Skip to main content

State of the Art Thermal Barrier Coating (TBC) Materials and TBC Failure Mechanisms 

  • Chapter
  • First Online:
Properties and Characterization of Modern Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 33))

Abstract

Thermal barrier coatings (TBCs) are widely used in the aviation industry to improve the service life of components being exposed to high temperatures. Providing a higher resistance compared to conventional coatings, TBCs also improve the performance and lifetime of materials through their thermal insulating characteristic. Resistance of gas turbine components, particularly turbine blades, vanes and combustion chambers, is required to be improved against failures such as corrosion, oxidation and thermal shock as well, since turbine inlet temperatures should be increased to improve the performance of gas turbine engines. Accordingly, it is aimed to obtain a better resistance and durability against the failure mechanisms through enhancement of the methods and materials used in thermal barrier coatings. In this study, thermal barrier coatings used in gas turbines as well as their structure, also the relevant failure mechanisms and the new material groups used in TBCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heveran CM, Xu JP, Sarin VK et al (2013) Simulation of stresses in TBC–EBC coating systems for ceramic components in gas turbines. Surf Coat Tech 235:354–360

    Article  Google Scholar 

  2. Keyvani A, Saremi M, Sohi MH (2011) Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 °C. J Alloy Compd 509:8370–8377

    Article  Google Scholar 

  3. Davis JR (1997) Protective coatings for superalloys, heat-resistance materials. ASM International, Ohio

    Google Scholar 

  4. Lu Z, Myoung SW, Kim EH et al (2014) Microstructure evolution and thermal durability with coating thickness in APS thermal barrier coatings. Mater Today: Proc 1:35–43

    Article  Google Scholar 

  5. Pujol G, Ansart F, Bonino JP et al (2013) Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications. Surf Coat Tech 237:71–78

    Article  Google Scholar 

  6. Schulz U, Fritscher K, Leyens C (2000) Two-source jumping beam evaporation for advanced EB-PVD TBC systems. Surf Coat Tech 40:133–134

    Google Scholar 

  7. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284

    Article  Google Scholar 

  8. Bahadori E, Javadpour S, Shariat MH et al (2013) Preparation and properties of ceramic Al2O3 coating as TBCs on MCrAlY layer applied on Inconel alloy by cathodic plasma electrolytic deposition. Surf Coat Tech 228:611–614

    Article  Google Scholar 

  9. Ma K, Schoenung JM (2011) Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO. Surf Coat Tech 205:5178–5185

    Article  Google Scholar 

  10. Evans HE (2011) Oxidation failure of TBC systems: an assessment of mechanisms. Surf Coat Tech 206:1512–1521

    Article  Google Scholar 

  11. Evans AG, Mumm DR, Hutchinson JW et al (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci 46:505–553

    Article  Google Scholar 

  12. Taylor TA, Walsh PN (2004) Thermal expansion of MCrAlY alloys. Surf Coat Tech 177:24–31

    Article  Google Scholar 

  13. Zhang Q, Li CJ, Li CX et al (2008) Study of oxidation behavior of nanostructured NiCrAlY bond coatings deposited by cold spraying. Surf Coat Tech 202:3378–3384

    Article  Google Scholar 

  14. Richer P, Yandouzi M, Beauvais L et al (2010) Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf Coat Tech 204:3962–3974

    Article  Google Scholar 

  15. Su L, Zhang W, Sun Y et al (2014) Effect of TGO creep on top-coat cracking induced by cyclic displacement instability in a thermal barrier coating system. Surf Coat Tech 254:410–417

    Article  Google Scholar 

  16. Chen WR, Wu X, Marple BR et al (2008) Pre-oxidation and TGO growth behaviour of an air-plasma-sprayed thermal barrier coating. Surf Coat Tech 202:3787–3796

    Article  Google Scholar 

  17. Karaoglanli AC, Altuncu E, Ozdemir I et al (2011) Structure and durability evaluation of YSZ + Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions. Surf Coat Tech 205:369–373

    Article  Google Scholar 

  18. Karaoglanli AC, Ogawa K, Turk A et al (2013) Progress in gas turbine performance. Intech, Crotia

    Google Scholar 

  19. Peng H, Wang L, Guo L et al (2012) Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Prog Nat Sci Mater Int 22:461–467

    Article  Google Scholar 

  20. Rätzer-Scheibe HJ, Schulz U (2007) The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings. Surf Coat Tech 201:7880–7888

    Article  Google Scholar 

  21. Sampath S, Schulz U, Jarligo MO, Kuroda S (2012) Processing science of advanced thermal-barrier systems. MRS Bull Mater Res Soc 37:903–910

    Article  Google Scholar 

  22. Xu H, Guo H (2011) Thermal barrier coatings. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  23. Saremi M, Afrasiabi A, Kobayashi A (2007) Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coating on Ni superalloy Trans JWRI 36:41–45

    Google Scholar 

  24. Jones RL (1997) Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol 6:77–84

    Article  Google Scholar 

  25. Ghosh S (2014) Thermal behavior of glass–ceramic bond coat in a TBC system. Vacuum 101:367–370

    Article  Google Scholar 

  26. Karger M, Vaßen R, Stöver D (2011) Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: spraying process, microstructure and thermal cycling behavior. Surf Coat Tech 206:16–23

