Skip to main content

Differential Scanning Calorimetry (DSC): An Invaluable Tool for the Thermal Evaluation of Advanced Chimeric Liposomal Drug Delivery Nanosystems

  • Chapter
  • First Online:

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Chimeric liposomal systems are classified as advanced drug delivery nanosystems, being composed of different kinds of biomaterials, such as phospholipids and polymers. Chimeric liposomes present many advantages, compared to conventional ones, such as great functionality, stimuli-responsiveness and increased targeting to the pathological tissue. Among the analytical techniques established for the liposomal system characterization, Differential Scanning Calorimetry (DSC) is applied to indicate their thermotropic behavior and thermal stability, providing useful information, in order to optimize the quality and therapeutic efficiency of the liposomal formulations. Until very recently, several researches have aimed at explaining the behavior of carrier lipid forms by the DSC method. Therefore, DSC has been quite frequently applied in pharmaceutical research for scanning the thermal behavior of the samples and to record the difference between the heat flows, while it provides quick and accurate information about the physical and energetic parts of a material. In the present chapter, a variety of different chimeric liposomal systems is presented that were analyzed in terms of their thermal behavior, describing the utilized DSC protocols and highlighting the interpretation of the DSC results. The aim of this chapter is to prove, through different literature examples of chimeric liposomal systems, the utility of the DSC technique upon the characterization of their thermotropic behavior which is strictly correlated with the interactions and cooperativity of the different biomaterials, as well as how it predicts the efficacy of the examined liposomal platforms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rowland, M., Noe, C.R., Smith, D.A., Tucker, G.T., Crommelin, D.J., Peck, C.C., Jr, Rocci M.L., Besançon, L., Shah, V.P.: Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. J. Pharm. Sci. 101, 4075–4099 (2012). https://doi.org/10.1002/jps.23295

    Article  Google Scholar 

  2. Demetzos, C., Pippa, N.: Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv. 21(4), 250–257 (2014). https://doi.org/10.3109/10717544.2013.844745

    Article  Google Scholar 

  3. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Del. Rev. 65, 36–48 (2013). https://doi.org/10.1016/j.addr.2012.09.037

    Article  Google Scholar 

  4. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Nejati-Koshki, K.: Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102–102 (2013). https://doi.org/10.1186/1556-276X-8-102

    Article  Google Scholar 

  5. Demetzos, C.: Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J. Liposome Res. 18, 159–173 (2008). https://doi.org/10.1080/08982100802310261

    Article  Google Scholar 

  6. Cooper, A., Nutley, M.A., Wadood, A.: Differential scanning microcalorimetry. In: Harding, S.E., Chowdhry, B.Z. (eds.) Protein-Ligand Interactions: Hydrodynamics and Calorimetry, pp. 287–318. Oxford University Press, Oxford New York (2000). ISBN: 9780199637461

    Google Scholar 

  7. Chiu, M.H., Prenner, E.J.: Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J. Pharm. Bioallied Sci. 1(3), 39–59 (2011). https://doi.org/10.4103/0975-7406.76463

    Article  Google Scholar 

  8. Sarpietro, M.G., Castelli, F.: Transfer kinetics from colloidal drug carriers and liposomes to biomembrane models: DSC studies. J. Pharm. Bioall. Sci. 1(3), 77–88 (2011). https://doi.org/10.4103/0975-7406.76472

    Article  Google Scholar 

  9. Koynova, R., Caffrey, M.: Phases and phase transitions of the phosphatidylcholines. Biochem. Biophys. Acta 1376, 91–145 (1998). https://doi.org/10.1016/S0304-4157(98)00006-9

    Article  Google Scholar 

  10. Pippa, N., Pispas, S., Demetzos, C.: Physicochemical characterization and basic research principles of advanced Drug Delivery nano Systems (aDDnSs). In: Tiwari, A., Misha, Y.K., Kobayashi, H., Turner, A.P.F. (eds.) Intelligent Nanomaterials, 2nd edn, pp. 107–126. WILEY-Scrivener Publishing LLC, New Jersy-Massachusetts (2016). https://doi.org/10.1002/9781119242628.ch5

    Chapter  Google Scholar 

  11. McElhaney, R.N.: The use of differential scanning calorimetry and differential thermal analysis studies of model and biological membranes. Chem. Phys. Lipid. 30, 229–259 (1982). https://doi.org/10.1016/0009-3084(82)90053-6

