Skip to main content

Wood-Plastic Composites—Performance and Environmental Impacts

  • Chapter
  • First Online:
Environmental Impacts of Traditional and Innovative Forest-based Bioproducts

Abstract

This chapter reviews and discusses the performance and environmental impacts of wood-plastic composites (WPCs) used in a variety of applications ranging from construction and automotive sectors to consumer goods. Performance is considered in terms of fitness for use, manufacturing methods, material components of WPCs, and user perceptions of the material. Recent research related to matrix components and their relation to mechanical properties are covered in detail, especially regarding effects of the wood component. Manufacturing processes are also significant contributors to the suitability of WPCs for a given use, and the impact of various aspects of manufacturing are discussed as well. The environmental impacts of WPCs are reviewed and contain comparisons to solid wood alternatives, different matrix components, and future considerations for performing environmental impact assessments of WPCs. Finally, critical aspects of further innovation and future research are covered that are necessary to improve WPCs use as suitable replacements for solid plastic products and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berger MJ, Stark NM (1997) Investigations of species effects in an injection-molding-grade, wood-filled polypropylene. In: Fourth international conference on woodfiber–plastic composites, Madison, WI, pp 19–25

    Google Scholar 

  • Bismarck A, Baltazar-Y-Jimenez A, Sarikakis K (2006) Green composites as panacea? Socio-economic aspects of green materials. Environ Dev 8:445–463. doi:10.1007/s10668-005-8506-5

    Google Scholar 

  • Bodig J, Jayne B (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York

    Google Scholar 

  • Bolin C, Smith S (2011) Life cycle assessment of ACQ-treated lumber with comparison to wood plastic composite decking. J Clean Prod 19:620–629. doi:10.1016/j.jclepro.2010.12.004

    Google Scholar 

  • Bouafif H, Koubaa A, Perré P, Cloutier A (2009) Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos Part A Appl Sci Manuf 40:1975–1981. doi:10.1016/j.compositesa.2009.06.003

    Article  Google Scholar 

  • Burnard MD, Kutnar A (2015) Wood and human stress in the built indoor environment: a review. Wood Sci Technol 49:969–986. doi:10.1007/s00226-015-0747-3

    Article  CAS  Google Scholar 

  • Burnard MD, Nyrud AQ, Bysheim K, Kutnar A, Vahtikari K, Hughes M (2015) Building material naturalness: perceptions from Finland, Norway and Slovenia. Indoor Built Environ 0:1–16. doi:10.1177/1420326X15605162

    Google Scholar 

  • Carus M, Eder A, Dammer L, Korte H, Scholz L, Essel R, Breitmayer E, Barth M (2015) Wood-plastic composites (WPC) and natural fibre composites (NFC): European and global markets 2012 and future trends in automotive and construction

    Google Scholar 

  • Caulfield DF, Clemons C, Jacobson RE, Rowell RM (2005) Wood thermoplastic composites. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 365–378

    Google Scholar 

  • Clemons C (2002) Wood-plastic composites in the United States: the interfacing of two industries. For Prod J 52:10–18

    Google Scholar 

  • Clyne TW (1989) A simple development of the shear lag theory appropriate for composites with a relatively small modulus mismatch. Mater Sci Eng A122:183–192

    Article  Google Scholar 

  • Corbière-Nicollier T, Gfeller Laban B, Lundquist L, Leterrier Y, Månson J-A, Jolliet O (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour Conserv Recycl 33:267–287. doi:10.1016/S0921-3449(01)00089-1

    Article  Google Scholar 

  • Eckert C (2000) Opportunities for natural fibers in plastic composites. In: Progress in woodfibre–plastic composites. University of Toronto

    Google Scholar 

  • Eder A, Carus M (2013) Global trends in composites (WPC). Bioplastics Mag 8:16–17

    Google Scholar 

  • English B, Stark N, Clemons C (1996) Wood and mineral fillers for injection molding grade polypropylene, Madison, WI

    Google Scholar 

  • Escobar WG, Wolcott MP (2008) Influence of wood species on properties of wood/HDPE composites. Washington State University

    Google Scholar 

  • Farsi M (2012) Thermoplastic matrix reinforced with natural fibers: a study on interfacial behavior. In: Wang J (ed) Some critical issues for injection molding. InTech, pp 225–250

    Google Scholar 

  • Gacitua W, Wolcott MP (2009) Morphology of wood species affecting wood-thermoplastic interaction: microstucture and mechanical adhesion. Maderas-Ciencia y Technol 11:217–231

    CAS  Google Scholar 

  • Gärtner SO, Hienz G, Keller H, Paulsch D (2012) Ökobilanz der kaskadierten Nutzung nachwachsender Rohstoffe am Beispiel Holz– eine Einordnung = “LCA of cascading use of renewable resources on the example of wood - a classification”. uwf. UmweltWirtschaftsForum 20:155–164. doi:10.1007/s00550-012-0259-7

    Article  Google Scholar 

  • Guo Y, Zeng W, Jiang K (2011) Preparation and selective laser sintering of wood–plastic composite powers and post processing. Dig J Nanomater Biostruct 6:1435–1444

    Google Scholar 

  • Haider A, Eder A (2010) Markets, applications, and processes for wood polymer composites (WPC) in Europe. In: Teischinger A, Barbu MC, Dunky M, Harper D, Jungmeier G, Militz H, Musso M, Petutschnigg A, Pizzi A, Wieland S, Young TM (eds) Processing technologies for the forest and biobased product industries, pp 146–151

    Google Scholar 

  • Hanawalt K (2012) Wood-pastics composites done right. Plast Technol 32–34

    Google Scholar 

  • Hill C, Norton A, Kutnar A (2015) Environmental impacts of wood composites and legislative obligations. In: Wood composites, pp 309–332

    Google Scholar 

  • Höglmeier K, Weber-Blaschke G, Richter K (2013) Potentials for cascading of recovered wood from building deconstruction—a case study for south-east Germany. Resour Conserv Recycl 78:81–91. doi:10.1016/j.resconrec.2013.07.004

    Article  Google Scholar 

  • Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • IKEA (2015a) Democratic design—IKEA

    Google Scholar 

  • IKEA (2015b) IKEA PS 2012 Chair with armrests—IKEA

    Google Scholar 

  • Institut Bauen und Umwelt e.V. (2009) PCR Wood Materials. Königswinter

    Google Scholar 

  • ISO/IEC (2006a) ISO/IEC 14040:2006 environmental management—life cycle assessment—principles and framework

    Google Scholar 

  • ISO/IEC (2006b) ISO/IEC 14044:2006 environmental management—life cycle assessment—requirements and guidelines

    Google Scholar 

  • ISO/IEC (2006c) ISO/IEC 14025:2006 environmental labels and declarations—type III environmental declarations—principles and procedures

    Google Scholar 

  • Kamke FA, Nairn JA, Muszynski L, Paris JL, Schwarzkopf M, Xiao X (2014) Methodology for micromechanical analysis of wood adhesive bonds using x-ray computed tomography and numerical modeling. Wood Fiber Sci 46:15–28

    CAS  Google Scholar 

  • Karas M (2010) Sustainable bio-composites for west coast highways. MS thesis, Oregon State University

    Google Scholar 

  • Klyosov A (2007) Wood-Plastic composites. Wiley, Hoboken

    Book  Google Scholar 

  • La Mantia F, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588. doi:10.1016/j.compositesa.2011.01.017

    Article  Google Scholar 

  • Lu JZ, Wu Q, McNabb HS Jr (2000) Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32:88–104

    Google Scholar 

  • Maldas D, Kokta BV (1991) Influence of maleic anhydride as a coupling agent on the performance of wood fiber—polystyrene composites. Polym Eng Sci 31:1351–1357

    Article  CAS  Google Scholar 

  • Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19:714–725. doi:10.1007/s10924-011-0320-6

    Article  CAS  Google Scholar 

  • Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des 32:3448–3456. doi:10.1016/j.matdes.2011.01.056

    Article  CAS  Google Scholar 

  • Oneil E, Bergman R, Han H, Eastin I (2013) Comparative life-cycle assessment of California redwood decking

    Google Scholar 

  • Patterson J (2001) New opportunities with wood-flour-foamed PVC. J Vinyl Addit Technol 7:138–141. doi:10.1002/vnl.10281

    Article  CAS  Google Scholar 

  • Pritchard G (1998) Plastics additives: an A–Z reference. Springer Science and Business Media, Berlin

    Google Scholar 

  • Pritchard G (2004) Two technologies merge: wood plastic composites Geoff Pritchard describes how wood and resin are being. Plast Addit Compd 48:18–21. doi:10.1016/S0034-3617(04)00339-X

