Skip to main content

Antimycotic Role of Soil Bacillus sp. Against Rice Pathogens: A Biocontrol Prospective

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Soil is of utmost important among the natural resources harbouring innumerable microbes essential for maintaining fertility, crop productivity vis-à-vis antagonism against pathogens. Phytopathogens are solely causative agent for wide range of crop diseases, resulting in decreasing crop productivity. The use of bioantagonist as biological control agents has been of great importance to combat phytopathogens rather using chemical pesticides. Biological control of crop pathogens comprises reduction of pathogen inoculum concentration or reduced infectivity. Using a specific bacterial species is an excellent and alternative option against rice pathogens as well as agrochemicals for a positive socio-ecological impact. The genus Bacillus offer several advantages over others in controlling rice pathogens through endospores and production of broad-spectrum antibiotics. The advances in molecular biology play a crucial role to find out the exact molecular pathways and mechanisms underlying antagonistic behaviour of Bacillus sp. facilitating disease remediation, improvement and wider use of biocontrol agents successfully. The pathways of biocontrol involve antibiosis, parasitism, cell wall degradation, competition for nutrients and space and induced disease resistance. The present chapter focuses on Bacillus sp. as a biocontrol agent against rice fungal pathogens including its mode of action, physiology, genetics, advantages, limitations and applications for diseases management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla SA, Algam SAA, Ibrahim EA, El Naim AM (2014) In vitro screening of bacillus isolates for biological control of early blight disease of tomato in Shambat soil. World J Agric Res 2(2):47–50

    Article  Google Scholar 

  • Acea MJ, Moore CR, Alexander M (1988) Survival and growth of bacteria introduced into soil. Soil Biol Biochem 20:509–515

    Article  Google Scholar 

  • Ahmad V, Iqbal AN, Haseeb M, Khan MS (2014) Antimicrobial potential of bacteriocin producing Lysini bacillus jx416856 against foodborne bacterial and fungal pathogens isolated from fruits and vegetable waste. Anaerobe 27:87–95. https://doi.org/10.1016/janaerobe201404001

    Article  CAS  PubMed  Google Scholar 

  • Ali HZ, AbdulRahman AQA, Abdullah AA, Saood HM (2016) Prescreening of pathogenicity of rice pathogens prior to biological control assay under greenhouse conditions. Asian J Sci Tech 07(02):2416–2422

    CAS  Google Scholar 

  • Aslim B, Saúlam N, Beyatli Y (2002) Determination of some properties of Bacillus isolated from soil. Turk J Biol 26:41–48

    Google Scholar 

  • Avis TJ, Bélanger RR (2002) Mechanisms and means of detection of biocontrol activity of Pseudozima yeast against plant-pathogenic fungi. Fed Eur Microbiol Soc Yeast Res 2:5–8

    CAS  Google Scholar 

  • Aye SS, Matsumoto M (2010) Genetic characterization by Rep-PCR of Myanmar isolates of Rhizoctonia spp causal agents of rice sheath diseases. J Plant Pathol 92:255–260

    CAS  Google Scholar 

  • Ayyadurai N, Kirubakaran SI, Srisha S, Sakthivel N (2005) Biological and molecular variability of Sarocladium oryzae the sheath rot pathogen of rice (Oryza sativa L.) Curr Microbiol 50:319–323. https://doi.org/10.1007/s00284-005-4509-6

    Article  CAS  PubMed  Google Scholar 

  • Bajsa N, Morel MA, Brana V, Castro-Sowinski S (2013) The effect of agricultural practices on resident soil microbial communities: focus on biocontrol and biofertilization. In: de Bruij FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley, Hoboken

    Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant- microbe interactions. Science 276:726–733

    Article  CAS  PubMed  Google Scholar 

  • Baker KF (1987) Evolving concepts of biological control of plant pathogens. Annu Rev Phytopathol 25:67–85

    Article  Google Scholar 

  • Bankole SA, Adebanjo A (1998) Efficacyof some fungal and bacterial isolatesin controlling wet rot disease of cowpea caused by Pythium aphanidermatum. J Plant Protect Tropics 11:37–43

    Google Scholar 

  • Basha S, Ulaganathan K (2002) Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Curr Sci 82(12):1457