    Article  Google Scholar 

  12. Smith, E.A., Dea, P.K.: Differential scanning calorimetry studies of phospholipid membranes: the interdigitated gel phase. In: Elkordy, A.A. (ed.) Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry, pp. 408–444. InTech (2013). https://doi.org/10.5772/51882

    Google Scholar 

  13. Demetzos, C.: Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS Pharm. Sci. Tech. 16(3), 491–495 (2015). https://doi.org/10.1208/s12249-015-0321-1

    Article  Google Scholar 

  14. Astier, A., Pai, A.B., Bissig, M., Crommelin, D.J.A., Flühmann, B., Jean- Hecq, D., Knoeff, J., Lipp, H.P., Morell-Baladron, A., Mühlebach, S.: How to select a nanosimilar. Ann. N.Y. Acad. Sci. 1407(1), 50–62 (2017). https://doi.org/10.1111/nyas.13382

    Article  Google Scholar 

  15. Zheng, N., Jiang, W., Lionberger, R., Yu, L.: Bioequivalence for liposomal drug products. In: Yu, L.X., Li, B.V. (eds.) FDA Bioequivalence Standards, AAPS Advances in the Pharmaceutical Sciences Series 13, pp. 275–296. Springer, New York, ISBN 978-1-4939-1251-3 (2014). https://doi.org/10.1007/978-1-4939-1252-0_11

    Google Scholar 

  16. Wei, X., Cohen, R., Barenholz, Y.: Insights into composition/structure/function relationships of Doxil® gained from ‘‘high-sensitivity” differential scanning calorimetry. Eur. J. Pharm. Biopharm. 104, 260–270 (2016). https://doi.org/10.1016/j.ejpb.2016.04.011

    Article  Google Scholar 

  17. Perinelli, D.R., Cespi, M., Bonacucina, G., Rendina, F., Palmieri, G.F.: Heating treatments affect the thermal behaviour of doxorubicin loaded in PEGylated liposomes. Int. J. Pharm. 534, 81–88 (2017). https://doi.org/10.1016/j.ijpharm.2017.09.069

    Article  Google Scholar 

  18. Chen, Y., Bose, A., Bothun, G.D.: Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 4(6), 3215–3221 (2010). https://doi.org/10.1021/nn100274v

    Article  Google Scholar 

  19. Patitsa, M., Karathanou, K., Kanaki, Z., Tzioga, L., Pippa, N., Demetzos, C., Verganelakis, D.A., Cournia, Z., Klinakis, A.: Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/s41598-017-00836-y

    Article  Google Scholar 

  20. Zeng, L., Luo, L., Pan, Y., Luo, S., Lu, G., Wu, A.: In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Nanoscale 7, 8946–8954 (2015). https://doi.org/10.1039/c5nr01932j

    Article  Google Scholar 

  21. Tan, X., Pang, X., Lei, M., Ma, M., Guo, F., Wang, J., Yu, M., Tan, F., Li, N.: An efficient dual-loaded multifunctional nanocarrier for combined photothermal and photodynamic therapy based on copper sulfide and chlorine. Int. J. Pharm. 503, 220–228 (2016). https://doi.org/10.1016/j.ijpharm.2016.03.019

    Article  Google Scholar 

  22. Skupin-Mrugalska, P., Sobotta, L., Warowicka, A., Wereszczynska, B., Zalewski, T., Gierlich, P., Jarek, M., Nowaczyk, G., Kempka, M., Gapinski, J., Jurga, S., Mielcarek, J.: Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer. J. Inorg. Biochem. 180, 1–14 (2018). https://doi.org/10.1016/j.jinorgbio.2017

    Article  Google Scholar 

  23. Preiss, M.R., Hart, A.E., Kitchens, C.L., Bothun, G.D.: Hydrophobic nanoparticles modify the thermal release behavior of liposomes. J. Phys. Chem. B 121(19), 5040–5047 (2017). https://doi.org/10.1021/acs.jpcb.7b01702

    Article  Google Scholar 

  24. Nasir, A., Harikumar, S.L., Kaur, A.: Cyclodextrins: an excipient tool in drug delivery. Int. Res. J. Pharm. 3(4), 44–50 (2012). ISSN 2230–8407

