Skip to main content

Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue Regeneration

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

The native extracellular matrix (ECM) within different origins of tissues provides a dynamic microenvironment for regulating various cellular functions. Thus, recent regenerative medicine and tissue engineering approaches for modulating various stem cell functions and their contributions to tissue repair include the utilization of tissue-specific decellularized matrix-based biomaterials. Because of their unique capabilities to mimic native extracellular microenvironments based on their three-dimensional structures, biochemical compositions, and biological cues, decellularized matrix-based biomaterials have been recognized as an ideal platform for engineering an artificial stem cell niche. Herein, we describe the most commonly used decellularization methods and their potential applications in musculoskeletal tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33(2):94–101

    Article  CAS  PubMed  Google Scholar 

  2. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364

    Article  CAS  PubMed  Google Scholar 

  3. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55. https://doi.org/10.1038/nbt1055

    Article  CAS  PubMed  Google Scholar 

  4. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663. https://doi.org/10.1002/bit.22361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng 12(9):2695–2706. https://doi.org/10.1089/ten.2006.12.2695

    Article  CAS  PubMed  Google Scholar 

  6. Kim H, Lee Y, Kim Y, Hwang Y, Hwang N (2017) Biomimetically reinforced polyvinyl alcohol-based hybrid scaffolds for cartilage tissue engineering. Polymers 9(12):655

    Article  PubMed Central  Google Scholar 

  7. Hwang Y, Phadke A, Varghese S (2011) Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells. Regen Med 6(4):505–524. https://doi.org/10.2217/rme.11.38

    Article  PubMed  Google Scholar 

  8. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13. https://doi.org/10.1016/j.actbio.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  9. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491. https://doi.org/10.1016/j.biomaterials.2008.11.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15. https://doi.org/10.1016/j.actbio.2016.11.068

    Article  CAS  PubMed  Google Scholar 

  11. Dziki JL, Huleihel L, Scarritt ME, Badylak SF (2017) Extracellular matrix bioscaffolds as immunomodulatory biomaterials. Tissue Eng Part A 23(19–20):1152–1159. https://doi.org/10.1089/ten.TEA.2016.0538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53. https://doi.org/10.1146/annurev-bioeng-071910-124743

    Article  CAS  PubMed  Google Scholar 

  13. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221. https://doi.org/10.1038/nm1684

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Zhu Y, Li J, Guo Q, Peng J, Liu S, Yang J, Wang Y (2016) Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng Part B Rev 22(3):193–207. https://doi.org/10.1089/ten.TEB.2015.0290

    Article  PubMed  Google Scholar 

  15. Cheng CW, Solorio LD, Alsberg E (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 32(2):462–484. https://doi.org/10.1016/j.biotechadv.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spang MT, Christman KL (2018) Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater 68:1–14. https://doi.org/10.1016/j.actbio.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  17. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017:9831534. https://doi.org/10.1155/2017/9831534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Syed O, Walters NJ, Day RM, Kim HW, Knowles JC (2014) Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 10(12):5043–5054. https://doi.org/10.1016/j.actbio.2014.08.024

    Article  CAS  PubMed  Google Scholar 

  20. Gorschewsky O, Puetz A, Riechert K, Klakow A, Becker R (2005) Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. Biomed Mater Eng 15(6):403–411

    CAS  PubMed  Google Scholar 

  21. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT, Badylak SF (2010) The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 31(33):8626–8633. https://doi.org/10.1016/j.biomaterials.2010.07.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heerklotz H (2008) Interactions of surfactants with lipid membranes. Q Rev Biophys 41(3–4):205–264. https://doi.org/10.1017/S0033583508004721

    Article  CAS  PubMed  Google Scholar 

  23. Lumpkins SB, Pierre N, McFetridge PS (2008) A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater 4(4):808–816. https://doi.org/10.1016/j.actbio.2008.01.016

    Article  PubMed  Google Scholar 

  24. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216. https://doi.org/10.1089/ten.TEA.2009.0602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–820. https://doi.org/10.1038/nm.2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilpin SE, Ren X, Okamoto T, Guyette JP, Mou H, Rajagopal J, Mathisen DJ, Vacanti JP, Ott HC (2014) Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann Thorac Surg 98(5):1721–1729.; discussion 9. https://doi.org/10.1016/j.athoracsur.2014.05.080

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petersen TH, Calle EA, Colehour MB, Niklason LE (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195(3):222–231. https://doi.org/10.1159/000324896

    Article  CAS  PubMed  Google Scholar 

  28. Keane TJ, Swinehart IT, Badylak SF (2015) Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84:25–34. https://doi.org/10.1016/j.ymeth.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  29. Fu Y, Fan X, Tian C, Luo J, Zhang Y, Deng L, Qin T, Lv Q (2016) Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study. J Cell Mol Med 20(4):740–749. https://doi.org/10.1111/jcmm.12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Elder BD, Kim DH, Athanasiou KA (2010) Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery 66(4):722–727.; discussion 7. https://doi.org/10.1227/01.NEU.0000367616.49291.9F

    Article  PubMed  Google Scholar 

  31. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541. https://doi.org/10.1126/science.1189345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Flynn LE (2010) The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 31(17):4715–4724. https://doi.org/10.1016/j.biomaterials.2010.02.046

    Article  CAS  PubMed  Google Scholar 

  33. Xing Q, Yates K, Tahtinen M, Shearier E, Qian Z, Zhao F (2015) Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng Part C Methods 21(1):77–87. https://doi.org/10.1089/ten.TEC.2013.0666

    Article  CAS  PubMed  Google Scholar 

  34. Lin P, Chan WC, Badylak SF, Bhatia SN (2004) Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 10(7–8):1046–1053. https://doi.org/10.1089/ten.2004.10.1046

    Article  CAS  PubMed  Google Scholar 

  35. Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31(13):3590–3595. https://doi.org/10.1016/j.biomaterials.2010.01.073

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki S, Funamoto S, Hashimoto Y, Kimura T, Honda T, Hattori S, Kobayashi H, Kishida A, Mochizuki M (2009) In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis 15:2022–2028

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Seo Y, Jung Y, Kim SH (2018) Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 67:270–281. https://doi.org/10.1016/j.actbio.2017.11.046

    Article  CAS  PubMed  Google Scholar 

  38. Halfwerk FR, Rouwkema J, Gossen JA, Grandjean JG (2018) Supercritical carbon dioxide decellularised pericardium: mechanical and structural characterisation for applications in cardio-thoracic surgery. J Mech Behav Biomed Mater 77:400–407. https://doi.org/10.1016/j.jmbbm.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  39. Calori GM, Mazza E, Colombo M, Ripamonti C (2011) The use of bone-graft substitutes in large bone defects: any specific needs? Injury 42(Suppl 2):S56–S63. https://doi.org/10.1016/j.injury.2011.06.011

    Article  PubMed  Google Scholar 

  40. Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518. https://doi.org/10.1038/nbt818

    Article  CAS  PubMed  Google Scholar 

  41. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20(9):1055–1060

    Article  CAS  PubMed  Google Scholar 

  42. Phadke A, Hwang Y, Kim SH, Kim SH, Yamaguchi T, Masuda K, Varghese S (2013) Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater 25:114–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG (2005) Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26(9):971–977. https://doi.org/10.1016/j.biomaterials.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  44. Papadimitropoulos A, Scotti C, Bourgine P, Scherberich A, Martin I (2015) Engineered decellularized matrices to instruct bone regeneration processes. Bone 70:66–72. https://doi.org/10.1016/j.bone.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  45. Nyberg E, Rindone A, Dorafshar A, Grayson WL (2017) Comparison of 3D-printed poly-varepsilon-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, Bio-Oss, or decellularized bone matrix. Tissue Eng Part A 23(11–12):503–514. https://doi.org/10.1089/ten.TEA.2016.0418

    Article  CAS  PubMed  Google Scholar 

  46. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO (2012) Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev 64(12):1063–1077. https://doi.org/10.1016/j.addr.2012.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee DJ, Diachina S, Lee YT, Zhao L, Zou R, Tang N, Han H, Chen X, Ko CC (2016) Decellularized bone matrix grafts for calvaria regeneration. J Tissue Eng 7:2041731416680306. https://doi.org/10.1177/2041731416680306

    Article  Google Scholar 

  48. Hashimoto Y, Funamoto S, Kimura T, Nam K, Fujisato T, Kishida A (2011) The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials 32(29):7060–7067. https://doi.org/10.1016/j.biomaterials.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  49. Gothard D, Smith EL, Kanczler JM, Black CR, Wells JA, Roberts CA, White LJ, Qutachi O, Peto H, Rashidi H, Rojo L, Stevens MM, El Haj AJ, Rose FR, Shakesheff KM, Oreffo RO (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS One 10(12):e0145080. https://doi.org/10.1371/journal.pone.0145080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G, Spitalnik PF, Grayson WL, Vunjak-Novakovic G (2012) Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci U S A 109(22):8705–8709. https://doi.org/10.1073/pnas.1201830109

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grayson WL, Marolt D, Bhumiratana S, Frohlich M, Guo XE, Vunjak-Novakovic G (2011) Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnol Bioeng 108(5):1159–1170. https://doi.org/10.1002/bit.23024

    Article  CAS  PubMed  Google Scholar 

  52. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  CAS  PubMed  Google Scholar 

  53. Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347(3):613–627. https://doi.org/10.1007/s00441-011-1243-1

    Article  CAS  PubMed  Google Scholar 

  54. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468. https://doi.org/10.1177/1941738109350438

    Article  PubMed  PubMed Central  Google Scholar 

  55. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34. https://doi.org/10.1038/nrrheum.2014.157

    Article  CAS  PubMed  Google Scholar 

  56. Ahn CB, Kim Y, Park SJ, Hwang Y, Lee JW (2017) Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. J Biomater Sci Polym Ed 1–15. https://doi.org/10.1080/09205063.2017.1383020

    Article  Google Scholar 

  57. Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31(3):169–176. https://doi.org/10.1016/j.tibtech.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  58. Burdick JA, Mauck RL, Gorman JH 3rd, Gorman RC (2013) Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 5(176):176ps4. https://doi.org/10.1126/scitranslmed.3003997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gong YY, Xue JX, Zhang WJ, Zhou GD, Liu W, Cao Y (2011) A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 32(9):2265–2273. https://doi.org/10.1016/j.biomaterials.2010.11.078

    Article  CAS  PubMed  Google Scholar 

  60. Rowland CR, Colucci LA, Guilak F (2016) Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials 91:57–72. https://doi.org/10.1016/j.biomaterials.2016.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S (2008) A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 29(15):2378–2387. https://doi.org/10.1016/j.biomaterials.2008.01.037

    Article  CAS  PubMed  Google Scholar 

  62. Kang H, Peng J, Lu S, Liu S, Zhang L, Huang J, Sui X, Zhao B, Wang A, Xu W, Luo Z, Guo Q (2014) In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med 8(6):442–453. https://doi.org/10.1002/term.1538

    Article  CAS  PubMed  Google Scholar 

  63. Sutherland AJ, Beck EC, Dennis SC, Converse GL, Hopkins RA, Berkland CJ, Detamore MS (2015) Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One 10(5):e0121966. https://doi.org/10.1371/journal.pone.0121966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yin H, Wang Y, Sun Z, Sun X, Xu Y, Li P, Meng H, Yu X, Xiao B, Fan T, Wang Y, Xu W, Wang A, Guo Q, Peng J, Lu S (2016) Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater 33:96–109. https://doi.org/10.1016/j.actbio.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  65. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935. https://doi.org/10.1038/ncomms4935

    Article  CAS  PubMed  Google Scholar 

  66. Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B, Tarnok A (2014) Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol 5:218. https://doi.org/10.3389/fphys.2014.00218

    Article  PubMed  PubMed Central  Google Scholar 

  67. Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521. https://doi.org/10.1016/j.biomaterials.2015.02.110

    Article  CAS  PubMed  Google Scholar 

  68. Crawley S, Farrell EM, Wang W, Gu M, Huang HY, Huynh V, Hodges BL, Cooper DN, Kaufman SJ (1997) The alpha7beta1 integrin mediates adhesion and migration of skeletal myoblasts on laminin. Exp Cell Res 235(1):274–286. https://doi.org/10.1006/excr.1997.3671

    Article  CAS  PubMed  Google Scholar 

  69. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. https://doi.org/10.1002/mus.22094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang YX, Rudnicki MA (2011) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13(2):127–133. https://doi.org/10.1038/nrm3265

    Article  CAS  PubMed  Google Scholar 

  71. Hwang Y, Seo T, Hariri S, Choi C, Varghese S (2017) Matrix topographical cue-mediated myogenic differentiation of human embryonic stem cell derivatives. Polymers 9(11):580

    Article  PubMed Central  Google Scholar 

  72. Conconi MT, De Coppi P, Bellini S, Zara G, Sabatti M, Marzaro M, Zanon GF, Gamba PG, Parnigotto PP, Nussdorfer GG (2005) Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials 26(15):2567–2574. https://doi.org/10.1016/j.biomaterials.2004.07.035

    Article  CAS  PubMed  Google Scholar 

  73. Merritt EK, Hammers DW, Tierney M, Suggs LJ, Walters TJ, Farrar RP (2010) Functional assessment of skeletal muscle regeneration utilizing homologous extracellular matrix as scaffolding. Tissue Eng Part A 16(4):1395–1405. https://doi.org/10.1089/ten.TEA.2009.0226

    Article  CAS  PubMed  Google Scholar 

  74. DeQuach JA, Lin JE, Cam C, Hu D, Salvatore MA, Sheikh F, Christman KL (2012) Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. Eur Cell Mater 23:400–412 discussion 12

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ungerleider JL, Johnson TD, Rao N, Christman KL (2015) Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods 84:53–59. https://doi.org/10.1016/j.ymeth.2015.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stern MM, Myers RL, Hammam N, Stern KA, Eberli D, Kritchevsky SB, Soker S, Van Dyke M (2009) The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo. Biomaterials 30(12):2393–2399. https://doi.org/10.1016/j.biomaterials.2008.12.069

    Article  CAS  PubMed  Google Scholar 

  77. DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, Christman KL (2010) Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5(9):e13039. https://doi.org/10.1371/journal.pone.0013039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chaturvedi V, Dye DE, Kinnear BF, van Kuppevelt TH, Grounds MD, Coombe DR (2015) Interactions between skeletal muscle myoblasts and their extracellular matrix revealed by a serum free culture system. PLoS One 10(6):e0127675. https://doi.org/10.1371/journal.pone.0127675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Merritt EK, Cannon MV, Hammers DW, Le LN, Gokhale R, Sarathy A, Song TJ, Tierney MT, Suggs LJ, Walters TJ, Farrar RP (2010) Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng Part A 16(9):2871–2881. https://doi.org/10.1089/ten.TEA.2009.0826

    Article  CAS  PubMed  Google Scholar 

  80. Rao N, Agmon G, Tierney MT, Ungerleider JL, Braden RL, Sacco A, Christman KL (2017) Engineering an injectable muscle-specific microenvironment for improved cell delivery using a nanofibrous extracellular matrix hydrogel. ACS Nano 11(4):3851–3859. https://doi.org/10.1021/acsnano.7b00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Choi YJ, Kim TG, Jeong J, Yi HG, Park JW, Hwang W, Cho DW (2016) 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater 5(20):2636–2645. https://doi.org/10.1002/adhm.201600483

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016K1A4A3914725) and partially supported by the Soonchunhyang University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsung Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, H., Kim, Y., Fendereski, M., Hwang, N.S., Hwang, Y. (2018). Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue Regeneration. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_9

Download citation

Publish with us

Policies and ethics