Skip to main content

Role of Bioremediation Agents (Bacteria, Fungi, and Algae) in Alleviating Heavy Metal Toxicity

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

Heavy metals are environmental contaminants globally. They have polluted agricultural soils and caused detrimental effects on our ecosystem. Toxic effects of heavy metals have been reported in plants, animals, humans, and microorganisms. Heavy metal remediation is essential to preserve the health of agricultural soils and would lead to enhanced crop growth and yield. Various techniques and strategies have been used in recent years to remediate contaminated soils, but most of them were costly, environmentally unfriendly, and negatively affect soil properties. However, use of microbes to remediate heavy metals has been found to be cost effective and environmentally clean. Microbes enhance stability in agricultural soil health, which leads to sustained plant growth and development under stressful conditions. Particular agents used for bioremediation are bacteria, fungi, and algae. Bacterially-mediated processes have been used to alleviate heavy metal toxicity. Endophytic bacteria have greater potential to tolerate and remediate heavy metals stress. Bacterial strains showed potential to alleviate heavy metals from the rhizosphere of target plant species and improve their growth. Arbuscular mycorrhizal fungi alleviate heavy metal toxicity by inhibiting their uptake and translocation in plant parts. In addition, many morphological and physiological changes are induced by fungi. Macro- and micro-algae have been reported to alleviate heavy metal toxicity mostly in marine systems. Reports suggested that applications of the above bioremediation agents alleviate heavy metal stress, enhance phytoremediation capacity in combination with plant growth–promoting bacteria, and ultimately improve plant growth attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Hameed MSA, Ebrahim OH (2007) Biotechnological potentials uses of immobilized algae. Int J Agric Biol 9:183–192

    CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015a) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res. http://dx.doi.org/10.1007/s11356-015-4496-5

    Google Scholar 

  • Adrees M, Ali S, Rizwan M, Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015b) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2012) Implication of bacterial resistance against heavy metals in bioremediation: a review. IIOAB J 3:39–46

    CAS  Google Scholar 

  • Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1:19–26

    Article  Google Scholar 

  • Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–21

    Article  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Wahid A, Ahmad SS, Butt ZA, Tariq M (2011) Ecophysiological responses of rice (Oryza sativa L.) to hexavalent chromium. Pak J Bot 43:2853–2859

    CAS  Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L) plants. Fres Environ Bull 21:2953–2961

    CAS  Google Scholar 

  • Aksu Z (1998) Biosorption of heavy metals by microalgae in batch and continous systems. In: Wong YS, NFY T (eds) Algae for wastewater treatment. Springer, Berlin, pp 37–53

    Chapter  Google Scholar 

  • Aksu Z, Donmez G (2006) Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: co-ion effect on monocomponent isotherm parameters. Process Biochem 41:860–868

    Article  CAS  Google Scholar 

  • Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L). J Environ Qual 6:2181–2186

    Article  CAS  Google Scholar 

  • Ali S, Zeng F, Qiu L, Zhang GP (2011) The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars differing in Al tolerance. Biol Plant 55:291–296

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Al-Rub FAA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773

    Article  CAS  Google Scholar 

  • Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207. doi:10.1016/j.envexpbot.2009.11.009

    Article  CAS  Google Scholar 

  • Ashraf MY, Azhar N, Ashraf M, Hussain M (2011) Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. J Environ Biol 32:659–666

    CAS  PubMed  Google Scholar 

  • Babu AG, Kim GD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250-251:477–483

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in associated with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Enviorn Manage 151:160–166

    Article  CAS  Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot H, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instr Meth B 231:350–356

    Article  CAS  Google Scholar 

  • Barbosa RMT, de Almeida AF, Mielke MS, Loguercio LL, Mangabeira PAO, Gomes FP (2007) A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environ Exp Bot 61:264–271

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Bashir H, Ibrahim MM, Bagheri R, Ahmad J, Arif IA, Baig MA, Qureshi MI (2015) Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. J Plant Sci. doi:10.1093/aobpla/plv001