    Article  Google Scholar 

  • Qiang T, Yu D, Zhang A, Gao H, Li Z, Liu Z, Chen W, Han Z (2014) Life cycle assessment on polylactide-based wood plastic composites toughened with polyhydroxyalkanoates. J Clean Prod 66:139–145. doi:10.1016/j.jclepro.2013.11.074

    Article  CAS  Google Scholar 

  • Raisanen VI, Alava MJ, Niskanen KJ, Nieminen RM (1997) Does the shear-lag model apply to random fiber networks? J Mater Res 12:2725–2732

    Article  CAS  Google Scholar 

  • Raj RG, Kokta BV (1991) Reinforcing high density polyethylene with cellulosic fibers. I: The effect of additives on fiber dispersion and mechanical properties. Polym Eng Sci 31:1358–1362

    Article  CAS  Google Scholar 

  • Rajendran S, Hodzic A, Soutis C, MariamAl-Maadeed A (2012) Review of life cycle assessment on polyolefins and related materials. Plast Rubber Compos 41:159–168. doi:10.1179/1743289811Y.0000000051

    Article  CAS  Google Scholar 

  • Schirp A, Stender J (2009) Properties of extruded wood-plastic composites based on refiner wood fibres (TMP fibres) and hemp fibres. Eur J Wood Prod 68:219–231. doi:10.1007/s00107-009-0372-7

    Article  Google Scholar 

  • Schirp A, Ibach RE, Pendleton DE, Wolcott MP (2008) Biological degradation of wood-plastic composites (WPC) and strategies for improving the resistance of WPC against biological decay. ACS Symp Ser 982:480–507. doi:10.1021/bk-2008-0982.ch029

    Article  CAS  Google Scholar 

  • Schwarzkopf MJ (2014) Characterization of load transfer in wood-based composites. PhD Dissertation, Oregon State University

    Google Scholar 

  • Schwarzkopf M, Muszyński L (2015) Strain distribution and load transfer in the polymer-wood particle bond in wood plastic composites. Holzforschung 69:53–60. doi:10.1515/hf-2013-0243

    CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press, San Diego

    Google Scholar 

  • Stark NM, Rowlands RE (2003) Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood Fiber Sci 35:167–174

    CAS  Google Scholar 

  • Teuber L, Militz H, Krause A (2015) Processing of wood plastic composites: the influence of feeding method and polymer melt flow rate on particle degradation. J Appl Polym Sci 43231. doi:10.1002/app.43231

    Google Scholar 

  • The European Parliament and the Council of the European Union (2000) Directive 2000/53/EC—end-of-life vehicles

    Google Scholar 

  • Thompson DW, Hansen EN, Knowles C, Muszynski L (2010) Opportunities for wood plastic composite products in the U.S. highway construction sector. Bio Resour 5:1336–1352

    CAS  Google Scholar 

  • Vidal R, Martínez P, Garraín D (2009) Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. Int J Life Cycle Assess 14:73–82. doi:10.1007/s11367-008-0043-7

    Article  CAS  Google Scholar 

  • Wang Y (2007) Morphological characterization of wood plastic composite (WPC) with advanced imaging tools: developing methodologies for reliable phase and internal damage characterization. Oregon State University

    Google Scholar 

  • Westman MP, Fifield LS, Simmons KL, Laddha SG, Kafentzis TA (2010) Natural fiber composites: a review. Pacific Northwest National Laboratory, Report PNNL—19220

    Google Scholar 

  • Wolcott MP, Englund K (1999) A technology review of wood-plastic composites. In: 33rd international particleboard materials symposium, pp 103–111

    Google Scholar 

  • Woodhams RT, Thomas G, Rodgers DK (1984) Wood fibers as reinforcing fillers for polyolefins. Polym Eng Sci 24:1166–1171. doi:10.1002/pen.760241504

    Article  CAS  Google Scholar 

  • Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301:125–130. doi:10.1016/S0921-5093(00)01810-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the support of WoodWisdom-Net+ and the Slovenian Ministry of Education, Science, and Sport of the Republic of Slovenia for their support of the What We Would believe and cascading recovered wood projects; European Commission for funding the project InnoRenew CoE under the Horizon2020 Widespread-2015 program, and infrastructure program IP-0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew John Schwarzkopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Schwarzkopf, M.J., Burnard, M.D. (2016). Wood-Plastic Composites—Performance and Environmental Impacts. In: Kutnar, A., Muthu, S. (eds) Environmental Impacts of Traditional and Innovative Forest-based Bioproducts. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0655-5_2

Download citation

Publish with us

Policies and ethics