    Article  Google Scholar 

  27. Guo HB, Vaßen R, Stöver D (2004) Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surf Coat Tech 186:353–363

    Article  Google Scholar 

  28. Sun J, Fu QG, Liu GN et al (2015) Thermal shock resistance of thermal barrier coatings for nickel-based superalloy by supersonic plasma spraying. Ceram Int 41:9972–9979

    Article  Google Scholar 

  29. Wright PK, Evans AG (1999) Mechanisms governing the performance of thermal barrier coatings. Curr Opin Solid St M 4:255–265

    Article  Google Scholar 

  30. Aygun A (2008) Novel Thermal Barrier Coatings (TBCs) that are resistant to high temperature attack by CaO-MgO-Al2O3-SiO2 (CMAS) glassy deposits, PhD thesis, The Ohio State University

    Google Scholar 

  31. Steinke T, Sebold D, Mack DE et al (2010) A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surf Coat Tech 2057:2287–2295

    Article  Google Scholar 

  32. Li L, Hitchman N, Knapp J (2010) Failure of thermal barrier coatings subjected to CMAS attack. J Therm Spray Technol 19:148–155

    Article  Google Scholar 

  33. Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coating. Ann Rev Mater Res 33:383–417

    Article  Google Scholar 

  34. Strangman T, Raybould D, Jameel A et al (2007) Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils. Surf Coat Tech 202:658–664

    Article  Google Scholar 

  35. Nicholls JR, Deakinand MJ, Rickerby DS (1999) A Comparison between the erosion behaviour of thermal spray and electron physical beam vapour deposition thermal barrier coatings. Wear 352:233–235

    Google Scholar 

  36. Bose S, Demasi J (1997) Thermal barrier coating experience in gas turbine engines. J Therm Spray Technol 6:99–104

    Article  Google Scholar 

  37. Han M, Zhou G, Huang J, Chen S (2014) Optimization selection of the thermal conductivity of the top ceramic layer in the double-ceramic-layer thermal barrier coatings based on the finite element analysis of thermal insulation. Surf Coat Tech 240:320–326

    Article  Google Scholar 

  38. Hass DD, Slifka AJ, Wadley HNG (2001) Low thermal conductivity vapor deposited zirconia microstructures. Acta Mater 49:973–983

    Article  Google Scholar 

  39. Ferdinando MD, Fossati A, Lavacchi A et al (2010) Isothermal oxidation resistance comparison between air plasma sprayed, vacuum plasma sprayed and high velocity oxygen fuel sprayed CoNiCrAlY bond coats. Surf Coat Tech 204:2499–2503

    Article  Google Scholar 

  40. Richer P, Yandouzi M, Beauvais L et al (2010) Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf Coat Tech 204:3962–3974

    Article  Google Scholar 

  41. Ma W, Jarligo MO, Mack DE, Pitzer D et al (2008) New generation perovskite thermal barrier coating materials. J Therm Spray Technol 17:5–6

    Article  Google Scholar 

  42. Clarke DR, Levi CG (2003) Materials design for the next generation thermal barrier coatings. Ann Rev Mater Res 33:383–417

    Article  Google Scholar 

  43. Habibi MH, Wang L, Liang J et al (2013) An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 °C. Corr Sci 75:409–414

    Article  Google Scholar 

  44. Nicholls JR (2003) Advances in coating design for high-performance gas turbines. MRS Bull 28:659–670

    Article  Google Scholar 

  45. Levi CG (2004) Emerging materials and processes for thermal barrier systems. Curr Opin Solid State Mater Sci 8(1):77–91

    Article  Google Scholar 

  46. Ning XJ, Li CX, Li CJ, Yang GJ (2006) Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through postdensification process. Mater Sci Eng 428(1–2):98–105

    Article  Google Scholar 

  47. Vassen R, Cao X, Tietz F, Basu D, Stöver D (1999) Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 83:2023–2028

    Article  Google Scholar 

  48. Stöver D, Funke C (1999) Directions of the development of thermal barrier coatings in energy applications. J Mater Process Tech 195:92–93

    Google Scholar 

  49. Schulz U, Fritscher K, Leyens C (2000) Two-source jumping beam evaporation for advanced EB-PVD system. Surf Coat Tech 40:133–134

    Google Scholar 

  50. Guo X, Wang Z (1998) Effect of niobia on the defect structure of yttria-stabilized zirconia. J Euro Ceram Soc 18:237–240

    Article  Google Scholar 

  51. Xu H, Wu J (2011) Thermal barrier coatings. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  52. Liu H, Li S, Li Q et al (2010) Investigation on the phase stability, sintering and thermal conductivity of Sc2O3–Y2O3–ZrO2 for thermal barrier coating application. Mater Design 31:2972–2977

    Article  Google Scholar 

  53. Suresh G, Seenivasan G, Krishnaiah MV, Murti PS (1997) Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum. J Nucl Mater 249:259–261

    Article  Google Scholar 

  54. Saruhan B, Francois P, Kritscher K et al (2004) EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs. Surf Coat Tech 182:175–183

