, Kuo HP, Lee DF, Li LY, Lien HC, Cheng X, Chang KJ, Hsiao CD, Tsai FJ, Tsai CH, Sahin AA, Muller WJ, Mills GB, Yu D, Hortobagyi GN, Hung MC (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10(2):138–148. https://doi.org/10.1038/ncb1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, Xia W, Wei Y, Chiu PC, Chou CK, Du Y, Dhar D, Karin M, Chen CH, Hung MC (2012) IKKalpha activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell 45(2):171–184. https://doi.org/10.1016/j.molcel.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  24. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298. https://doi.org/10.1016/j.cell.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  25. Ladner KJ, Caligiuri MA, Guttridge DC (2003) Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 278(4):2294–2303. https://doi.org/10.1074/jbc.M207129200

    Article  CAS  PubMed  Google Scholar 

  26. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515. https://doi.org/10.1016/j.cmet.2009.10.008

    Article  PubMed  Google Scholar 

  27. Aucello M, Dobrowolny G, Musaro A (2009) Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway. Autophagy 5(4):527–529

    Article  CAS  PubMed  Google Scholar 

  28. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111. https://doi.org/10.1091/mbc.E03-09-0704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. https://doi.org/10.1016/j.cmet.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  30. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. https://doi.org/10.1016/j.cmet.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  31. McClung JM, Judge AR, Powers SK, Yan Z (2010) p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol 298(3):C542–C549. https://doi.org/10.1152/ajpcell.00192.2009

    Article  CAS  PubMed  Google Scholar 

  32. Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185(6):1083–1095. https://doi.org/10.1083/jcb.200901052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271(43):26690–26697

    Article  CAS  PubMed  Google Scholar 

  34. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm 2010:453892. https://doi.org/10.1155/2010/453892

    Article  CAS  Google Scholar 

  37. Piccirillo R, Demontis F, Perrimon N, Goldberg AL (2014) Mechanisms of muscle growth and atrophy in mammals and drosophila. Dev Dyn 243(2):201–215. https://doi.org/10.1002/dvdy.24036

    Article  PubMed  Google Scholar 

  38. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36. https://doi.org/10.1152/ajpregu.00327.2006

    Article  CAS  PubMed  Google Scholar 

  39. Sukhanov S, Semprun-Prieto L, Yoshida T, Michael Tabony A, Higashi Y, Galvez S, Delafontaine P (2011) Angiotensin II, oxidative stress and skeletal muscle wasting. Am J Med Sci 342(2):143–147. https://doi.org/10.1097/MAJ.0b013e318222e620

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dodd SL, Gagnon BJ, Senf SM, Hain BA, Judge AR (2010) Ros-mediated activation of NF-kappaB and Foxo during muscle disuse. Muscle Nerve 41(1):110–113. https://doi.org/10.1002/mus.21526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao W, Swanson SA, Ye J, Li X, Shelton JM, Zhang W, Thomas GD (2006) Reactive oxygen species impair sympathetic vasoregulation in skeletal muscle in angiotensin II-dependent hypertension. Hypertension 48(4):637–643. https://doi.org/10.1161/01.HYP.0000240347.51386.ea

    Article  CAS  PubMed  Google Scholar 

  42. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C, Stump CS (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281(46):35137–35146. https://doi.org/10.1074/jbc.M601320200

    Article  CAS  PubMed  Google Scholar 

  43. Sukhanov S, Higashi Y, Shai SY, Blackstock C, Galvez S, Vaughn C, Titterington J, Delafontaine P (2011) Differential requirement for nitric oxide in IGF-1-induced anti-apoptotic, anti-oxidant and anti-atherosclerotic effects. FEBS Lett 585(19):3065–3072. https://doi.org/10.1016/j.febslet.2011.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R (2011) Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol 589(Pt 9):2147–2160. https://doi.org/10.1113/jphysiol.2010.203232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palomero J, Pye D, Kabayo T, Spiller DG, Jackson MJ (2008) In situ detection and measurement of intracellular reactive oxygen species in single isolated mature skeletal muscle fibers by real time fluorescence microscopy. Antioxid Redox Signal 10(8):1463–1474. https://doi.org/10.1089/ars.2007.2009

    Article  CAS  PubMed  Google Scholar 

  46. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335. https://doi.org/10.1056/NEJMoa070447

    Article  CAS  PubMed  Google Scholar 

  47. Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM (2010) Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme 35(2):125–133. https://doi.org/10.1139/H09-137