    CAS  Google Scholar 

  • Bigirimana VP, Hua GKH, Nyamangyoku OI, Höfte M (2015) Rice sheath rot: an emerging ubiquitous destructive disease complex. Front Plant Sci 6:1066. https://doi.org/10.3389/fpls201501066

    Article  PubMed Central  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bol JF, Linthrost HJM, Cornelissen BJC (1990) Plant pathogenesis related proteins induced by virus infection. Annu Rev Phytopathol 28:113–138

    Article  CAS  Google Scholar 

  • Boller T (1985) Induction of hydrolases as defense reaction against pathogens. In: Key JL, Kosuge TA, Liss R (eds) Cellular and molecular biology of plant stress. Alan R Liss, New York, pp 247–262

    Google Scholar 

  • Brock TD, Madigan MT (1991) Biology of microorganisms, 6th edn. Prentice-Hall International, Englewood Cliffs

    Google Scholar 

  • Butenschoen O, Scheu S, Eisenhauer N (2011) Interactive effects of warming soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol Biochem 43:1902–1907

    Article  CAS  Google Scholar 

  • Cavalcanti MA, Oliveira LG, Fernandes MJ, Lima DM (2006) Filamentous fungi isolated from soil in districts of the Xingo’region. Braz. Acta Bot Bras 20(4):831–837

    Article  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases pesticides in the modern world. In: Stoytcheva M (ed) Pesticides use and management. InTech open science, Rijeka, pp 274–302

    Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25:1919–1928

    Article  Google Scholar 

  • Chakrabarti NK (2001) Epidemiology and disease management of brown spot of rice in India. In: Sreenivasaprasad S, Johnson R (eds) Major fungal diseases of rice: recent advances. Springer, Dordrecht, pp 293–306

    Chapter  Google Scholar 

  • Chalkley D (2010) Invasive Fungi Stackburn seedling blight leaf spot of rice -Alternaria padwickii Systematic Mycology and Microbiology Laboratory ARS USDA

    Google Scholar 

  • Chen F, Wang M, Zheng Y, Luo J, Yang X, Wang X (2009) Quantitative changes of plant defense enzymes and phytohormones in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J Microbiol Biotechnol 26:675–684

    Article  CAS  Google Scholar 

  • Chun SC, Schneider RW (1998) Sites of infection by pythium species in rice seedlings and effects of plant age and water depth on disease development. Phytopathology 88(12):1255–1261

    Article  CAS  PubMed  Google Scholar 

  • CMI (1984) Distribution maps of plant diseases. Map No 314, 4th edition. CAB International, Wallingford

    Google Scholar 

  • Collins DP, Jacobsen BJ (2003) Optimizing a Bacillus subtilis isolate for biocontrol of sugar beet Cercospora leaf spot. Biol Conserv 26(2):153–161. https://doi.org/10.1016/S1049-9644(02)00132-9

    Google Scholar 

  • Correa OS, Montecchina MS, Berti MF, Fernandez Ferrari MC, Pucheu NL, Kerber NL, Garcia AF (2009) Bacillus amyloliquefaciens BNM122 a potential microbial biocontrol agent applied on soybeen seeds cause a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41:185–194

    Article  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. MPMI 7:440–448

    Article  CAS  Google Scholar 

  • Crop Protection Compendium (2007) CAB International, Wallingford

    Google Scholar 

  • Cruz AF, Hamel C, Yang C et al (2012) Phytochemicals to suppress fusarium head blight in wheat-chickpea rotation. Phytochemistry 78:72–80

    Article  CAS  PubMed  Google Scholar 

  • Daniel R (2004) The soil metagenome – a rich resource for the discovery of novel natural products. Curr Opin Biotech 15:199–204

    Article  CAS  PubMed  Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Current Sci 90(10):1325–1335

    CAS  Google Scholar 

  • Dath AP (1990) Sheath blight disease of rice and its management. Associate Publishing Company, New Delhi, p 152

    Google Scholar 

  • Datnoff LE, Jones DB (1992) Sheath blotch of rice: a disease new to Americas. Plant Dis 76:1182–1184

    Article  Google Scholar 

  • De Boer W, Paulien JA, Gunnewiek K, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Antifungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30(2):193–203

