Skip to main content

Domestication Loci Controlling Panicle Shape, Seed Shattering, and Seed Awning

  • Chapter
  • First Online:
Rice Genomics, Genetics and Breeding

Abstract

Cultivated rice (Oryza sativa L.) was domesticated from the Asian wild species, Oryza rufipogon Griff. Among morphological differences between them, one of the striking traits specific to cultivated rice is loss of seed shattering. In the early stage of rice domestication, the related traits of this character have been desirable for the ancient seed gatherers because it enhances the efficiency of seed collection. In this chapter, we propose that three morphological traits, closed panicle shape, non-seed shattering, and seed awning, played important roles in controlling the degree of seed dispersal. First, we reviewed domestication loci controlling the three traits. We then evaluated allele effects at these loci using reciprocal backcross populations between O. sativa Nipponbare and our standard wild accession of O. rufipogon W630. In the genetic background of cultivated rice, all the wild functional alleles were responsible for these domestication traits. On the other hand, cultivated non-functional alleles were not always associated with the drastic morphological changes in the genetic background of wild rice. Since ancient humans have selected cultivated-type mutants in natural wild populations, possible domestication process for the emergence of cultivated rice is discussed based on the effects of cultivated non-functional alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bessho-Uehara K, Wang DR, Furuta T et al (2016) Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proc Natl Acad Sci USA 113:8969–8974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiguchi M, Sano Y (1990) A gene complex responsible for seed shattering and panicle spreading found in common wild rices. Rice Genet Newslett 7:105–107

    Google Scholar 

  • Flannery KV (1973) The origins of agriculture. Annu Rev Anthropol 2:271–310

    Article  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates, recent archaeobotanical insights from the Old World. Ann Bot 100:903–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu B, Zhou T, Luo J et al (2015) An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant 8:1635–1650

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–325

    Article  PubMed  Google Scholar 

  • Hua L, Wang DR, Tan L et al (2015) LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27:1875–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemoto M, Otsuka M, Thanh PT et al (2017) Gene interaction at seed-awning loci in the genetic background of wild rice. Genes Genet Syst 92:1–6

    Article  Google Scholar 

  • Ishii T, Numaguchi K, Miura K et al (2013) OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet 45:462–465

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R, Thanh PT, Nimura N et al (2010) Allelic interaction at seed-shattering loci in the genetic backgrounds of wild and cultivated rice species. Genes Genet Syst 85:265–271

    Article  PubMed  Google Scholar 

  • Jin J, Hua L, Zhu Z et al (2016) GAD1 encodes a secreted peptide that regulates grain number, grain length and awn development in rice domestication. Plant Cell 28:2453–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi S, Izawa T, Lin SY et al (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Park JJ, Kim SL et al (2007) Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol 65:487–499

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Griffith ME, Li X et al (2007) Origin of seed shattering in rice (Oryza sativa L.) Planta 226:11–20

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Liu H, Zhou T et al (2013) An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25:3360–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice. Elsevier, Amsterdam

    Google Scholar 

  • Onishi K, Takagi K, Kontani M et al (2007) Different patterns of genealogical relationships found in the two major QTLs causing reduction of seed shattering during rice domestication. Genome 50:757–766

    Article  PubMed  Google Scholar 

  • Yang Z, Wang X, Gu S et al (2008) Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zhang LB, Zhu Q, Wu ZQ et al (2009) Selection on grain shattering genes and rates of rice domestication. New Phytol 184:708–720

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Tan L, Fu Y et al (2013) Genetic control of inflorescence architecture during rice domestication. Nat Commun 4:2200

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Cristina Castillo, University College London, UK, for her critical reading and editing of the manuscript. The seeds of wild rice accession, O. rufipogon W630, were kindly provided by the National Institute of Genetics (National Bioresource Project), Japan. This work was supported in part by a Grant-in-Aid from Japanese Society for Promotion of Science (nos. 26292004 and 26450003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashige Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishii, T., Ishikawa, R. (2018). Domestication Loci Controlling Panicle Shape, Seed Shattering, and Seed Awning. In: Sasaki, T., Ashikari, M. (eds) Rice Genomics, Genetics and Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-10-7461-5_12

Download citation

Publish with us

Policies and ethics