    Google Scholar 

  25. McCormack, B., Gregoriadis, G.: Entrapment of cyclodextrin–drug complexes into liposomes: potential advantages in drug delivery. J. Drug Target 2(5), 449–454 (1994). https://doi.org/10.3109/10611869408996821

    Article  Google Scholar 

  26. Gharib, R., Fourmentin, S., Charcosset, C., Greige-Gerges, H.: Effect of hydroxypropyl-β–cyclodextrin on lipid membrane fluidity, stability and freezedrying of liposomes. J. Drug Deliv. Sci. Technol. 44, 101–107 (2018). https://doi.org/10.1016/j.jddst.2017.12.009

    Article  Google Scholar 

  27. Liossi, A.S., Ntountaniotis, D., Kellici, T.F., Chatziathanasiadou, M.V., Megariotis, G., Mania, M., Becker-Baldus, J., Kriechbaum, M., Krajnc, A., Christodoulou, E., Glaubitz, C., Rappolt, M., Heinz, A., Gregor, M., Theodorou, D.N., Valsami, G., Pitsikalis, M., Iatrou, H., Tzakos, A.G., Mavromoustakos, T.: Exploring the interactions of irbesartan and irbesartan–2-hydroxypropyl-β-cyclodextrin complex with model membranes. Biochim. Biophys. Acta 1859(6), 1089–1098 (2017). https://doi.org/10.1016/j.bbamem.2017.03.003

    Article  Google Scholar 

  28. Juárez-Osornio, C., Gracia-Fadrique, J.: Structures similar to lipid emulsions and liposomes. Structures similar to lipid emulsions and liposomes. J. Liposome Res. 27(2), 139–150 (2017). https://doi.org/10.1080/08982104.2016.1174944

    Article  Google Scholar 

  29. Pippa, N., Chronopoulos, D.D., Stellas, D., Fernández-Pacheco, R., Arenal, R., Demetzos, C., Tagmatarchis, N.: Design and development of multi-walled carbon nanotube-liposome drug delivery platforms. Int. J. Pharm. 528(1–2), 429–439 (2017). https://doi.org/10.1016/j.ijpharm.2017.06.043

    Article  Google Scholar 

  30. Omidi, M., Fathinia, A., Farahani, M., Niknam, Z., Yadegari, A.;, Hashemi, M., Jazayeri, H., Zali, H., Zahedinik, M., Tayebi, L.: Bio-applications of grapheme composites: from bench to clinic. In: Tiwari, A., Syväjärvi, M. (eds.), Advanced 2D Materials, pp. 433–471 (2016). https://doi.org/10.1002/9781119242635.ch11

    Chapter  Google Scholar 

  31. Zhang, L., Xia, J., Zhao, Q., Liu, L., Zhang, Z.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010). https://doi.org/10.1002/smll.200901680

    Article  Google Scholar 

  32. Wang, F., Liu, J.: Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and grapheme oxide. Nanoscale 5(24), 12375–12382 (2013). https://doi.org/10.1039/c3nr04143c

    Article  Google Scholar 

  33. Wang, F., Liu, B., Ip, A.C.F., Liu, J.: Orthogonal adsorption onto nano-grapheneoxide using different intermolecular forces for multiplexed delivery. Adv. Mater. 25(30), 4087–4092 (2013). https://doi.org/10.1002/adma.201301183

    Article  Google Scholar 

  34. Hashemi, M., Omidi, M., Muralidharan, B., Tayebi, L., Herpin, M.J., Mohagheghi, M.A., Mohammadi, J., Smyth, H.D.C., Milner, T.E.: Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomater. 65, 376–392 (2018). https://doi.org/10.1016/j.actbio.2017.10.040

    Article  Google Scholar 

  35. Tomalia, D.A., Naylor, A.M., Goddard III, W.A.: Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. 29(2), 138–175 (1990). https://doi.org/10.1002/anie.199001381

    Article  Google Scholar 

  36. Gardikis, K., Hatziantoniou, S., Viras, K., Wagner, M., Demetzos, C.: A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int. J. Pharm. 318(1–2), 118–123 (2006). https://doi.org/10.1016/j.ijpharm.2006.03.023