    Article  CAS  PubMed  Google Scholar 

  48. Baltgalvis KA, Berger FG, Pena MM, Davis JM, White JP, Carson JA (2009) Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc ( Min/+ ) mouse. Pflugers Archiv 457(5):989–1001. https://doi.org/10.1007/s00424-008-0574-6

    Article  CAS  PubMed  Google Scholar 

  49. Silva KA, Dong J, Dong Y, Dong Y, Schor N, Tweardy DJ, Zhang L, Mitch WE (2015) Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem 290(17):11177–11187. https://doi.org/10.1074/jbc.M115.641514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bach E, Nielsen RR, Vendelbo MH, Moller AB, Jessen N, Buhl M, Hafstrøm TK, Holm L, Pedersen SB, Pilegaard H, Bienso RS, Jorgensen JO, Moller N (2013) Direct effects of TNF-alpha on local fuel metabolism and cytokine levels in the placebo-controlled, bilaterally infused human leg: increased insulin sensitivity, increased net protein breakdown, and increased IL-6 release. Diabetes 62(12):4023–4029. https://doi.org/10.2337/db13-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou J, Liu B, Liang C, Li Y, Song YH (2016) Cytokine signaling in skeletal muscle wasting. Trends Endocrinol Metab 27(5):335–347. https://doi.org/10.1016/j.tem.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  52. Wajant H, Scheurich P (2011) TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 278(6):862–876. https://doi.org/10.1111/j.1742-4658.2011.08015.x

    Article  CAS  PubMed  Google Scholar 

  53. Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S, Li H, Makonchuk DY, Glass DJ, Kumar A (2010) The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol 188(6):833–849. https://doi.org/10.1083/jcb.200909117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2010) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191(7):1395–1411. https://doi.org/10.1083/jcb.201006098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Madrigal-Matute J, Fernandez-Laso V, Sastre C, Llamas-Granda P, Egido J, Martin-Ventura JL, Zalba G, Blanco-Colio LM (2015) TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc Res 108(1):139–147. https://doi.org/10.1093/cvr/cvv204

    Article  CAS  PubMed  Google Scholar 

  56. Wissing ER, Boyer JG, Kwong JQ, Sargent MA, Karch J, McNally EM, Otsu K, Molkentin JD (2014) P38alpha MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Hum Mol Genet 23(20):5452–5463. https://doi.org/10.1093/hmg/ddu270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20(3):265–271. https://doi.org/10.1038/nm.3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao W, Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2009) Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun 378(3):668–672. https://doi.org/10.1016/j.bbrc.2008.11.123

    Article  CAS  PubMed  Google Scholar 

  59. Tavi P, Westerblad H (2011) The role of in vivo Ca(2)(+) signals acting on Ca(2)(+)-calmodulin-dependent proteins for skeletal muscle plasticity. J Physiol 589(Pt 21):5021–5031. https://doi.org/10.1113/jphysiol.2011.212860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brault JJ, Jespersen JG, Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285(25):19460–19471. https://doi.org/10.1074/jbc.M110.113092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT (2010) The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 110(4):665–694. https://doi.org/10.1007/s00421-010-1545-0

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  Google Scholar 

  63. McIntosh EI, Smale KB, Vallis LA (2013) Predicting fat-free mass index and sarcopenia: a pilot study in community-dwelling older adults. Age 35(6):2423–2434. https://doi.org/10.1007/s11357-012-9505-8

    Article  PubMed  PubMed Central  Google Scholar 

  64. Beaudart C, Reginster JY, Slomian J, Buckinx F, Dardenne N, Quabron A, Slangen C, Gillain S, Petermans J, Bruyere O (2015) Estimation of sarcopenia prevalence using various assessment tools. Exp Gerontol 61:31–37. https://doi.org/10.1016/j.exger.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  65. Christensen U, Stovring N, Schultz-Larsen K, Schroll M, Avlund K (2006) Functional ability at age 75: is there an impact of physical inactivity from middle age to early old age? Scand J Med Sci Sports 16(4):245–251. https://doi.org/10.1111/j.1600-0838.2005.00459.x

    Article  CAS  PubMed  Google Scholar 

  66. Macaluso A, De Vito G (2004) Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 91(4):450–472. https://doi.org/10.1007/s00421-003-0991-3

    Article  PubMed  Google Scholar 

  67. Pisconti A, Brunelli S, Di Padova M, De Palma C, Deponti D, Baesso S, Sartorelli V, Cossu G, Clementi E (2006) Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol 172(2):233–244. https://doi.org/10.1083/jcb.200507083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G, Partridge T, Zammit P, Bunger L, Patel K (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A 104(6):1835–1840. https://doi.org/10.1073/pnas.0604893104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159. https://doi.org/10.1093/bmb/ldq008

    Article  CAS  PubMed  Google Scholar 

  70. Martel GF, Roth SM, Ivey FM, Lemmer JT, Tracy BL, Hurlbut DE, Metter EJ, Hurley BF, Rogers MA (2006) Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp Physiol 91(2):457–464. https://doi.org/10.1113/expphysiol.2005.032771

    Article  PubMed  Google Scholar 

  71. Hawke TJ (2005) Muscle stem cells and exercise training. Exerc Sport Sci Rev 33(2):63–68

    Article  PubMed  Google Scholar 

  72. Mu X, Urso ML, Murray K, Fu F, Li Y (2010) Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. Am J Pathol 177(5):2399–2410. https://doi.org/10.2353/ajpath.2010.091121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wada KI, Takahashi H, Katsuta S, Soya H (2002) No decrease in myonuclear number after long-term denervation in mature mice. Am J Physiol Cell Physiol 283(2):C484–C488. https://doi.org/10.1152/ajpcell.00025.2002

    Article  CAS  PubMed  Google Scholar 

  74. Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M (2005) The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Archiv 451(2):319–327. https://doi.org/10.1007/s00424-005-1406-6

    Article  CAS  PubMed  Google Scholar 

  75. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238. https://doi.org/10.1152/physrev.00019.2003

    Article  CAS  PubMed  Google Scholar 

  76. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91(2):534–551. https://doi.org/10.1152/jappl.2001.91.2.534

    Article  CAS  PubMed  Google Scholar 

  77. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107–114. https://doi.org/10.1006/excr.2001.5252

    Article  CAS  PubMed  Google Scholar 

  78. Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio P, Amati P (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J Cell Biol 137(5):1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21(1):5–14. https://doi.org/10.1634/stemcells.21-1-5

    Article  CAS  PubMed  Google Scholar 

  80. Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Physiol Cell Physiol 283(1):C204–C211. https://doi.org/10.1152/ajpcell.00574.2001

    Article  CAS  PubMed  Google Scholar 

  81. Machida S, Booth FW (2004) Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 63(2):337–340. https://doi.org/10.1079/PNS2004354

    Article  CAS  PubMed  Google Scholar 

  82. Oksbjerg N, Gondret F, Vestergaard M (2004) Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol 27(3):219–240. https://doi.org/10.1016/j.domaniend.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  83. Kopan R, Nye JS, Weintraub H (1994) The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120(9):2385–2396

    CAS  PubMed  Google Scholar 

  84. Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, Li J, Chung TK, Thin TH, Taneja R (2007) Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol 177(4):647–657. https://doi.org/10.1083/jcb.200609007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20(11):1394–1404. https://doi.org/10.1101/gad.1424006

    Article  CAS  PubMed  Google Scholar 

  86. Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6(2):117–129. https://doi.org/10.1016/j.stem.2009.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Iritani S, Imai K, Takai K, Hanai T, Ideta T, Miyazaki T, Suetsugu A, Shiraki M, Shimizu M, Moriwaki H (2015) Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J Gastroenterol 50(3):323–332. https://doi.org/10.1007/s00535-014-0964-9

    Article  CAS  PubMed  Google Scholar 

  88. Rizzoli R (2015) Nutrition and sarcopenia. J Clin Densitometry 18(4):483–487. https://doi.org/10.1016/j.jocd.2015.04.014

    Article  Google Scholar 

  89. Wagatsuma A, Sakuma K (2014) Vitamin D signaling in myogenesis: potential for treatment of sarcopenia. Biomed Res Int 2014:121254. https://doi.org/10.1155/2014/121254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Groen BB, Res PT, Pennings B, Hertle E, Senden JM, Saris WH, van Loon LJ (2012) Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Phys Endocrinol Metab 302(1):E52–E60. https://doi.org/10.1152/ajpendo.00321.2011

    Article  CAS  Google Scholar 

  91. Robinson S, Cooper C, Aihie Sayer A (2012) Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res 2012:510801. https://doi.org/10.1155/2012/510801

    Article  PubMed  PubMed Central  Google Scholar 

  92. Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M, Conboy I (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1(8–9):381–391. https://doi.org/10.1002/emmm.200900045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Visser M, Pluijm SM, Stel VS, Bosscher RJ, Deeg DJ, Longitudinal Aging Study A (2002) Physical activity as a determinant of change in mobility performance: the Longitudinal Aging Study Amsterdam. J Am Geriatr Soc 50(11):1774–1781

    Article  PubMed  Google Scholar 

  94. Marcotte GR, West DW, Baar K (2015) The molecular basis for load-induced skeletal muscle hypertrophy. Calcif Tissue Int 96(3):196–210. https://doi.org/10.1007/s00223-014-9925-9

    Article  CAS  PubMed  Google Scholar 

  95. Kadi F, Charifi N, Denis C, Lexell J (2004) Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29(1):120–127. https://doi.org/10.1002/mus.10510

    Article  PubMed  Google Scholar 

  96. Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97

    PubMed  Google Scholar 

  97. Verney J, Kadi F, Charifi N, Feasson L, Saafi MA, Castells J, Piehl-Aulin K, Denis C (2008) Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve 38(3):1147–1154. https://doi.org/10.1002/mus.21054

    Article  PubMed  Google Scholar 

  98. Horii N, Uchida M, Hasegawa N, Fujie S, Oyanagi E, Yano H, Hashimoto T, Iemitsu M (2018) Resistance training prevents muscle fibrosis and atrophy via down-regulation of C1q-induced Wnt signaling in senescent mice. FASEB J:fj201700772RRR. https://doi.org/10.1096/fj.201700772RRR

    Article  CAS  PubMed  Google Scholar 

  99. Chang YK, Chu CH, Wang CC, Song TF, Wei GX (2015) Effect of acute exercise and cardiovascular fitness on cognitive function: an event-related cortical desynchronization study. Psychophysiology 52(3):342–351. https://doi.org/10.1111/psyp.12364

    Article  PubMed  Google Scholar 

  100. Santos RV, Viana VA, Boscolo RA, Marques VG, Santana MG, Lira FS, Tufik S, de Mello MT (2012) Moderate exercise training modulates cytokine profile and sleep in elderly people. Cytokine 60(3):731–735. https://doi.org/10.1016/j.cyto.2012.07.028

    Article  CAS  PubMed  Google Scholar 

  101. Lira FS, Neto JC, Seelaender M (2014) Exercise training as treatment in cancer cachexia. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme 39(6):679–686. https://doi.org/10.1139/apnm-2013-0554

    Article  PubMed  Google Scholar 

  102. Alves CR, da Cunha TF, da Paixao NA, Brum PC (2015) Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci 125:9–14. https://doi.org/10.1016/j.lfs.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  103. Meursinge Reynders R, Ronchi L, Ladu L, Van Etten-Jamaludin F, Bipat S (2013) Insertion torque and orthodontic mini-implants: a systematic review of the artificial bone literature. Proc Inst Mech Eng H J Eng Med 227(11):1181–1202. https://doi.org/10.1177/0954411913495986

    Article  Google Scholar 

  104. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454(7203):463–469. https://doi.org/10.1038/nature07206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Reynolds TH, Reid P, Larkin LM, Dengel DR (2004) Effects of aerobic exercise training on the protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway in aged skeletal muscle. Exp Gerontol 39(3):379–385. https://doi.org/10.1016/j.exger.2003.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fujita S, Rasmussen BB, Cadenas JG, Drummond MJ, Glynn EL, Sattler FR, Volpi E (2007) Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes 56(6):1615–1622. https://doi.org/10.2337/db06-1566

    Article  CAS  PubMed  Google Scholar 

  107. Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 20(1):1–10. https://doi.org/10.11005/jbm.2013.20.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  108. Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, Beyer C, Hagg A, Thomson RE, Chen JL, Walton KL, Loveland KL, McMullen JR, Rodgers BD, Harrison CA, Lynch GS, Gregorevic P (2016) Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med 8(348):348ra398. https://doi.org/10.1126/scitranslmed.aac4976

    Article  CAS  Google Scholar 

  109. Koning M, Werker PM, van Luyn MJ, Krenning G, Harmsen MC (2012) A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis. Differentiation 84(4):314–321. https://doi.org/10.1016/j.diff.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  110. Chen Y, Gelfond J, McManus LM, Shireman PK (2011) Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol Genomics 43(10):621–630. https://doi.org/10.1152/physiolgenomics.00136.2010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Jiangsu Province Key Scientific and Technological Project (BE2016669), a Suzhou Science and Technology Project (SS201665), Jiangsu Province Peak of Talent in Six Industries (BU24600117), Jiangsu Province Key Discipline/Laboratory of Medicine (XK201118), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Pan, X., Sun, Y., Geng, Yj., Yu, XY., Li, Y. (2018). The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_16

Download citation

Publish with us

Policies and ethics