    Article  Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.) J Biol Fertil Soils 24(4):358–364. https://doi.org/10.1007/s003740050258

    Article  Google Scholar 

  • Dean EP, Ragan MC (2003) Indirect effects of host-specific biological control agents. Trends Ecol Evol 18:456–461

    Article  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986. https://doi.org/10.1038/nature03449

    Article  CAS  PubMed  Google Scholar 

  • Drath M, Kloft N, Batschaer A, Marin K, Novak J, Forchhammer K (2008) Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystissp Strain PCC 6803. Plant Physiol 147:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droby S, Chalutz E (1994) Mode of action of biocontrol agents of postharvest diseases. In: Wilson CL, Wisniewski ME (eds) Biological control of postharvest diseases – theory and practice. CRC Press, Boca Raton, pp 63–75

    Google Scholar 

  • Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhardt F, Schmidt M, Ulrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase an amino transferase and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eeden MV, Korsten L (2006) A predictive model for biological control of cercospora spot: effect of nutrient availability. South African Avocado Growers’ Association Yearbook. pp 48–52

    Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs pieces perception partners and pathways. Curr Opin Plant Biol 13:472–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ghaouth A, Droby S, Wilson CL, Wisniewski M, Smilanick J, Korsten L (2004) Biological control of postharvest diseases of fruits and vegetables. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology: Agriculture and food production. Elsevier Science, Amsterdam, pp 11–27

    Google Scholar 

  • El-kazzaz MK, Salem EA, Ghoneim KE, Elsharkawy MM, El-Kot GAN, Kalboush ZA (2015) Biocontrol of Tilletia barclayana the causal agent of Kernel Smut disease in rice. Egypti J Biol Pest Control 25(3):535–544. Proceeding of 4th International Conference, ESPCP2015, Cairo, Egypt, 19–22 October 2015

    Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Espino LA, Barlow VM, Greer CA, Godfrey LD, Lawler SP (2015) Revised continuously UC IPM Pest Management Guidelines Rice UC ANR Publication, 3465, Oakland, California, pp 27–28. (http://www.ipmucanreduanredu/PMG/selectnewpestrice.html)

  • Ghosh MK, Amudha R, Jayachandran S, Sakthivel N (2002) Detection and quantification of phytotoxic metabolites of Sarocladium oryzae in sheath rot-infected grains of rice. Lett Appl Microbiol 34:398–401

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Wu R (2008) Enhanced-efficiency fertilizers for use on the Canadian Prairies. Crop Manag 7(1)

    Google Scholar 

  • Groth D (1992) Stackburn. In: Webster RK, Gunnell PS (eds) Compendium of rice diseases. American Phytopathological Society, St Paul, pp 18–19

    Google Scholar 

  • Gutiérrez Mañero FJ, Probanza A, Ramos B, Colon Flores JJ, Lucas Garcia JA (2003) Effects of culture filtrates of rhizobacteria isolated from wild lupine on germination growth and biological nitrogen fixation of lupine seedlings. J Plant Nutr 26:1101–1115

    Article  CAS  Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen associations. CAB International, London, pp 87–119

    Chapter  Google Scholar 

  • Harman GE, Howell CR, Vitarbo A, Chet I, Lorito M (2004) Trichoderma species eopportunistic avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hattori T (1988) Soil aggregates as microhabitats of microorganisms. Biol Fertil Soils 6:189–2037

    Google Scholar 

  • Hsieh FC, Lin TC, Meng M, Kao SS (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56:1–5

    Article  CAS  PubMed  Google Scholar 

  • Huang SW, Wang L, Liu LM, Tang SQ, Zhu DF, Savary S (2011) Rice spikelet rot disease in China-1 characterization of fungi associated with the disease. Crop Prot 30:1–9

    Article  CAS  Google Scholar 

  • Jayaprakashvel M, Mathivanan N (2009) Biological control and its implications on rice diseases management. In: Role of biocontrol agents for disease management in sustainable agriculture, pp 440–455

    Google Scholar 

  • Jens Laurids S, Elina A, Ulf T, Henriette G, Teis Esben S (2013) Production of fusarielins by Fusarium. Int J Food Microbiol 160:206–211

    Article  CAS  Google Scholar 

  • Joe Y, Manibhushanrao K (1995) Biochemical constituents of differentially virulent isolates of Sarocladium spp causing sheath rot disease of rice. Z Pflanzenkr Pflanzenschutz 102:291–298

    CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187(5):351–360. https://doi.org/10.1007/s00203-006-0199-0

    Article  CAS  PubMed  Google Scholar 

  • Kanjanamaneesathian M, Kusenwiriyawong C, Pengnoo A, Nilratana L (1998) Screening of potential bacterial antagonists for control of sheath blight in rice and development of suitable bacterial formulations for effective application. Australas Plant Pathol 27:198–206

    Article  Google Scholar 

  • Kato H (2001) Rice blast disease. Pesticide Outlook 12:23–25

    Article  CAS  Google Scholar 

  • Kazempour MN, Elahinia SA (2007) Biological control of Fusarium fujikuroi the causal agent of Bakanae disease by rice associated antagonistic bacteria. Bulgarian J Agr Sci 13:393–408

    Google Scholar 

  • Khair A, Shetty SA, Shetty HS, Safeeulla KM (1988) The incidence and distribution of Trichoconiella padwickii in Karnataka in relation to environmental factors. Int J Trop Plant Dis 6(1):107–113

    Google Scholar 

  • Kim CK (1981) Ecological studies of bakanae disease of the rice cause by Gibberella fujikoroi Korean. J Plant Prot 20:146–151

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kondoh M, Hirai M, Shoda M (2001) Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis lXB14-C and flutolanil. J Biosci Bioeng 91:173–177

    Article  CAS  PubMed  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Krishnaveni D, Ladhalakshmi D, Laha GS, Prakasam V, Asma Jabeen Mangrauthia SK, Srinivas Prasad M (2015) Role of natural products in disease management of rice. In: Ganesan S (ed) Sustainable crop disease management using natural products. CABI Press, London, pp 144–159

    Chapter  Google Scholar 

  • Kumar A, Singh R, Jalali BL (2003) Management of stem rot of rice with resistance inducing chemicals and fungicides. Indian. Phytopathology 56:266–269

    CAS  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against Phytopathogens. Microbiol Res 167(8):493–499

    Article  CAS  PubMed  Google Scholar 

  • Laha GS, Reddy CS, Krishnaveni D, Sundaram RM, Srinivas Prasad M, Ram T, Muralidharan K, Viraktamath BC (2009) Bacterial blight of rice and its management. Technical Bulletin No 41 DRR (ICAR) Rajendranagar, Hyderabad, India, p 37

    Google Scholar 

  • Latoud C, Peypoux F, Michel G (1990) Interaction of iturin A a lipopeptide antibiotic with Saccharomyces cerevisiaecells: influence of the sterol membrane composition. Can J Microbiol 36:384–389

    Article  CAS  PubMed  Google Scholar 

  • Lecle’re V, Be’chet M, Adam A, bastien Guez J-S, Wathelet B, Ongena M, Thonart P, Gancel F, Marle’ne C, Philippe J (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the Organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  CAS  Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2005) Purification characterization and synergistic activity of ß −1 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzym Microb Technol 38:990–997

    Article  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The fusarium laboratory manual. Blackwell, London

    Book  Google Scholar 

  • Limon MC, Chacon MR, Mejías R, Delgado-Jarana J, Rincón AM, Codón AC, Benítez T (2004) Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl Microbiol Biotechnol 64(5):675–685

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the Phyllosphere. Appl Environ Microbiol 69(4):1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisboa MP, Bonatto D, Bizani D, Henriques JAP, Brandelli A (2006) Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int Microbiol 9:111–118

    CAS  PubMed  Google Scholar 

  • Liu YF, Chen ZY, Ng TB, Zhang J, Zhou MG, Song F, Lu F, Liu Y (2007) Bacisubin an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28:553–559. https://doi.org/10.1016/j.peptides.2006.10.009

    Article  PubMed  CAS  Google Scholar 

  • Mannanov RN, Sattarova RK (2001) Antibiotics produced by Bacillus bacteria. Chem Nat Compd 37:117–123

    Article  CAS  Google Scholar 

  • Mathre DE (1992) Gaeumannomyces. In: Singleton LL, Mihail JD, Rush CM (eds) Methods for research on soil borne Phytopathogenic Fungi. APS Press, St Paul, pp 60–63

    Google Scholar 

  • Mebeaselassie A, Luoye L, Aiqing F, Xiaoyuan Z, Jianxiong L (2015) Development of GFP-expressing Ustilaginoidea virens strain to study fungal invasion and colonization in rice spikelets. S Afr J Bot 97:16–24. https://doi.org/10.1016/jsajb201411013

    Article  CAS  Google Scholar 

  • Mew TW, Gonzales P (2002) A handbook of rice seedborne Fungi. Science Publishers, Enfield

    Google Scholar 

  • Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res 75:1–33

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defense mechanism. J Biosci 38:1–17

    Article  CAS  Google Scholar 

  • Mwalyego FS, Kayeke JM, Mghogho RM (2011) Important diseases in rice production: symtoms damage and management ASARECA Rice project Tanzania, pp 1–11

    Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo GH (2011) The plant growth-promoting rhizobacterium B. cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signalling pathways. Mol Plant Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Nunes CDM (2008) Ocorrência das doenças mal-do-pé (Gaeumannomyces graminis) e mancha parda (Dreschlerasp) na cultura de arroz Pelotas RS Embrapa Clima Temperado (Comunicado Técnico 205)

    Google Scholar 

  • Nyvall RF (1999) Field crop diseases. Iowa State University Press, Ames, p 1021

    Google Scholar 

  • Ohata K (1981) Change in the outbreak of rice diseases in mechanized transplant cultures. Jap Pest Inform 38:9–12

    Google Scholar 

  • Omura S (1976) The antibiotic cerulenin a novel tool for biochemistry as an inhibitor of fatty-acid synthesis. Bacteriol Rev 40:681–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Adam A, Jourdan E, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

    Article  CAS  PubMed  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizo-bacteria (PGPR) on yield growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Panigrahi S, Dallin S (1994) Toxicity of the Alternaria spp metabolites tenuazonic acid alternariol altertoxin-I and alternariol monomethyl ether to brine shrimp -(Artemia salina L) larvae. J Sci Food Agric 66:493–496

    Article  CAS  Google Scholar 

  • Patel RV, Chauhan HL, Sabalpara AN, Patel SJ (2006) Occurrence of sheath blotch of rice in South Gujarat. Indian Phytopath 59(1):123

    Google Scholar 

  • Pearce DA, Bridge PD, Hawksworth DL (2001) Species concept in Sarocladium the causal agent in sheath rot in rice and bamboo blight. In: Sreenivasaprasad S, Johnson R (eds) Major fungal diseases of rice: recent advances. Springer, Dordrecht, pp 285–292

    Chapter  Google Scholar 

  • Peixoto CN, Ottoni G, Filippi Marta CC, Silva-Lobo VL, Prabhu AS (2013) Biology of Gaeumannomyces graminis var. graminis isolates from rice and grasses and epidemiological aspects of crown sheath rot of rice. Trop Plant Pathol 38(6):495–504

    Article  Google Scholar 

  • Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276

    Article  CAS  PubMed  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Appl Environ Microbiol 25:284–288

    Article  CAS  Google Scholar 

  • Prabhu AS, Filippi MC (2002) Ocorrência do mal-do-pé causado por Gaeumannomyces graminis var graminis uma nova enfermidade em arroz no Brasil. Fitopatol Bras 27:417–419

    Article  Google Scholar 

  • Probanza A, Lucas Garcia JA, Ruiz Palomino M, Ramos B, Gutierrez Manero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus( B licheniformis CECT5106 and B pumilus CECT5105). Appl Soil Ecol 20:75–84

    Article  Google Scholar 

  • Rabindran R, Vidhyasekaran P (1996) Development of a formulation of Pseudomonas iluorescens PfALR2 for management of rice sheath blight. Crop Prot 15:715–721

    Article  Google Scholar 

  • Rahman MM (2013) Insecticide substitutes for DDT to control mosquitoes may be causes of several diseases. Environ Sci Pollut Res 20:2064–2069

    Article  CAS  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532

    Article  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution ecology and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez HA, Nass H (1990) Diseases of rice in Venezuela Revista de la Facultad de Agronomía Universidad Central de Venezuela No 39:130–134

    Google Scholar 

  • Romero D, Pérez-García A, Rivera ME, Cazorla FM, de Vicente A (2004) Isolation and evaluation of antagonistic bacteria to-wards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64:263–269

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofri NM, Czymmek KJ, Pare PW, Bais HP (2010) The rhizobacterial elicitor action induces system resistance in Arabidopsis thaliana. Integr Biol 3:130–138

    Article  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392

    Article  CAS  PubMed  Google Scholar 

  • Sacco MA, Moffett P (2009) Disease resistance genes: form and function. In: Bouarab K, Brisson N, Daayf F (eds) Molecular plant-microbe interactions. CABI Press, London, pp 94–141

    Chapter  Google Scholar 

  • Sakthivel N (2001) Sheath rot disease of rice: current status and control strategies. In: Sreenivasaprasad S, Johnson R (eds) Major fungal diseases of rice: recent advances. Springer, Dordrecht, pp 271–283

    Chapter  Google Scholar 

  • Sakthivel N, Amudha R, Muthukrishnan S (2002) Production of phytotoxic metabolites by Sarocladium oryzae. Mycol Res 106:609–614

    Article  CAS  Google Scholar 

  • Santoyo G, Mosqueda M, Orozco C, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22(8):855–872

    Article  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus sp. for industrial production. Can J Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  • Shamsi S, Naher N, Chowdhury P, Momtaz MSTS (2010) Fungal diseases of three aromatic rice (Oryza Sativa L.) J Bangladesh Acad Sci 34(2):163–170

    Google Scholar 

  • Sharma OP, Bambawale OM (2008) Integrated management of key diseases of cotton and rice integrated Management of Plant. Pest Dis 4:271–302

    Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases on fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  PubMed  Google Scholar 

  • Shrestha BK, Karki HS, Groth DE, Jungkhun N, Ham JH (2016) Biological control activities of Rice-associated Bacillus sp strains against sheath blight and bacterial panicle blight of rice. PLoS One 11(1):e0146764. https://doi.org/10.1371/journalpone0146764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shubha K, Shetty SA, Shetty HS, Karanth NGK (1992) Interactions between seed-borne bacteria and fungi of paddy. Int J Trop Plant Dis 10(1):125–130

    Google Scholar 

  • Singh R (2012) Integrated disease management in rice. In: Padmavathi C, Sreedevi B, Ladhalakshmi D, Arun Kumar, Sampath Kumar M (eds) ICAR Sponsored Winter School on new frontiers in integrated pest management in rice and rice based cropping systems. DRR, Hyderabad, pp 256–262

    Google Scholar 

  • Slaton NA, Gbur EE, Cartwright RD, DeLong RE, Norman RJ, Brye KR (2004) Grain yield and kernel smut of rice as affected by preflood and midseason nitrogen fertilization in Arkansas. Agron J 96:91–99

    Article  Google Scholar 

  • Soleimani MJ, Shamsbakhsh M, Taghavi M, Kazemi SH (2005) Biological control of stem and root rot of wheat caused by Bipolaris spp by using antagonistic bacteria fluorescent Pseudomonas and Bacillus sp. J Biol Sci 5(3):347–353

    Article  Google Scholar 

  • Srinivas Prasad M, Madhav MS, Laha GS, Ladhalakshmi D, Krishnaveni D, Satendra Kumar M, Balachandran SM, Sundaram RM, Aruna Kanthi B, Madhan Mohan K, Ratna Madhavi K, Kumar V, Viraktamath BC (2011) Rice blast disease and its management DRR. Technical Bulletin No 57/2011, p 56

    Google Scholar 

  • Stankovic S, Levic J, Petrovic T, Logrieco A, Moretti A (2007) Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur J Plant Pathol 118:165–172

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures syntheses and specific functions. Mol Microbiol 56(4):845–857

    Article  CAS  PubMed  Google Scholar 

  • Stelle JM, VlamiM de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:379–407. https://doi.org/10.1016/j.biocontrol.2009.05.021

    Google Scholar 

  • Suprapta DN, Khalimi K (2012) Pengembangan agen hayati untuk mengendalikan penyakit blas memacu pertumbuhan dan meningkatkan hasil tanaman padi Laporan Penelitian Riset Invensi Udayana Universitas Udayana Denpasar, p 42

    Google Scholar 

  • Suryadi Y, Susilowati DN, Putri KE, Mubarik NR (2011) Antagonistic activity of indigenous Indonesian bacteria as the suppressing agent of rice fungal pathogen. J Internat’l Environ Appl Sci 6(4):558–568

    Google Scholar 

  • Taguchi Y, Hyakumachi M, Horinouchi H, Kawane F (2003) Biological control of rice blast disease by Bacillus subtilis IK-1080. Jpn J Phytopathol 69:85–93

    Article  Google Scholar 

  • Talbot N, Foster A (2001) Genetics and genomics of the rice blast fungus Magnaporthe grisea: developing an experimental model for understanding fungal diseases of cereals. Adv Bot Res 34:263–287. https://doi.org/10.1016/S0065-2296(01)34011-9

    Article  CAS  Google Scholar 

  • Tamehiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Masa Hamada M, Naganawa H, Ochi K (2002) Bacilysocin a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother 46:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YX, Jin J, Hu DW, Yong ML, Xu Y, He LP (2013) Elucidation of the infection process of Ustilaginoidea virens (teleomorph: Villosiclava virens) in rice spikelets. Plant Pathol 62:1–8. https://doi.org/10.1111/j1365-305920120 2629x

    Article  Google Scholar 

  • Texas Agricultural Experiment Station (1996) Symptoms of rice diseases. Texas Agricultural Experiment Station, Beaumont

    Google Scholar 

  • Thimon L, Peypoux F, Wallach J, Michel G (1995) Effect of the lipopeptide antibiotic iturin A on morphology and membrane ultra struture of yeast cell. FEMS Microbiol Lett 128:101–106

    Article  CAS  PubMed  Google Scholar 

  • Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Toure Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Trigiano RL, Windham MT, Windham AS (2004) Plant pathology: concepts and laboratory exercises, vol 413. CRC Press, Boca Raton

    Google Scholar 

  • Tsuda M, TWakiTaga M, Ueyama A (1982) Ascocarp production of Magnaporthe salvinii in culture. Trans Br Mycol Soc 78(3):515–519

    Article  Google Scholar 

  • Venkateswarlu N, Sireesha O, Aishwayra S, Vijaya T, Sriramulu A (2015) Isolation screening of rhizosphere fungi antagonistic to rice stem rot disease pathogen. Catt Asian J Pharm Clin Res 8(5):54–57

    CAS  Google Scholar 

  • Walker J (1981) Taxonomy of take-all fungi and related genera and species. In: Asher MJC, Shipton PJ (eds) Biology and control of take-all. Academic Press, London, pp 15–74

    Google Scholar 

  • Webster RK, Wick CM, Brandon DM, Hall DH, Bolstad J (1981) Epidemiology of stem rot disease of rice: effects of burning vs soil incorporation of rice residue. Hilgardia 49(3):1–12

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM, Lumsden RD (1991) Biological control of Pythium species. Biocontrol Sci Tech 1:75–90

    Article  Google Scholar 

  • Whitney NG, Frederiksen RA (1975) Kernel smut of rice. Texas Agric Exp Sta MP-123

    Google Scholar 

  • Yan L, Xue-mei Z, De-qiang L, Fu H, Pei-song H, Yun-liang P (2014) Integrated approach to control false smut in hybrid rice in Sichuan Province China Rice. Science 21(6):354−360

    Google Scholar 

  • Yilmaz M, Soran H, Beyatli Y (2005) Antimicrobial activities of some Bacillus spp strain isolated from the soil. Microbiology 161:127–131

    Google Scholar 

  • Zhang H, Wang S (2013) Rice versus Xanthomonas oryzae pv oryzae: a unique pathosystem. Current Opin Plant Biol 16:188–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraja Kumar Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, S.K., Nayak, S., Mishra, B.B. (2017). Antimycotic Role of Soil Bacillus sp. Against Rice Pathogens: A Biocontrol Prospective. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_2

Download citation

Publish with us

Policies and ethics