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  CAS  PubMed  Google Scholar 

  • Beskoski VP, Gojgic-Cvijovic G, Milic J, Ilic M, Miletic S, Solevic T, Vrvic MM (2011) Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)- a field experiment. Chemosphere 83:34–40

    Article  CAS  PubMed  Google Scholar 

  • Biró B, Posta K, Füzy A, Kadar I, Németh T (2005) Mycorrhizal functioning as part of the survival mechanisms of barley (Hordeum vulgare L.) at long-term heavy metal stress. Acta Biol Szegedien 49:65–67

    Google Scholar 

  • Bitton G (2011) Wastewater microbiology, 4th edn. A John Witney & Sons Inc, Hoboken, pp 482–485

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Brinza L, Dring MJ, Gavrilescu M (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manag J 6:237–251

    CAS  Google Scholar 

  • Carrasco L, Azcón R, Kohler J, Roldán A, Caravaca F (2011) Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci Total Environ 409:1205–1209

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Dickson S, Smith FA (2010) Arbuscular mycorrhizas modify plant response to soil zinc addition. Plant Soil 329:307–313

    Article  CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol. Biochemist 68:300–308

    CAS  Google Scholar 

  • Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X, Feng Y (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: Effects on plant growth and root exudates. Chemosphere 117:367–373

    Article  CAS  PubMed  Google Scholar 

  • Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2013) Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol 64:7–14

    Article  Google Scholar 

  • Cossich ES, Tavares CRG, Ravagnani TMK (2002) Biosorption of chromium (III) by sargassium sp. Biomass. Electron J Biotechnol 5:133–140

    Google Scholar 

  • Datta JK, Bandhyopadhyay A, Banerjee A, Mondal NK (2011) Phytotoxic effect of chromium on the germination, seedling growth of some wheat (Triticum aestivum L.) cultivars under laboratory condition. J Agric Technol 7:395–402

    Google Scholar 

  • Deng L, Zhu X, Wang X, Su Y, Su H (2007) Biosorption of copper (II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation 18:393–402

    Article  CAS  PubMed  Google Scholar 

  • Dheeba B, Sampathkumar P, Kannan K (2015) Fertilizers and mixed crop cultivation of chromium tolerant and sensitive plants under chromium toxicity. J Toxicol. doi:10.1155/2015/367217

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsvier Butterworth-Heinemann, Boston

    Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE (2007) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian P450 2E1. Proc Natl Acad Sci U S A 97:6287–6291

    Article  Google Scholar 

  • Erakhrumen AA (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2:151–156

    Google Scholar 

  • Farid M, Shakoor MB, Ehsan S, Ali S, Zubair M, Hanif MA (2013) Morphological, physiological and biochemical responses of different plant species to Cd stress. IJCBS 3:53–60

    Google Scholar 

  • Feng JP, Shi QH, Wang XF, Wei M, Yang FJ, Xu HN (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Aggarwal N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. Genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26

    Article  CAS  Google Scholar 

  • Gharemaleki T, Besharati H, Rasouli-Sadaghiani MH, Tavasoli A (2010a) Effect of soil microbial activity in phytoremediation of Zn. International Soil Science Congress on “Management of natural resources to sustain soil health and quality”, Samsun, Turkey. p 326

    Google Scholar 

  • Gharemaleki T, Rasouli-Sadaghiani MH, Besharati H, Tavasoli A (2010b) Plant growth-promoting microorganisms effect on Cd uptake by Zea mays in a contaminated soil. International Soil Science Congress on “Management of natural resources to sustain soil health and quality”, Samsun, Turkey. pp 1135–1140

    Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2011) Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 102:8756–8761

    Article  CAS  PubMed  Google Scholar 

  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2004) Teamwork in phytoremediation. Nat Biotechnol 22:526–527