    Article  Google Scholar 

  37. Klajnert, B., Epand, R.M.: PAMAM dendrimers and model membranes: Differential scanning calorimetry studies. Int. J. Pharm. 305, 154–166 (2005). https://doi.org/10.1016/j.ijpharm.2005.08.015

    Article  Google Scholar 

  38. Gardikis, K., Fessas, D., Signorelli, M., Dimas, K., Tsimplouli, C., Ionov, M., Demetzos, C.: A new chimeric drug delivery nano system (chi-aDDnS) composed of PAMAM G 3.5 dendrimer and liposomes as doxorubicin’s carrier. In Vitro Pharmacological Studies. J. Nanosci. Nanotech. 11(5), 3764–3772 (2011). https://doi.org/10.1166/jnn.2011.3847

    Article  Google Scholar 

  39. Berényi, S., Mihály, J., Wacha, A., Toke, O., Bóta, A.: A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers. Colloids Surf., B 118, 164–171 (2014). https://doi.org/10.1016/j.colsurfb.2014.03.048

    Article  Google Scholar 

  40. Gardikis, K., Hatziantoniou, S., Signorelli, M., Pusceddu, M., Micha-Screttas, M., Schiraldi, A., Demetzos, C., Fessas, D.: Thermodynamic and structural characterization of liposomal-locked in-dendrimers as drug carriers. Colloids Surf., B 81(1), 11–19 (2010). https://doi.org/10.1016/j.colsurfb.2010.06.010

    Article  Google Scholar 

  41. Gardikis, K., Hatziantoniou, S., Bucos, M., Fessas, D., Signorelli, M., Felekis, T., Zervou, M., Screttas, C.G., Steele, B.R., Ionov, M., Micha-Screttas, M., Klajnert, B., Bryszewska, M., Demetzos, C.: New drug delivery nanosystem combining liposomal and dendrimeric technology (liposomal locked-in dendrimers) for cancer therapy. J. Pharm. Sci. 99(8), 3561–3571 (2010). https://doi.org/10.1002/jps.22121

    Article  Google Scholar 

  42. Pippa, N., Gardikis, K., Pispas, S., Demetzos, C.: The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems. J. Therm. Anal. Calorim. 116(1), 99–105 (2014). https://doi.org/10.1007/s10973-013-3406-7

    Article  Google Scholar 

  43. Ionov, M., Gardikis, K., Wróbel, D., Hatziantoniou, S., Mourelatou, H., Majoral, J.P., Klajnert, B., Bryszewska, M., Demetzos, C.: Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids Surf., B 82(1), 8–12 (2011). https://doi.org/10.1016/j.colsurfb.2010.07.046

    Article  Google Scholar 

  44. Wrobel, D., Ionov, M., Gardikis, K., Demetzos, C., Majoral, J.P., Palecz, B., Klajnert, B., Bryszewska, M.: Interactions of phosphorus-containing dendrimers with liposomes. Biochim. Biophys. Acta 1811(3), 221–226 (2011). https://doi.org/10.1016/j.bbalip.2010.11.007

    Article  Google Scholar 

  45. Ionov, M., Wróbel, D., Gardikis, K., Hatziantoniou, S., Demetzos, C., Majoral, J.P., Klajnert, B., Bryszewska, M.: Effect of phosphorus dendrimers on DMPC lipid membranes. Chem. Phys. Lipids 165(4), 408–413 (2012). https://doi.org/10.1016/j.chemphyslip.2011.11.014

    Article  Google Scholar 

  46. Wrobel, D., Appelhans, D., Signorelli, M., Wiesner, B., Fessas, D., Scheler, U., Voit, B., Maly, J.: Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. Biochem. Biophys. Acta 1848(4), 1490–1501 (2015). https://doi.org/10.1016/j.bbamem.2015.03.033

    Article  Google Scholar 

  47. Paolino, D., Accollac, M.L., Cilurzo, F., Cristiano, M.C., Cosco, D., Castelli, F., Sarpietro, M.G., Fresta, M., Celia, C.: Interaction between PEG lipid and DSPE/DSPC phospholipids: an insight of PEGylation degree and kinetics of de-PEGylation. Colloids Surf., B 155, 266–275 (2017). https://doi.org/10.1016/j.colsurfb.2017.04.018

    Article  Google Scholar 

  48. Hädicke, A., Blume, A.: Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state. Colloid Polym. Sci. 293(1), 267–276 (2015). https://doi.org/10.1007/s00396-014-3414-6

    Article  Google Scholar 

  49. Pippa, N., Stellas, D., Skandalis, A., Pispas, S., Demetzos, C., Libera, M., Marcinkowski, A., Trzebicka, B.: Chimeric lipid/block copolymer nanovesicles: physico-chemical and biocompatibility evaluation. Eur. J. Pharm. Biopharm. 107, 295–309 (2016). https://doi.org/10.1016/j.ejpb.2016.08.003

    Article  Google Scholar 

  50. Pippa, N., Pispas, S., Demetzos, C.: The metastable phases as modulators of biophysical behavior of liposomal membranes. J. Therm. Anal. Calorim. 120(1), 937–945 (2015). https://doi.org/10.1007/s10973-014-4116-5

    Article  Google Scholar 

  51. Eloy, J.O., Souza, M., Petrilli, R., Barcellos, J.P.A., Lee, R.J., Marchetti, J.M.: Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf., B 123, 345–363 (2014). https://doi.org/10.1016/j.colsurfb.2014.09.029

    Article  Google Scholar 

  52. Honey, P.J., Rijo, J., Anju, A., Anoop, K.R.: Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm. Sinica B 4(2), 120–127 (2014). https://doi.org/10.1016/j.apsb.2014.02.005

    Article  Google Scholar 

  53. Naziris, N., Pippa, N., Pispas, S., Demetzos, C.: Stimuli-responsive drug delivery nanosystems: from bench to clinic. Curr. Nanomed. 6(3), 166–185 (2016). https://doi.org/10.2174/2468187306666160712232449

    Article  Google Scholar 

  54. Kono, K.: Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev. 53(3), 307–319 (2001). https://doi.org/10.1016/S0169-409X(01)00204-6

    Article  Google Scholar 

  55. Kono, K., Hayashi, H., Takagishi, T.: Temperature-sensitive liposomes: liposomes bearing poly(N-isopropylacrylamide). J. Control. Release 30(1), 69–75 (1994). https://doi.org/10.1016/0168-3659(94)90045-0

    Article  Google Scholar 

  56. Chountoulesi, M., Kyrili, A., Pippa, N., Meristoudi, A., Pispas, S., Demetzos, C.: The modulation of physicochemical characterization of innovative liposomal platforms: the role of the grafted thermoresponsive polymers. Pharm. Dev. Technol. 22(3), 330–335 (2017). https://doi.org/10.3109/10837450.2015.1121497

    Article  Google Scholar 

  57. Lee, S.M., Nguyen, S.T.: Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules 46(23), 9169–9180 (2013). https://doi.org/10.1021/ma401529w

    Article  Google Scholar 

  58. Ta, T., Convertine, A.J., Reyes, C.R., Stayton, P.S., Porter, T.M.: Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 11(8), 1915–1920 (2010). https://doi.org/10.1021/bm1004993

    Article  Google Scholar 

  59. Pippa, N., Meristoudi, A., Pispas, S., Demetzos, C.: Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: Control of the drug loading/release by modulation of the nanocarriers’ components. Int. J. Pharm. 485(1–2), 374–382 (2015). https://doi.org/10.1016/j.ijpharm.2015.03.014

    Article  Google Scholar 

  60. Lin, Y.L., Jiang, G., Birrell, L.K., El-Sayed, M.E.H.: Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids. Biomaterials 31(27), 7150–7166 (2010). https://doi.org/10.1016/j.biomaterials.2010.05.048

    Article  Google Scholar 

  61. Liu, J., Huang, Y., Kumar, A., Tan, A., Jin, S., Mozhi, A., Liang, X.J.: pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 32(4), 693–710 (2014). https://doi.org/10.1016/j.biotechadv.2013.11.009

    Article  Google Scholar 

  62. Felber, A.E., Dufresne, M.H., Leroux, J.C.: pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 64(11), 979–992 (2014). https://doi.org/10.1016/j.addr.2011.09.006

    Article  Google Scholar 

  63. Wang, L., Geng, D., Su, H.: Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity. Colloids Surf., B 123, 395–402 (2014). https://doi.org/10.1016/j.colsurfb.2014.09.003

    Article  Google Scholar 

  64. Naziris, N., Pippa, N., Meristoudi, A., Pispas, S., Demetzos, C.: Design and development of pH-responsive HSPC:C12H25-PAA chimeric liposomes. J. Liposome Res. 27(2), 108–117 (2017). https://doi.org/10.3109/08982104.2016.1166512

    Article  Google Scholar 

  65. Kolman, I., Pippa, N., Meristoudi, A., Pispas, S., Demetzos, C.: A dual-stimuli-responsive polymer into phospholipid membranes. J. Therm. Anal. Calorim. 123, 2257–2271 (2016). https://doi.org/10.1007/s10973-015-5080-4

    Article  Google Scholar 

  66. Pippa, N., Chountoulesi, M., Kyrili, A., Meristoudi, A., Pispas, S., Demetzos, C.: Calorimetric study on pH-responsive block copolymer grafted lipid bilayers: rational design and development of liposomes. J. Liposome Res. 26(3), 211–220 (2016). https://doi.org/10.3109/08982104.2015.1076464

    Article  Google Scholar 

  67. Kyrili, A., Chountoulesi, M., Pippa, N., Meristoudi, A., Pispas, S., Demetzos, C.: Design and development of pH-sensitive liposomes by evaluating the thermotropic behavior of their chimeric bilayers. J. Therm. Anal. Calorim. 127(2), 1381–1392 (2017). https://doi.org/10.1007/s10973-016-6069-3

    Article  Google Scholar 

  68. Franzé, S., Marengo, A., Stella, B., Minghetti, P., Arpicco, S., Cilurzo, F.: Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration. Int. J. Pharm. 535(1–2), 333–339 (2018). https://doi.org/10.1016/j.ijpharm.2017.11.028

    Article  Google Scholar 

  69. Cosco, D., Tsapis, N., Nascimento, T.L., Fresta, M., Chapron, D., Taverna, M., Arpicco, S., Fattal, E.: Polysaccharide-coated liposomes by post-insertion of a hyaluronan-lipid conjugate. Colloids Surf., B 158, 119–126 (2017). https://doi.org/10.1016/j.colsurfb.2017.06.029

    Article  Google Scholar 

  70. Hirsch-Lerner, D., Barenholz, Y.: Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochem. Biophys. Acta 1461(1), 47–57 (1999). https://doi.org/10.1016/S0005-2736(99)00145-5

    Article  Google Scholar 

  71. Aleandri, S., Bonicelli, M.G., Giansanti, L., Giuliani, C., Ierino, M., Mancini, G., Martino, A., Scipioni, A.: A DSC investigation on the influence of gemini surfactant stereochemistry on the organization of lipoplexes and on their interaction with model membranes. Chem. Phys. Lipid. 165(8), 838–844 (2012). https://doi.org/10.1016/j.chemphyslip.2012.11.003

    Article  Google Scholar 

  72. Henriksen-Lacey, M., Bramwell, V.W., Christensen, D., Agger, E.M., Andersen, P., Perrie, Y.: Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Release 142(2), 180–186 (2009). https://doi.org/10.1016/j.jconrel.2009.10.022

    Article  Google Scholar 

  73. Perrie, Y., Kastner, E., Kaurm, R., Willkinsonm, A., Inghamm, A.J.: A case-study investigating the physicochemical characteristics that dictate the function of a liposomal adjuvant. Hum. Vaccin. Immunotherapeutics 9(6), 1374–1381 (2013). https://doi.org/10.4161/hv.24694

    Article  Google Scholar 

  74. Hamborg, M., Rose, F., Jorgensen, L., Bjorklund, K., Pedersen, H.B., Christensen, D., Foged, C.: Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems: effect of charge, fluidity and antigen-to-lipid ratio. Biochem. Biophys. Acta 1838(8), 2001–2010 (2014). https://doi.org/10.1016/j.bbamem.2014.04.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Demetzos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chountoulesi, M., Naziris, N., Pippa, N., Pispas, S., Demetzos, C. (2019). Differential Scanning Calorimetry (DSC): An Invaluable Tool for the Thermal Evaluation of Advanced Chimeric Liposomal Drug Delivery Nanosystems. In: Demetzos, C., Pippa, N. (eds) Thermodynamics and Biophysics of Biomedical Nanosystems. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0989-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0989-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0988-5

  • Online ISBN: 978-981-13-0989-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics