Skip to main content

New Combination/Application of Polymer-Based Nanoparticles for Biomedical Engineering

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Polymer-based nanoparticles (PNPs) are attractive in part due to their ultra-small size, versatility and target specificity. Therefore, PNPs have been increasingly used in a variety of biomedical applications including diagnoses and therapeutic treatment. In this chapter, we focus on the recent studies (within 5 years) with some new ideas/agent’s application in biomedical field and roughly divide applications of PNPs into four categories: (1) Delivery, (2) In vivo imaging, (3) Therapies, and (4) Other applications. First, we introduce how PNPs can enhance the treatment and delivery efficiency of therapeutic agent. Second, how PNPs can be used to help in vivo imaging system for disease tracking and monitor. Then, we reveal some novel PNPs which is able to function as an agent in photodynamic, photothermal, sonodynamic and neuron capture therapy. Furthermore, we also mention some interesting applications of PNPs for biomedical field in individual form or cluster employment, such as immunoswitch particles, surface fabrication. Finally, the challenges and future development of PNPs are also discussed. In delivery section, we focus on how polymer “can be used” as vehicles in delivery application. But, in the section of imaging and therapies, we carried on how polymer as an “adjuvant” for functional enhancement. The biodegradable property of PNPs is the feature that they can be controllable for itself degradation and drug release as a chief actor. Besides, in imaging and therapies application, PNPs can be the support role for helping contrast agent or photo/sonosensitizer to enlarge their imaging or therapeutic effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kreuter J, Speiser PP (1976) In vitro studies of poly(methyl methacrylate) adjuvants. J Pharm Sci 65(11):1624–1627. https://doi.org/10.1002/jps.2600651115

    Article  CAS  Google Scholar 

  2. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001

    Article  CAS  Google Scholar 

  3. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14(1):1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124

    Article  CAS  PubMed  Google Scholar 

  4. Canton I, Battaglia G (2012) Endocytosis at the nanoscale. Chem Soc Rev 41(7):2718–2739. https://doi.org/10.1039/C2CS15309B

    Article  CAS  PubMed  Google Scholar 

  5. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21. https://doi.org/10.1002/smll.200901158

    Article  CAS  PubMed  Google Scholar 

  6. Liu X, Yang Y, Urban MW (2017) Stimuli-responsive polymeric nanoparticles. Macromol Rapid Commun 38(13). https://doi.org/10.1002/marc.201700030

    Article  Google Scholar 

  7. Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderon M (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44(17):6161–6186. https://doi.org/10.1039/C5CS00199D

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Maciel D, Rodrigues J, Shi X, Tomás H (2015) Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem Rev 115(16):8564–8608. https://doi.org/10.1021/cr500131f

    Article  CAS  PubMed  Google Scholar 

  9. Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Chen X (2016) Polymeric nanostructured materials for biomedical applications. Prog Polym Sci 60:86–128. https://doi.org/10.1016/j.progpolymsci.2016.05.005

    Article  CAS  Google Scholar 

  10. Thakor AS, Gambhir SS (2013) Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin 63(6):395–418. https://doi.org/10.3322/caac.21199

    Article  PubMed  Google Scholar 

  11. Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, Wang XY, Ye XD, Nie SM, Wang J (2016) Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10(7):6753–6761. https://doi.org/10.1021/acsnano.6b02326

    Article  CAS  PubMed  Google Scholar 

  12. Yin H, Song C-Q, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K, Mou H, Oberholzer A, Ding J, Kwan S-Y, Bogorad RL, Zatsepin T, Koteliansky V, Wolfe SA, Xue W, Langer R, Anderson DG (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35:1179. https://doi.org/10.1038/nbt.4005

    Article  CAS  Google Scholar 

  13. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT (2017) In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 12:813. https://doi.org/10.1038/nnano.2017.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue Y, Xu X, Zhang X-Q, Farokhzad OC, Langer R (2016) Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci 113(20):5552–5557. https://doi.org/10.1073/pnas.1603840113

    Article  CAS  PubMed  Google Scholar 

  15. Mi P, Kokuryo D, Cabral H, Wu H, Terada Y, Saga T, Aoki I, Nishiyama N, Kataoka K (2016) A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat Nanotechnol 11:724. https://doi.org/10.1038/nnano.2016.72

    Article  CAS  PubMed  Google Scholar 

  16. Keliher EJ, Ye Y-X, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, Groenen H, Fay F, Perez-Medina C, Calcagno C, Carlucci G, Reiner T, Sun Y, Courties G, Iwamoto Y, Kim H-Y, Wang C, Chen JW, Swirski FK, Wey H-Y, Hooker J, Fayad ZA, Mulder WJM, Weissleder R, Nahrendorf M (2017) Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun 8:14064. https://doi.org/10.1038/ncomms14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hinde E, Thammasiraphop K, Duong HTT, Yeow J, Karagoz B, Boyer C, Gooding JJ, Gaus K (2016) Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat Nanotechnol 12:81. https://doi.org/10.1038/nnano.2016.160

    Article  CAS  PubMed  Google Scholar 

  18. Miller MA, Chandra R, Cuccarese MF, Pfirschke C, Engblom C, Stapleton S, Adhikary U, Kohler RH, Mohan JF, Pittet MJ, Weissleder R (2017) Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med 9(392):eaal0225. https://doi.org/10.1126/scitranslmed.aal0225

    Article  PubMed  Google Scholar 

  19. Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O’Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF (2015) Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 7(271):271ra277–271ra277. https://doi.org/10.1126/scitranslmed.3010633

    Article  CAS  Google Scholar 

  20. Zhao CC, Zhang XL, Li KB, Zhu SJ, Guo ZQ, Zhang LL, Wang FY, Fei Q, Luo SH, Shi P, Tian H, Zhu WH (2015) Forster resonance energy transfer switchable self-assembled micellar nanoprobe: ratiometric fluorescent trapping of endogenous H2S generation via Fluvastatin-stimulated upregulation. J Am Chem Soc 137(26):8490–8498. https://doi.org/10.1021/jacs.5b03248

    Article  CAS  Google Scholar 

  21. Pu KY, Shuhendler AJ, Jokerst JV, Mei JG, Gambhir SS, Bao ZN, Rao JH (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9(3):233–239. https://doi.org/10.1038/nnano.2013.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, Wang C, Liu Z, Chan EM, Duan C, Han G (2014) Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 8(10):10621–10630. https://doi.org/10.1021/nn505051d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Xu LG, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7. https://doi.org/10.1038/ncomms13193

    Article  CAS  Google Scholar 

  24. Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J (2017) Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 139(3):1275–1284. https://doi.org/10.1021/jacs.6b11846

    Article  CAS  PubMed  Google Scholar 

  25. Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li YM, Aoki I, Ono K, Takahashi H, Cabral H, Nishiyama N, Kataoka K (2015) Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano 9(6):5913–5921. https://doi.org/10.1021/acsnano.5b00532

    Article  CAS  PubMed  Google Scholar 

  26. Suk JS, Xu QG, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51. https://doi.org/10.1016/j.addr.2015.09.012

    Article  CAS  Google Scholar 

  27. Maeda H (2012) Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc Jpn Acad Ser B Phys Biol Sci 88(3):53–71. https://doi.org/10.2183/pjab.88.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abu Lila AS, Kiwada H, Ishida T (2013) The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release 172(1):38–47. https://doi.org/10.1016/j.jconrel.2013.07.026

    Article  CAS  PubMed  Google Scholar 

  29. Bertrand N, Wu J, Xu XY, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. https://doi.org/10.1016/j.addr.2013.11.009

    Article  CAS  Google Scholar 

  30. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42(3):1147–1235. https://doi.org/10.1039/C2CS35265F

    Article  CAS  PubMed  Google Scholar 

  31. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431. https://doi.org/10.1021/acs.chemrev.5b00589

    Article  CAS  PubMed  Google Scholar 

  32. Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118. https://doi.org/10.1038/nature15373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV, Gao W, Zhang L (2017) Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater 29(16). https://doi.org/10.1002/adma.201606209

    Article  Google Scholar 

  34. Rao L, Bu L-L, Xu J-H, Cai B, Yu G-T, Yu X, He Z, Huang Q, Li A, Guo S-S, Zhang W-F, Liu W, Sun Z-J, Wang H, Wang T-H, Zhao X-Z (2015) Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 11(46):6225–6236. https://doi.org/10.1002/smll.201502388

    Article  CAS  PubMed  Google Scholar 

  35. Tian H, Luo Z, Liu L, Zheng M, Chen Z, Ma A, Liang R, Han Z, Lu C, Cai L (2017) Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv Funct Mater 27(38):1703197-n/a. https://doi.org/10.1002/adfm.201703197

    Article  CAS  Google Scholar 

  36. Kalomiraki M, Thermos K, Chaniotakis NA (2016) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomed 11:1–12

    Article  CAS  Google Scholar 

  37. Kesharwani P, Lyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20(5):536–547. https://doi.org/10.1016/j.drudis.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  38. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307. https://doi.org/10.1016/j.progpolymsci.2013.07.005

    Article  CAS  Google Scholar 

  39. Yang JP, Zhang Q, Chang H, Cheng YY (2015) Surface-engineered dendrimers in gene delivery. Chem Rev 115(11):5274–5300. https://doi.org/10.1021/cr500542t

    Article  CAS  PubMed  Google Scholar 

  40. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U (2017) Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 22(2):314–326. https://doi.org/10.1016/j.drudis.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  41. Wei T, Chen C, Liu J, Liu C, Posocco P, Liu XX, Cheng Q, Huo SD, Liang ZC, Fermeglia M, Pricl S, Liang XJ, Rocchi P, Peng L (2015) Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci U S A 112(10):2978–2983. https://doi.org/10.1073/pnas.1418494112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang H, Leffler CT (2013) Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management. J Ocul Pharmacol Ther 29(2):166–172. https://doi.org/10.1089/jop.2012.0197

    Article  CAS  PubMed  Google Scholar 

  43. Bose RJC, Ravikumar R, Karuppagounder V, Bennet D, Rangasamy S, Thandavarayan RA (2017) Lipid–polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges. Drug Discov Today 22(8):1258–1265. https://doi.org/10.1016/j.drudis.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  44. Teixeira MC, Carbone C, Souto EB (2017) Beyond liposomes: recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 68:1–11. https://doi.org/10.1016/j.plipres.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  45. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68(3):701–787. https://doi.org/10.1124/pr.115.012070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F (2016) Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv Mater 28(42):9341–9348. https://doi.org/10.1002/adma.201503799

    Article  CAS  PubMed  Google Scholar 

  47. Rajala A, Wang YH, Zhu Y, Ranjo-Bishop M, Ma JX, Mao CB, Rajala RV (2014) Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett 14:5257–5263. https://doi.org/10.1021/nl502275s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang YH, Rajala A, Rajala RVS (2015) Lipid nanoparticles for ocular gene delivery. J Funct Biomater 6:379–394. https://doi.org/10.3390/jfb6020379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muthu MS, Leong DT, Mei L, Feng S-S (2014) Nanotheranostics ˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677. https://doi.org/10.7150/thno.8698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suffredini G, East JE, Levy LM (2014) New applications of nanotechnology for neuroimaging. Am J Neuroradiol 35(7):1246–1253. https://doi.org/10.3174/ajnr.A3543

    Article  CAS  PubMed  Google Scholar 

  51. Gaitzsch J, Huang X, Voit B (2016) Engineering functional polymer capsules toward smart nanoreactors. Chem Rev 116(3):1053–1093. https://doi.org/10.1021/acs.chemrev.5b00241

    Article  CAS  PubMed  Google Scholar 

  52. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4):2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gibori H, Eliyahu S, Krivitsky A, Ben-Shushan D, Epshtein Y, Tiram G, Blau R, Ofek P, Lee JS, Ruppin E, Landsman L, Barshack I, Golan T, Merquiol E, Blum G, Satchi-Fainaro R (2018) Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a leads to improved therapeutic response in pancreatic cancer. Nat Commun 9(1):16. https://doi.org/10.1038/s41467-017-02283-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peppas NA (1996) An introduction to materials in medicine. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science. Academic, New York, pp 60–64

    Google Scholar 

  55. Tseng C, Su W, Yen K, Yang K, Lin F (2009) The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 30:3476–3485. https://doi.org/10.1016/j.biomaterials.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  56. Tseng C, Chen K, Su W, Lee Y, Wu C, Fang H, Lin F (2013) Cationic gelatin nanoparticles for drug delivery to the ocular surface: in vitro and in vivo evaluation. J Nanomater 2013:1–11. https://doi.org/10.1155/2013/238351

    Article  CAS  Google Scholar 

  57. Tseng CL, Peng CL, Huang JY, Chen JC, Lin FH (2012) Gelatin nanoparticles as gene carriers for transgenic chicken applications. J Biomater Appl 27(8):1055–1065. https://doi.org/10.1177/0885328211434089

    Article  PubMed  Google Scholar 

  58. Yu M, Zheng J (2015) Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9(7):6655–6674. https://doi.org/10.1021/acsnano.5b01320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937. https://doi.org/10.1021/cr500314d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986. https://doi.org/10.1021/acs.chemrev.6b00073

    Article  CAS  PubMed  Google Scholar 

  61. Estelrich J, Sanchez-Martin MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed 10:1727–1741. https://doi.org/10.2147/ijn.s76501

    Article  CAS  Google Scholar 

  62. Tseng C-L, Shih IL, Stobinski L, Lin F-H (2010) Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31(20):5427–5435. https://doi.org/10.1016/j.biomaterials.2010.03.049

    Article  CAS  PubMed  Google Scholar 

  63. Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK (2016) The evolution of gadolinium based contrast agents: from single-modality to multi-modality. Nanoscale 8(20):10491–10510. https://doi.org/10.1039/C6NR00267F

    Article  CAS  PubMed  Google Scholar 

  64. Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M (2016) Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomedicine 12(2):287–307. https://doi.org/10.1016/j.nano.2015.10.019

    Article  CAS  PubMed  Google Scholar 

  65. Goel S, England CG, Chen F, Cai W (2017) Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev 113:157–176. https://doi.org/10.1016/j.addr.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  66. Morais GR, Paulo A, Santos I (2012) Organometallic complexes for SPECT imaging and/or radionuclide therapy. Organometallics 31(16):5693–5714. https://doi.org/10.1021/om300501d

    Article  CAS  Google Scholar 

  67. Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H (2017) Radiolabelled polymeric materials for imaging and treatment of cancer: quo vadis? Adv Healthc Mater 6(6):1601115-n/a. https://doi.org/10.1002/adhm.201601115

    Article  CAS  Google Scholar 

  68. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gönen M, Kalaigian H, Schöder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149. https://doi.org/10.1126/scitranslmed.3009524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen Y, Cheng L, Dong Z, Chao Y, Lei H, Zhao H, Wang J, Liu Z (2017) Degradable vanadium disulfide nanostructures with unique optical and magnetic functions for cancer theranostics. Angew Chem Int Ed 56(42):12991–12996. https://doi.org/10.1002/anie.201707128

    Article  CAS  Google Scholar 

  70. Palui G, Aldeek F, Wang W, Mattoussi H (2015) Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem Soc Rev 44(1):193–227. https://doi.org/10.1039/C4CS00124A

    Article  CAS  PubMed  Google Scholar 

  71. Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42(16):6620–6633. https://doi.org/10.1039/C3CS60036J

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y (2015) Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 7(27):11486–11508. https://doi.org/10.1039/C5NR01444A

    Article  CAS  PubMed  Google Scholar 

  73. Reisch A, Klymchenko AS (2016) Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small 12(15):1968–1992. https://doi.org/10.1002/smll.201503396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen M, Yin M (2014) Design and development of fluorescent nanostructures for bioimaging. Prog Polym Sci 39(2):365–395. https://doi.org/10.1016/j.progpolymsci.2013.11.001

    Article  CAS  Google Scholar 

  75. Peng H-S, Chiu DT (2015) Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev 44(14):4699–4722. https://doi.org/10.1039/C4CS00294F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim SE, Zhang L, Ma K, Riegman M, Chen F, Ingold I, Conrad M, Turker MZ, Gao M, Jiang X, Monette S, Pauliah M, Gonen M, Zanzonico P, Quinn T, Wiesner U, Bradbury MS, Overholtzer M (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 11:977. https://doi.org/10.1038/nnano.2016.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao X, Yue Q, Liu Z, Ke M, Zhou X, Li S, Zhang J, Zhang R, Chen L, Mao Y, Li C (2017) Guiding brain-tumor surgery via blood–brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals. Adv Mater 29(21). https://doi.org/10.1002/adma.201603917

    Article  Google Scholar 

  78. Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL (2017) Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev 117(2):536–711. https://doi.org/10.1021/acs.chemrev.6b00030

    Article  CAS  PubMed  Google Scholar 

  79. Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13:639. https://doi.org/10.1038/nmeth.3929

    Article  CAS  PubMed  Google Scholar 

  80. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114(21):10869–10939. https://doi.org/10.1021/cr400532z

    Article  CAS  PubMed  Google Scholar 

  81. Ng KK, Zheng G (2015) Molecular interactions in organic nanoparticles for phototheranostic applications. Chem Rev 115(19):11012–11042. https://doi.org/10.1021/acs.chemrev.5b00140

    Article  CAS  PubMed  Google Scholar 

  82. Elsabahy M, Heo GS, Lim S-M, Sun G, Wooley KL (2015) Polymeric nanostructures for imaging and therapy. Chem Rev 115(19):10967–11011. https://doi.org/10.1021/acs.chemrev.5b00135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work ? Photochem Photobiol 55(1):145–157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x

    Article  CAS  PubMed  Google Scholar 

  84. Allison RR, Moghissi K (2013) Photodynamic therapy (PDT): PDT mechanisms. ClinEndosc 46(1):24–29. https://doi.org/10.5946/ce.2013.46.1.24

    Article  Google Scholar 

  85. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115(4):1990–2042. https://doi.org/10.1021/cr5004198

    Article  CAS  PubMed  Google Scholar 

  86. Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473:347–364. https://doi.org/10.1042/bj20150942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shanmugam V, Selvakumar S, Yeh CS (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43(17):6254–6287. https://doi.org/10.1039/c4cs00011k

    Article  CAS  PubMed  Google Scholar 

  88. Zhou B, Shi BY, Jin DY, Liu XG (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10(11):924–936. https://doi.org/10.1038/nnano.2015.251

    Article  CAS  PubMed  Google Scholar 

  89. Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W (2016) Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano 10(4):3918–3935. https://doi.org/10.1021/acsnano.6b01401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim J, Kim J, Jeong C, Kim WJ (2016) Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev 98:99–112. https://doi.org/10.1016/j.addr.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  91. Zou LL, Wang H, He B, Zeng LJ, Tan T, Cao HQ, He XY, Zhang ZW, Guo SR, Li YP (2016) Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6):762–772. https://doi.org/10.7150/thno.14988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aioub M, El-Sayed MA (2016) A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J Am Chem Soc 138(4):1258–1264. https://doi.org/10.1021/jacs.5b10997

    Article  CAS  PubMed  Google Scholar 

  93. Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martin Rodriguez E, Garcia Sole J (2014) Nanoparticles for photothermal therapies. Nanoscale 6(16):9494–9530. https://doi.org/10.1039/C4NR00708E

    Article  CAS  Google Scholar 

  94. Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X-F, Zhao Y, Zhang H, Wang H, Chu PK (2016) Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 7:12967. https://doi.org/10.1038/ncomms12967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu D, Ma L, An Y, Li Y, Liu Y, Wang L, Guo J, Wang J, Zhou J (2016) Thermoresponsive nanogel-encapsulated PEDOT and HSP70 inhibitor for improving the depth of the photothermal therapeutic effect. Adv Funct Mater 26(26):4749–4759. https://doi.org/10.1002/adfm.201600031

    Article  CAS  Google Scholar 

  96. Xu H, Zhang X, Han R, Yang P, Ma H, Song Y, Lu Z, Yin W, Wu XX, Wang H (2016) Nanoparticles in sonodynamic therapy: state of the art review. RSC Adv 6(56):50697–50705.

    Article  CAS  Google Scholar 

  97. Qian XQ, Zheng YY, Chen Y (2016) Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv Mater 28(37):8097–8129. https://doi.org/10.1002/adma.201602012

    Article  CAS  Google Scholar 

  98. Barth RF, Coderre JA, Vicente MGH, Blue TE (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11(11):3987–4002. https://doi.org/10.1158/1078-0432.Ccr-05-0035

    Article  CAS  PubMed  Google Scholar 

  99. Xiong H, Wei X, Zhou D, Qi Y, Xie Z, Chen X, Jing X, Huang Y (2016) Amphiphilic polycarbonates from carborane-installed cyclic carbonates as potential agents for boron neutron capture therapy. Bioconjug Chem 27(9):2214–2223. https://doi.org/10.1021/acs.bioconjchem.6b00454

    Article  CAS  PubMed  Google Scholar 

  100. Tseng P, Judy JW, Di Carlo D (2012) Magnetic nanoparticle–mediated massively parallel mechanical modulation of single-cell behavior. Nat Methods 9:1113. https://doi.org/10.1038/nmeth.2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nehilla BJ, Hill JJ, Srinivasan S, Chen Y-C, Schulte TH, Stayton PS, Lai JJ (2016) A stimuli-responsive, binary reagent system for rapid isolation of protein biomarkers. Anal Chem 88(21):10404–10410. https://doi.org/10.1021/acs.analchem.6b01961

    Article  CAS  PubMed  Google Scholar 

  102. Kosmides AK, Sidhom J-W, Fraser A, Bessell CA, Schneck JP (2017) Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano 11(6):5417–5429. https://doi.org/10.1021/acsnano.6b08152

    Article  CAS  PubMed  Google Scholar 

  103. Nakamoto M, Nonaka T, Shea KJ, Miura Y, Hoshino Y (2016) Design of synthetic polymer nanoparticles that facilitate resolubilization and refolding of aggregated positively charged lysozyme. J Am Chem Soc 138(13):4282–4285. https://doi.org/10.1021/jacs.5b12600

    Article  CAS  PubMed  Google Scholar 

  104. O’Brien J, Lee SH, Onogi S, Shea KJ (2016) Engineering the protein corona of a synthetic polymer nanoparticle for broad-spectrum sequestration and neutralization of venomous biomacromolecules. J Am Chem Soc 138(51):16604–16607. https://doi.org/10.1021/jacs.6b10950

    Article  CAS  PubMed  Google Scholar 

  105. Koide H, Yoshimatsu K, Hoshino Y, Lee S-H, Okajima A, Ariizumi S, Narita Y, Yonamine Y, Weisman AC, Nishimura Y, Oku N, Miura Y, Shea KJ (2017) A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165). Nat Chem 9:715. https://doi.org/10.1038/nchem.2749

    Article  CAS  PubMed  Google Scholar 

  106. Yaari Z, da Silva D, Zinger A, Goldman E, Kajal A, Tshuva R, Barak E, Dahan N, Hershkovitz D, Goldfeder M, Roitman JS, Schroeder A (2016) Theranostic barcoded nanoparticles for personalized cancer medicine. Nat Commun 7:13325. https://doi.org/10.1038/ncomms13325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dahlman JE, Kauffman KJ, Xing Y, Shaw TE, Mir FF, Dlott CC, Langer R, Anderson DG, Wang ET (2017) Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc Natl Acad Sci 114(8):2060–2065. https://doi.org/10.1073/pnas.1620874114

    Article  CAS  PubMed  Google Scholar 

  108. Parchine M, McGrath J, Bardosova M, Pemble ME (2016) Large area 2D and 3D colloidal photonic crystals fabricated by a roll-to-roll langmuir-blodgett method. Langmuir 32(23):5862–5869. https://doi.org/10.1021/acs.langmuir.6b01242

    Article  CAS  Google Scholar 

  109. Wang P-Y, Pingle H, Koegler P, Thissen H, Kingshott P (2015) Self-assembled binary colloidal crystal monolayers as cell culture substrates. J Mater Chem B 3(12):2545–2552. https://doi.org/10.1039/C4TB02006E

    Article  CAS  Google Scholar 

  110. Wang P-Y, Bennetsen DT, Foss M, Ameringer T, Thissen H, Kingshott P (2015) Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. ACS Appl Mater Interfaces 7(8):4979–4989. https://doi.org/10.1021/acsami.5b00107

    Article  CAS  Google Scholar 

  111. Li F, Josephson DP, Stein A (2011) Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew Chem Int Ed 50(2):360–388. https://doi.org/10.1002/anie.201001451

    Article  CAS  Google Scholar 

  112. Ji LJ, LaPointe VLS, Evans ND, Stevens MM (2012) Changes in embroynic stem cell colony mophology and early differentiation markers driven by colloidal crystal topographical cues. Eur Cell Mater 23:135–146. https://doi.org/10.22203/eCM.v023a10

    Article  CAS  PubMed  Google Scholar 

  113. Wang P-Y, Thissen H, Kingshott P (2016) Stimulation of early osteochondral differentiation of human mesenchymal stem cells using binary colloidal crystals (BCCs). ACS Appl Mater Interfaces 8(7):4477–4488. https://doi.org/10.1021/acsami.5b12660

    Article  CAS  Google Scholar 

  114. Wang P-Y, Hung SS-C, Thissen H, Kingshott P, Wong RC-B (2016) Binary colloidal crystals (BCCs) as a feeder-free system to generate human induced pluripotent stem cells (hiPSCs). Sci Rep 6:36845. https://doi.org/10.1038/srep36845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Esch MB, Mahler GJ, Stokol T, Shuler ML (2014) Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14(16):3081–3092. https://doi.org/10.1039/C4LC00371C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sattler C, Moritz F, Chen S, Steer B, Kutschke D, Irmler M, Beckers J, Eickelberg O, Schmitt-Kopplin P, Adler H, Stoeger T (2017) Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol 14:2. https://doi.org/10.1186/s12989-016-0181-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, Krystek P, Campbell CJ, Hadoke PWF, Donaldson K, Cassee FR, Newby DE, Duffin R, Mills NL (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11(5):4542–4552. https://doi.org/10.1021/acsnano.6b08551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Yuan Wang or Ching-Li Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, R., Wang, PY., Tseng, CL. (2018). New Combination/Application of Polymer-Based Nanoparticles for Biomedical Engineering. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_14

Download citation

Publish with us

Policies and ethics