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Plant 223:1115–1122

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Guerrero M, Benabdellah K, Ferrol N, Azcon-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcon-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas functional processes and ecological impact. Springer, Berlin, pp 107–122

    Chapter  Google Scholar 

  • Gosavi K, Sammut J, Jankowski J (2004) Macro algal biomanitors of trace metal contamination in acid sulfate soil aquaculture ponds. Sci Total Environ 324:25–39

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy C, Arulpriya M, Ruban P, Francisce LJ, Ilayaraja A (2011) Concentration of heavy metals in seagrasses tissue of the palk strait, Bay of Bangal. Int J Enviorn Sci 2:145–153

    CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on the growth of maize (Zea mays L) and accumulation of Lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388

    Article  CAS  Google Scholar 

  • Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol 30:780–787

    Article  CAS  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hu YA, Liu XP, Bai JM, Shih KM, Zeng EY, Cheng HF (2013) Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ Sci Pollut Res Int 20:6150–6159

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Peng B, Yang Z, Chai L, Zhou L (2009) Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans Nonferrous Metals Soc China 19:241–248

    Article  CAS  Google Scholar 

  • Huang L, Xie J, Lv B, Shi X, Li G, Liang F, Lian J (2013) Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Mar Pollut Bull 76(1–2):325–332. doi:10.1016/j marpolbul.2013.03.037

    Article  CAS  PubMed  Google Scholar 

  • Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Mathylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644

    Article  CAS  PubMed  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21:125–131

    Article  CAS  PubMed  Google Scholar 

  • Jun R, Ling T, Guanghua Z (2009) Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int J Environ Sci Tech 6:571–578

    Article  CAS  Google Scholar 

  • Kamenidou S, Cavins TJ, Marek S (2009) Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Sci Hortic 119:297–301

    Article  CAS  Google Scholar 

  • Ker K, Charest C (2010) Nickel remediation by AM-colonized sunflower. Mycorrhiza 20:399–406

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Ahmad I, Ur Rahman I (2007) Effect of environmental pollution onheavy metals content of Withania somnifera. J Chin Chem Soc 54:339343

    Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  PubMed  Google Scholar 

  • Khan MU, Shahbaz N, Waheed S, Mahmood A, Shinwari ZK, Malik RN (2016) Comparative health risk surveillance of heavy metals via dietary foodstuff consumption in different land use types of Pakistan. Hum Ecol Risk Assess An Int J 22:168–186

    Article  CAS  Google Scholar 

  • Kothe E, Bergmann H, Buchel G (2005) Molecular mechanisms in biogeo-interactions: from a case study to general mechanisms. Chemie der Erde Geochem 65:7–27

    Article  CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • Lambert M, Leven B, Green R (2000) New methods of cleaning up heavy metals in soils and water. In: Environmental science and Technology Briefs for citizens. Kansas State University, Manhattan

    Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  PubMed  Google Scholar 

  • Li X, Dong S, Yao Y, Shi W, Wu M, Xu H (2016) Inoculation of bacteria for the bioremediation of heavy metals contaminated soil by Agrocybe aegerita. RSC Adv 6:65816–65824

    Article  CAS  Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99:2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Huang B, Bi X, Ren Z, Shenga G, Fu J (2013) Heavy metals and organic compounds contamination in soil from an e-waste region in South China. Environ Sci Process Impacts 15:919–929

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang X, Zhong T (2015) Pollution and health risk assessment of heavy metals in urban soil in China. Hum Ecol Risk Assess An Int. doi:10.1080/10807039.2015.1078226

  • Luo SL, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants- effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015) The hyperaccumulator Sedum Plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  CAS  Google Scholar 

  • Matagi S, Swaiand D, Mugabe R (1998) A review of heavy metal removal mechanisms in wetlands. Afr J Trop Hydrobiol Fish 8:23–35

    Article  Google Scholar 

  • Medina A, Roldán A, Azcón R (2010) The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus Niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manag 91(2547):2553. doi:10.1016/j. jenvman.2010.07.008

    Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by Arbuscular Mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775

    Article  CAS  Google Scholar 

  • Miransari, M (2016). Stress and Mycorrhizal Plant. Recent Advances on Mycorrhizal Fungi. Pagano, MC, Cham, Springer International Publishing Switzerland, pp 63–79

    Google Scholar 

  • Mitra N, Rezvan Z, Seyed Ahmad M, Gharaie M, Hosein M (2012) Studies of water arsenic and boron pollutants and algae phytoremediation in three springs, Iran. Int J Ecosys 2:32

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Monteiro CM, Marques APGC, Castro PML, Malcata FX (2009) Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation 20:629–641

    Article  CAS  PubMed  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208:17–27

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Global J Environ Res 4:135–150

    CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZH, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Najeeb U, Ahmad W, Zia MH, Malik Z, Zhou W (2014) Enhancing the lead phytostabilization in wetland plant Juncus ef usus L. through somaclonal manipulation and EDTA enrichment. Arab J Chem (2017) 10:S3310–S3317. http://dx.doi.org/10.1016/j.arabjc.2014.01.009

  • Nath S, Deb B, Sharma I (2012) Isolation and characterization of cadmium and lead resistant bacteria. Glob Adv Res J Microbiol 1(11):194–198

    Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol 17:372–386

    Article  CAS  Google Scholar 

  • Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by B acillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    Article  CAS  PubMed  Google Scholar 

  • Ozdener Y, Aydin BK, Aygun SF, Yurekli F (2011) Effect of hexavalent chromium on the growth and physiological and biochemical parameters on Brassica oleracea L. var. acephala DC. Acta Biol Hung 62:463–476

    Article  CAS  PubMed  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Pub Health 1–11

    Google Scholar 

  • Pandey N, Bhatt N (2016) Role of soil associated Exiguobacterium in reducing arsenic toxicity and promoting plant growth in Vigna radiate. Eur J Soil Biol 75:142–150

    Article  CAS  Google Scholar 

  • Poljsak B, Pócsi I, Raspor P, Pesti M (2010) Interference of chromium with biological systems in yeast and fungi: a review. J Basic Microbiol 50:21–36

    Article  CAS  PubMed  Google Scholar 

  • Poornima M, Kumar RS, Thomas PD (2014) Isolation and molecular characterization of bacterial Strains from tannery effluent and reduction of chromium. Int J Curr Microbiol Appl Sci 3:530–538

    Google Scholar 

  • Pulford I, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  • Rahmanian M, Khodaverdiloo H, Rezaee Danesh Y, Rasouli Sadaghiani MH (2011) Effects of heavy metal resistant soil microbes inoculation and soil Cd concentration on growth and metal uptake of millet, couch grass and Alfalfa. Afr J Microbiol Res 5:403–410

    CAS  Google Scholar 

  • Rajkumar M, Lee KJ, Lee WH, Banu JR (2005) Growth of Brassica juncea under chromium stress: influence of siderophores and indole-3-acetic acid-producing rhizosphere bacteria. J Environ Biol 26:693–699

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Ray MK (2009) Bioremediation of heavy metal toxicity-with special Reference to chromium A1 Ameen. J Med Sci 2:57–63

    CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyonthsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotylomauniflorum (Lam.)Verdc.) and Bengal gram (Cicerarietinum L.) Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Gomez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr hyperaccumulator, Spartina argentinensis. J Hazard Mater 185:862–869

    Article  CAS  PubMed  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  CAS  PubMed  Google Scholar 

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Ma Y, Xu C, Wu H, Zhu W, Yang J (2010) Phytodesalination of a salt affected soil with four halophytes in China. J Arid Land Stud 22:17–20

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles of bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr (Cr3+) in celery seedlings. Chemosphere 64:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar R, Vijayaraghavan K, Thilakavathi M, Iyer PVR, Velan M (2006) Seaweeds for the remediation of wastewaters contaminated with zinc (II) ions. J Hazard Mater B 136:791–799

    Article  CAS  Google Scholar 

  • Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal Behav 7:392–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  • Shi GR, Cai QS, Liu CF, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    Article  CAS  Google Scholar 

  • Shin M, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199-200:314–320

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2012) Phytoremediation: a sustainable alternative for environmental challenges. Int J Gr Herb Chem 1:133–139

    CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2009) Biological remediation of soil: an overview of global market and available technologies. In: Advances in applied bioremediation. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat Triticum aestivum L. Photosynthetica 46:339–345

    Article  CAS  Google Scholar 

  • Tabak HH, Lens P, Van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides e1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng

    Google Scholar 

  • Tariq M, Ali M, Shah Z (2006) Characteristics of industrial effluents and their possible impacts on quality of underground water. Soil Environ 25:64–69

    Google Scholar 

  • Thangavel P, Subbhuraam C (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proc Indian Natl Sci Acad Part B 70:109–130

    CAS  Google Scholar 

  • Theriappan P, Gupta AK, Dasarathan P (2011) Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J Appl Sci Environ Manage 15:251–255

    CAS  Google Scholar 

  • Titah HS, Abdullaha SRS, Mushrifah I, Anuar N, Basri H, Mukhlisin M (2013) Effect of applying rhizobacteria and fertilizer on the growth of Ludwigiaoctovalvis for arsenic uptake and accumulation in phytoremediation. Ecol Eng 58:303–313

    Article  Google Scholar 

  • Tuzun I, Bayramoglu G, Yalcin E, Basaran G, Celik G, Arica MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77:85–92

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of Arbuscular Mycorrhiza in heavy metal tolerance in plants: Prospects for phytoremediation. J Phytol 2:16–27

    Google Scholar 

  • Vajpayee P, Khatoon I, Patel CB, Singh G, Gupta KC, Shanker R (2011) Adverse effects of chromium oxide nano-particles on seed germination and growth in Triticum aestivum L. J Biomed Nanotechnol 7:205–206

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Prabu D (2006) Potential of Sargassum wightii biomass for copper (II) removal from aqueous solutions: application of different mathematical models to batch and continuous biosorption data. J Hazard Mater B 137:558–564

    Article  CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  CAS  PubMed  Google Scholar 

  • Vishnoi SR, Srivastava PN (2008) Phytoremediation-green for environmental clean. In: The 12th world Lake Conference. Jaipur, Rajasthan, India, pp 1016–1021

    Google Scholar 

  • Waterlot C, Bidar G, Pelfrêne A, Roussel H, Fourrier H, Douay F (2013) Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere 23:143–159

    Article  CAS  Google Scholar 

  • Watts-Williams SJ, Patti AF, Cavagnaro TR (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil 371:299–312

    Article  CAS  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of the TCE-Degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.S. Environ Pollut 158:2915–S2919

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicolgy 19:1574–1588

    Article  CAS  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing Bacteria to enhance arsenic removal from polluted soils by Pteris Vittata L. Int J Phytoremediation 14:89–99

    Article  PubMed  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu L, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  PubMed  Google Scholar 

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag. doi:10.1016/j.jenvman.2016.06.059

  • Zhang HH, Tang M, Chen H, Zheng CL, Niu ZC (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations Eur. J Biol 46:306–311

    Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorganic Biochem 101:1–9

    Article  CAS  Google Scholar 

  • Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic-resistant endophytic bacteria from hyperaccumuators Pteris vittata and Pteris multifida. Chemosphere 113:9–16

    Article  CAS  PubMed  Google Scholar 

  • Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22:299–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hassan, Z.u., Ali, S., Rizwan, M., Ibrahim, M., Nafees, M., Waseem, M. (2017). Role of Bioremediation Agents (Bacteria, Fungi, and Algae) in Alleviating Heavy Metal Toxicity. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_27

Download citation

Publish with us

Policies and ethics