    Article  Google Scholar 

  55. Stöver D, Pracht G, Lehmann H et al (2004) New material concepts for the next generation of plasma-sprayed thermal barrier coatings. J Therm Spray Technol 13:76–83

    Article  Google Scholar 

  56. Vassen R, Traeger F, Stöver D (2004) New thermal barrier coatings based on pyrochlore/YSZ double layer systems. Int J Appl Ceram Techl 1:351–356

    Article  Google Scholar 

  57. Cao X, Vassen R, Fischer W et al (2003) Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications. Adv Mater 15:1438–1442

    Article  Google Scholar 

  58. Ma W, Gong SK, Xu HB et al (2006) On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions. Scripta Mater 54:1505–1508

    Article  Google Scholar 

  59. Ma W, Gong SK, Xu HB et al (2006) The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB–PVD. Surf Coat Tech 200:5113–5118

    Article  Google Scholar 

  60. Xu Z, He L, Mu R et al (2009) Double-ceramic-layer thermal barrier coatings of La2Zr2O7/YSZ deposited by electron beam-physical vapor deposition. J Alloy Compd 473:509–515

    Article  Google Scholar 

  61. Schulz U, Fritscher K, Peters M (1996) EB-PVD Y2O3- and CeO2Y2O3-stabilized zirconia thermal barrier coatings—crystal habit and phase composition. Surf Coat Tech 82:259–269

    Article  Google Scholar 

  62. Leyens C, Schulz U, Fritscher K (2003) Oxidation and lifetime of PYSZ and CeSZ coated Ni-base substrates with MCrAlY bond layers. Mater High Temp 20:475–480

    Article  Google Scholar 

  63. Wu J, Wei X, Padture NP et al (2002) Low thermal conductivity rare-earth zirconates for possible thermal-barrier coatings application. J Am Ceram Soc 85:3031–3035

    Article  Google Scholar 

  64. Lee KN (2006) In the gas turbine handbook. NETL, Cleveland

    Google Scholar 

  65. Zhu DM, Miller RA (2002) In: Lin HT, Singht M (eds) Thermal conductivity and sintering behavior of advanced thermal barrier coatings, 4th edn. The American Ceramic Society, Florida

    Google Scholar 

  66. Zhu DM, Chen YL, Miller RA (2003) Defect clustering and nano-phase structure characterization of multi-component rare earth oxide doped zirconia-yttria thermal barrier coatings. Ceram Eng Sci Proc 24:525–534

    Article  Google Scholar 

  67. Almeida DS, Silva CRM, Nono MCA et al (2007) Thermal conductivity investigation of zirconia co-doped with yttria and niobia EB-PVD TBCs. Mater Sci Eng, A 443:60–65

    Article  Google Scholar 

  68. Tamarin YA, Kachanov EB, Zherzdev SV (1997) Thermophysical properties of ceramic layers in TBC-EB. Mater Sci Forum 251–254:949–956

    Article  Google Scholar 

  69. Nicholls JR, Lawson KJ, Johnstone A et al (2001) Low thermal conductivity EB-PVD thermal barrier coatings. Mater Sci Forum 369:595–606

    Article  Google Scholar 

  70. Nicholls JR, Lawson KJ, Johnstone A et al (2002) Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Tech 151–152:383–391

    Article  Google Scholar 

  71. Gao W, Li Z (2008) Developments in high temperature corrosion and protection of materials. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  72. Thornton J, Majumdar A, Mcadam G (1997) Enhanced cerium migration in ceria-stabilised zirconia. Surf Coat Tech 94(95):112–117

    Article  Google Scholar 

  73. Agarwal AK, Pandey A, Gupta AK et al (2014) Novel combustion concepts for sustainable energy development. Springer, India

    Book  Google Scholar 

  74. Singh J, Wolfe DE, Miller RA et al (2004) Tailored Microstructure of zirconia and hafnia-based thermal barrier coatings with low thermal conductivity and high hemispherical reflectance by EB-PVD. J Mater Sci 39:1975–1985

    Article  Google Scholar 

  75. Gadow R, Lischka M (2002) Lanthanum hexaaluminate—novel thermal barrier coatings for gas turbine applications—materials and process development. Surf Coat Tech 151:392–399

    Article  Google Scholar 

  76. Cao XQ, Vassen R, Stöver D (2004) Ceramic materials for thermal barrier coatings. J Euro Ceram Soc 24:1–10

    Article  Google Scholar 

  77. Cao XQ, Zhang YF, Zhang JF (2008) Failure of the plasma-sprayed coating of lanthanum hexaluminate. J Euro Ceram Soc 28:1979–1986

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK, 113R049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Cahit Karaoglanli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Karaoglanli, A.C., Doleker, K.M., Ozgurluk, Y. (2017). State of the Art Thermal Barrier Coating (TBC) Materials and TBC Failure Mechanisms . In: Öchsner, A., Altenbach, H. (eds) Properties and Characterization of Modern Materials . Advanced Structured Materials, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-10-1602-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1602-8_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1601-1

  • Online ISBN: 978-981-10-1602-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics