Skip to main content

Survey on Fractality in Complex Networks

  • Conference paper
  • First Online:
Recent Developments in Intelligent Computing, Communication and Devices

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 752))

Abstract

The fractal property is considered as the third fundamental property of complex networks; its research has both rich theoretical value and practical significance. This paper reviews the research results of fractal network from three aspects: the origins of fractality, the algorithms for fractality, and the influence of fractality in complex networks; some of these algorithms are described in detail. Finally, the paper concludes and looks forward to the possible research focuses for fractal networks in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Q. Fang, X. F. Wang, Z. G. Zheng, Q. Bi, Z. R. Di, X. Li. New interdisciplinary science: network science (I) [J]. Progress in physics. 27(3):239–343(2007)

    Google Scholar 

  2. Duncan J. Watts, S. Strogatz. Collective dynamics of ‘small-world’ networks. Nature. 393(6684):440–442(1998)

    Google Scholar 

  3. A.-L. Barabasi, R. Albert. Emergence of scaling in random networks [J]. Science. 286(5439):509–512(1999)

    Google Scholar 

  4. R. Albert, H. Jeong, A.-L. Barabasi. Internet:Diameter of the world-wide web [J]. Nature. 401:130–131(1999)

    Google Scholar 

  5. C. Song, S. Havlin, H. A. Makse. Self-similarity of complex networks. Nature. 433 (7024):392–395(2005)

    Google Scholar 

  6. C. Song, S. Havlin, H. A. Makse. Origins of fractality in the growth of complex networks [J]. Nature. Physics. 2 (4):275–281(2006)

    Google Scholar 

  7. B. J. Zheng,H. R. Wu,L. Kuang, J. Qin, et.al A Simple Model Clarifies the Complicated Relationships of Complex Networks [J]. Scientific Reports. 4: 6197(2014)

    Google Scholar 

  8. D.Y. Li, X.Y. Wang, P.H. Huang. A fractal growth model: Exploring the connection pattern of hubs in complex networks [J]. Physica A. 471:200–211(2017)

    Google Scholar 

  9. C. Song, L.K. Gallos, S. Havlin, H. A. Makse. How to calculate the fractal dimension of a complex network: the box covering algorithm [J]. Journal of Statistical Mechanics: Theory and Experiment. 2007 (3): 297–316 (2007)

    Google Scholar 

  10. C. M. Schneider, T. A. Kesselring, J. S. Andrade Jr, et.al. Box-covering algorithm for fractal dimension of complex networks [J]. Physical Review E; 86(2):016707(2012)

    Google Scholar 

  11. Sun Y, Zhao Y. Overlapping-box-covering method for the fractal dimension of complex networks [J]. Physical Review E. 89 (4): 182–190 (2014)

    Google Scholar 

  12. J. S. Kim, K.-I. Goh, B. Kahng, D. Kim. A box-covering algorithm for fractal scaling in scale-free networks [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 17 (2):026116(2007)

    Google Scholar 

  13. J. S. Kim, K.-I. Goh, B. Kahng, D. Kim. Fractality and self-similarity in scale-free networks [J]. New Journal of Physics, 9(177):1367–2603(2007)

    Google Scholar 

  14. L. Gao, Y.Q. Hu, Z. Di. Accuracy of the ball—covering approach for fractal dimension of complex networks and a rank—driven algorithm [J]. Physical Review E. 78(4):046109 (2008)

    Google Scholar 

  15. C. Z. Yao, J. M. Yang. Improved box dimension calculation algorithm for fractality of complex networks [J]. Computer Engineering and Applications. 46(8):5–7(2010)

    Google Scholar 

  16. H. X. Zhang, Y. Hu, X. Lan, S. Mahadevan, Y, Deng. Fuzzy fractal dimension of complex networks [J]. Applied Soft Computing. 25 (C):514–518(2014)

    Google Scholar 

  17. W. X. Zhou, Z. Q. Jiang, D. Sornette. Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling [J]. Physica A: Statistical Mechanics and its Applications. 375(2): 741–752(2007)

    Google Scholar 

  18. L. Kuang, Z. Zhao, F. Wang, Y.X. Li, F. Yu, Z.J. Li. A differential evolution box-covering algorithm for fractal dimension on complex networks[C]. Evolutionary Computation (CEC), IEEE Congress on. IEEE, 2014: 693–699(2014)

    Google Scholar 

  19. D. J. Wei, Q. Liu, H. X. Zhang, Y. Hu, Y.Deng, S. Mahadevan. Box-covering algorithm for fractal dimension of weighted networks [J]. Scientific Reports. 3(6157):3049(2013)

    Google Scholar 

  20. S. Y. Zhang. The Law of Emergence of Self-similar Structures in Complex Systems and Complex Networks [J]. Complex Systems & Complexity Science. (4):41–51(2006)

    Google Scholar 

  21. S. H. Yook, F. Radicchi, H. Meyer-Ortmanns. Self-similar scale-free networks and disassortativity [J]. Physical Review E. 72 (4): 045105(2005)

    Google Scholar 

  22. L.K. Gallos, C. Song, H. A. Makse. A review of fractality and self-similarity in complex networks [J]. Physica A. 386 (2):686–691(2007)

    Google Scholar 

  23. L. Kuang, B. Zheng, D. Li, et.al. A fractal and scale-free model of complex networks with Hub attraction behaviours [J]. Science China Information Sciences. 58(1): 1–10(2015)

    Google Scholar 

  24. Q. Yao, Z. Yi, F.F. Yi, Y.X.Li. Optimization Model Analysis on Fractal Network with Hub Aggregation Property [J]. Computer Engineering. 43 (4):239–243(2017)

    Google Scholar 

  25. K.-I. Goh, G. Salvi, B. Kahng, D. Kim. Skeleton and fractal scaling in complex networks [J]. Physical Review Letters. 96(1): 018701(2006)

    Google Scholar 

  26. J. S. Kim, K.-I. Goh, G. Salvi, E. Oh, et.al. Fractality in complex networks: Critical and supercritical skeletons [J]. Physical Review E. 75(1):016110(2007)

    Google Scholar 

  27. Z. W. Wei, B. H. Wang. Emergence of fractal scaling in complex networks [J]. Physical Review E. 94 (3–1):032309(2016)

    Google Scholar 

  28. O. Shanker. Defining dimension of a complex network [J]. Modern Physics Letters B. 21(06): 321–326(2007)

    Google Scholar 

  29. X. Wang, Z. Liu, M. Wang. The correlation fractal dimension of complex networks [J]. International Journal of Modern Physics C. 24 (05): 1350033(2013)

    Google Scholar 

  30. L. Lacasa, J. Gomez-Gardenes. Correlation dimension of complex networks [J]. Physical Review Letters. 110 (16): 168703(2013)

    Google Scholar 

  31. D. J. Wei, B. Wei, Y. Hu, H. X. Zhang, Y. Deng. A new information dimension of complex networks [J]. Physics Letters A. 378 (16): 1091–1094(2014)

    Google Scholar 

  32. M.V. Eguiluz, E. Hernandez-Garcia, O. Piro, K. Klemm. Effective dimensions and percolation in hierarchically structured scale-free networks [J]. Physical Review E. 68(5):055102(2003)

    Google Scholar 

  33. H. J. Yang, F. C. Zhao, L.Y. Qi, B.Hu. Temporal series analysis approach to spectra of complex networks [J]. Physical Review E, 69(6):066104 (2004)

    Google Scholar 

  34. H. J. Yang, F. C. Zhao, B. H. Wang. Collective chaos induced by structures of complex networks [J]. Physica A, 364:544–556(2006)

    Google Scholar 

  35. F. C. Zhao, H. J. Yang, B. H. Wang. Scaling invariance in spectra of complex networks: A diffusion factorial moment approach [J]. Physical Review E. 72(4): 046119(2005)

    Google Scholar 

  36. H. J. Yang, C. Y. Yin, G. M. Zhu, B. Li. Self-affine fractals embedded in spectra of complex networks [J]. Physical Review E. 77 (4): 045101(2008)

    Google Scholar 

  37. G. M. Zhu, H. J. Yang, C. Y. Yin, B. Li. Localizations on complex networks [J]. Physical Review E. 77(6):066113(2008)

    Google Scholar 

  38. Z. Z. Zhang, S. G. Zhou, T. Zhou. Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices [J]. The European Physical Journal B. 56:259–271(2007)

    Google Scholar 

  39. Z. Z. Zhang, S. G. Zhou, L.C. Chen, J. Guan. Transition from fractal to non-fractal scaling in growing scale-free networks [J]. The European Physical Journal B. 64 (2):277–283(2008)

    Google Scholar 

  40. Z. Z. Zhang, Y. Qi, S. G. Zhou, Y. Lin, J. H. Guan. Recursive solutions for Laplacian spectra and eigenvectors of a class of growing treelike networks [J]. Physical Review E. 80(1):016104(2009)

    Google Scholar 

  41. Qi Y, Z. Z. Zhang, Ding B L, et.al Structural and spectral properties of a family of deterministic recursive trees: rigorous solutions [J]. Journal of Physics A: Mathematical and Theoretical. 42 (16):165103(2009)

    Google Scholar 

  42. Z. G. Yu, V. Anh, KS. Lau. Multifractal and correlation analyses of protein sequences from complete genomes [J]. Physical Review E. 68(2). 021913(2003)

    Google Scholar 

  43. D. L. Wang, Z. G. Yu, V. Anh. Multifractal analysis of complex networks [J].China Physical B. 21 (8):080501(2012)

    Google Scholar 

  44. B. G. Li, Z. G. Y. Zhou. Fractal and multifractal properties of a family of fractal networks [J]. Journal of Statistical Mechanics: Theory and Experiment. 2014. P02020 (2014).

    Google Scholar 

  45. L.K. Gallos, C. Song, S. Havlin, H. A. Makse. Scaling theory of transport in complex biological networks [J]. Proceedings of the National Academy of Sciences of the United States of America. 104: 7746–7751 (2007)

    Google Scholar 

  46. T. Tél, A. Fülöp, T. Vicsek. Determination of fractal dimensions for geometric multifractals [J]. Physica A 159,155–166 (1989).

    Google Scholar 

  47. J. L. Liu, Z. G. Yu, V. Anh. Determination of multifractal dimension of complex network by means of the sandbox algorithm [J]. Chaos. 25(2):023103 (2015)

    Google Scholar 

  48. S. Furuya, K. Yakubo. Multifractality of complex networks [J]. Physical Review E. 84(3):036118(2011)

    Google Scholar 

  49. D. J. Wei, X. W. Chen, C. Gao, H. X. Zhang, B. Wei, Y. Deng. Multi-fractal analysis of weighted networks [J]. Physics. (2014)

    Google Scholar 

  50. Y. Q. Song, J.L. Liu, Z. G. Yu, B. G. Li. Multifractal analysis of weighted networks by a modified sandbox algorithm[J]. Scientific Reports. 5: 17628(2015)

    Google Scholar 

  51. G. Concas, M. F. Locci, M. Marchesi, S. Pinna, I. Turnu. Fractal dimension in software networks [J]. Europhysics Letters. 76 (6): 1221–1227 (2006)

    Google Scholar 

  52. I. Turnu, G. Concas, M. Marchesi, R Tonelli. The fractal dimension of software as a global quality metric [J]. Information Sciences. 245: 290–303(2013)

    Google Scholar 

  53. Z. Z. Zhang, S. G. Zhou, T. Zhou, et.al. Fractal scale-free networks resistant to disease spread [J]. Journal of Statistical Mechanics: Theory and Experiment. (09): P09008 (2008)

    Google Scholar 

  54. C. Fan, J. L. Guo, Y. L. Zha. Fractal analysis on human dynamics of library loans [J]. Physica A. 391(24):6617–6625(2012)

    Google Scholar 

  55. J. Pu, X. Chen, D. J. Wei, et.al Identifying influential nodes based on local dimension [J]. Epl. 107(1):10010(2014)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (61162002, 61661037), the Jiangxi Province National Natural Science Foundation of China (20151BAB207038), and the Nanchang Hangkong University Graduate Innovation Special Foundation (YC2017023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Zhang, S., Bao, Xl., Yao, Mh., Wang, Y. (2019). Survey on Fractality in Complex Networks. In: Patnaik, S., Jain, V. (eds) Recent Developments in Intelligent Computing, Communication and Devices. Advances in Intelligent Systems and Computing, vol 752. Springer, Singapore. https://doi.org/10.1007/978-981-10-8944-2_78

Download citation

Publish with us

Policies and ethics