Skip to main content

Fiber Architectures for Composite Applications

  • Chapter
  • First Online:
Fibrous and Textile Materials for Composite Applications

Abstract

Two dimensional (2D) and three dimensional (3D) fabric architectures, methods, processes and some of their properties have been reviewed in this chapter. 2D woven, braided, knitted and nonwoven fabrics are used for structural composites but they exhibit delamination between the layers. Triaxial fabrics, on the other hand, have an open structure and low fabric volume fraction. But in-plane properties of triaxial fabric are homogeneous due to ±bias yarns. 3D woven fabrics show no delamination due to the z-fibers. But, possess low in-plane mechanical properties. 3D braided fabrics also show no delamination but they have low transverse properties due to lack of transverse (filling) yarns. Multiaxis 3D knitted fabrics exhibit no delamination and, the in-plane properties are enhanced due to the ±bias yarn layers but, it has limitations for the number of layers. Similarly, multiaxis 3D woven fabrics also have multiple layers and suffer no delamination due to the z-fibers and in-plane properties are enhanced due to ±bias yarn layers. However, multiaxis 3D technique is still in its early stages of development and this is the future technological challenge in multiaxis 3D preform fabrication for composite application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dow MB, Dexter HB (1997) Development of stitched, braided and woven composite structures in the ACT Program and at Langley Research Center (1985 to 1997). NASA/TP-97-206234

    Google Scholar 

  2. Kamiya R, Cheeseman BA, Popper P et al (2000) Some recent advances in the fabrication and design of three dimensional textile preforms: a review. Compos Sci Technol 60:33–47

    Article  Google Scholar 

  3. Ko FK, Chou TW (1989) Textile structural composites. Elsevier, New York

    Google Scholar 

  4. Chou TW (1992) Microstructural design of fiber composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Cox BN, Dadkhah MS, Morris WL et al (1993) Failure mechanisms of 3D woven composites in tension, compression and bending. Acta Metall Mater 42:3967–3984

    Article  Google Scholar 

  6. Brandt J, Drechsler K, Filsinger J (2001) Advanced textile technologies for the cost effective manufacturing of high performance composites. Paper presented at the RTO AVT specialist meeting on low cost composite structures, Loen, Norway, 7–11 May 2001

    Google Scholar 

  7. Mohamed MH (1990) Three dimensional textiles. Am Sci 78:530–541

    Google Scholar 

  8. Bilisik A, Mohamed MH (1994) Multiaxis 3D weaving machine and properties of multiaxial 3D woven carbon/epoxy composites. Paper presented at the 39th international SAMPE symposium, Anaheim, USA, 11–14 Apr 1994

    Google Scholar 

  9. Uozumi T, Iwahori Y, Iwasawa S et al (2001) Braiding technologies for airplane applications using RTM process. Paper presented at the 7th Japan international SAMPE symposium, Tokyo, Japan

    Google Scholar 

  10. Furrow KW (1996) Material property evaluation of braided and braided/woven wing skin blade stiffeners, NASA contractor report: 198303

    Google Scholar 

  11. Ko FK (1987) Braiding. In: Reinhart TJ (ed) Engineered materials handbook. ASM International, Ohio, pp 519–528

    Google Scholar 

  12. Bogdanovich A, Mungalov D (2002) Recent advancements in manufacturing 3D braided preforms and composites. In: Bandyopadhyay S (ed) Proc. ACUN-4 composite systems-macro composites, micro composites, nanocomposites. University of New South Wales, Sydney

    Google Scholar 

  13. Bluck BM (1969) High speed bias weaving and braiding. US Patent 3426804, 11 Feb 1969

    Google Scholar 

  14. Maistre MA (1974) Process and apparatus for producing wire braids. GB Patent 1356524, 12 June 1974

    Google Scholar 

  15. Florentine RA (1983) Magnaweave process-from fundamentals to applications. Text Res J 53:620–623

    Article  Google Scholar 

  16. Weller RD (1985) AYPEX: A new method of composite reinforcement braiding, 3D composite materials. In: NASA conference publication no 2420, 1985

    Google Scholar 

  17. Popper P, McConnell R (1987) A new 3D braid for integrated parts manufacture and improved delamination resistance-the 2-step process. In: Proceedings of 32nd international SAMPE symposium and exhibition, Anaheim, CA, USA

    Google Scholar 

  18. Dexter HB, Hasko GH (1996) Mechanical properties and damage tolerance of multiaxial warp-knit composites. Compos Sci Technol 51:367–380

    Article  Google Scholar 

  19. Mohamed MH, Bilisik AK (1995) Multilayered 3D fabric and method for producing. US Patent 5465760, 14 Nov 1995

    Google Scholar 

  20. Uchida H, Yamamoto T, Takashima H (2000) Development of low cost damage resistant composites. http://www.muratec.net/jp. Accessed 14 May 2008

  21. Kostar TD, Chou TW (1994) Microstructural design of advanced multistep three dimensional braided performs. J Compos Mater 28:1180–1201

    Article  Google Scholar 

  22. Bilisik K (2011) Multiaxis three dimensional (3D) woven fabric. In: Vassiliadis SG (ed) Advances in modern woven fabrics technology. InTech-Open Access, Rijeka, pp 79–106

    Google Scholar 

  23. Kevra Advanced Composite Technology (2015) http://www.kevra.fi/en/Products/Reinforcements/. Accessed 20 Mar 2015

  24. Bhatnagar A, Parrish ES (2006) Bidirectional and multiaxial fabric and fabric composites. US Patent 7073538, 11 July 2006

    Google Scholar 

  25. Bilisik K, Yilmaz B (2012) Multiaxis multilayered non-interlaced/non-Z e-glass/polyester preform and analysis of tensile properties of composite structures by statistical model. Text Res J 82:336–351

    Article  CAS  Google Scholar 

  26. Cox BN, Flanagan G (1997) Handbook of analytical methods for textile composites. NASA contractor report 4750

    Google Scholar 

  27. Abildskow D (1996) Three dimensional woven fabric connector. US Patent 5533693, 9 July 1996

    Google Scholar 

  28. Dow NF (1969) Triaxial fabric. US Patent 3446251, 27 May 1969

    Google Scholar 

  29. Dow NF, Tranfield G (1970) Preliminary investigations of feasibility of weaving triaxial fabrics (doweave). Text Res J 40:986–998

    Article  Google Scholar 

  30. Lida S, Ohmori C, Ito T (1995) Multiaxial fabric with triaxial and quartaxial portions. US Patent 5472020, 5 Dec 1995

    Google Scholar 

  31. Brunnschweiler D (1953) Braids and braiding. J Text I 44:666–686

    Google Scholar 

  32. Brunnschweiler D (1954) The structure and tensile properties of braids. J Text I 45:55–77

    Article  Google Scholar 

  33. Rogers CW, Crist SR (1997) Braided preform for composite bodies. US Patent 5619903, 15 Apr 1997

    Google Scholar 

  34. Klein JT, Broughton RM, Beale DG (1999) Braided fabric and method of forming. US Patent 5899134, 4 May 1999

    Google Scholar 

  35. Hamada H, Ramakrishna S, Huang ZM (1999) Knitted fabric composites, 3-D textile reinforcements in composite materials. In: Miravete A (ed) 3-D textile reinforcements in composite materials. Woodhead Publishing Ltd, Cambridge, pp 180–216

    Chapter  Google Scholar 

  36. Ramakrishna S, Hamada H, Kotaki M et al (1993) Future of knitted fabric reinforced polymer composites. In: Proceedings of 3rd Japan international SAMPE symposium, Chiba, 7–10 Dec 1993

    Google Scholar 

  37. Padaki NV, Alagirusamy R, Sugun BS (2006) Knitted preforms for composite applications. J Ind Text 35:295–321

    Article  CAS  Google Scholar 

  38. Chapman RA (ed) (2010) Applications of nonwovens in technical textiles. Woodhead Publishing Limited, Oxford

    Google Scholar 

  39. Albrecht W, Fuchs H, Kittelmann W (eds) (2003) Nonwoven fabrics: raw materials, manufacture, applications, characteristics, testing processes. Wiley, Weinheim

    Google Scholar 

  40. Bilisik K, Yolacan G (2014) Experimental characterization of multistitched two dimensional (2D) woven e-glass/polyester composites under low velocity impact load. J Compos Mater 48:2145–2162

    Article  Google Scholar 

  41. Bilisik K, Sahbaz N, Bilisik NE, Bilisik HE (2013) Three dimensional (3D) fully interlaced woven preforms for composites. Text Res J 83:2060–2084

    Article  CAS  Google Scholar 

  42. Bilisik K, Sahbaz N, Bilisik NE, Bilisik HE (2014) Three-dimensional circular various weave patterns in woven preform structures. Text Res J 84:638–654

    Article  CAS  Google Scholar 

  43. Bilisik K (2010) Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites. J Reinf Plast Comp 29:1173–1186

    Article  CAS  Google Scholar 

  44. Crawford JA (1985) Recent developments in multidirectional weaving. NASA publication no. 2420

    Google Scholar 

  45. Yasui Y, Anahara M, Omori H (1992) Three dimensional fabric and method for making the same. US Patent 5091246, 25 Feb 1992

    Google Scholar 

  46. Ruzand JM, Guenot G (1994) Multiaxial three-dimensional fabric and process for its manufacture. International Patent WO 94/20658, 15 Sept 1994

    Google Scholar 

  47. Uchida H, Yamamoto T, Takashima H et al (1999) Three dimensional weaving machine. US Patent 6003563, 21 Dec 1999

    Google Scholar 

  48. Mohamed MH, Bilisik AK (1995) Multilayered 3D fabric and method for producing. US Patent 5465760 A, 14 Nov 1995

    Google Scholar 

  49. Bilisik K (2000) Multiaxial three dimensional (3D) circular woven fabric. US Patent 6129122, 10 Oct 2000

    Google Scholar 

  50. Florentine RA (1982) Apparatus for weaving a three dimensional article. US Patent 4312261, 26 Jan 1982

    Google Scholar 

  51. Brown RT (1988) Braiding apparatus. UK Patent 2205861 A, 31 May 1988

    Google Scholar 

  52. Brown RT, Ratliff ED (1986) Method of sequenced braider motion for multi ply braiding apparatus. US Patent 4621560, 11 Nov 1986

    Google Scholar 

  53. Tsuzuki M (1994) Three dimensional woven fabric with varied thread orientations. US Patent 5348056, 20 Sept 1994

    Google Scholar 

  54. Kostar TD, Chou T-W (1999) Braided structures, 3D textile reinforcements in composite materials. In: Miravete A (ed) 3-D textile reinforcements in composite materials. Woodhead Publishing Ltd, Cambridge, pp 217–240

    Chapter  Google Scholar 

  55. Brookstein DS, Rose D, Dent R et al (1996) Apparatus for making a braid structure. US Patent 5501133, 26 Mar 1996

    Google Scholar 

  56. Brookstein DS, Skelton J, Dent JR et al (1994) Solid braid structure. US Patent 5357839, 25 Oct 1994

    Google Scholar 

  57. Brookstein DS (1991) A comparison of multilayer interlocked braided composites with other 3D braided composites. Paper presented at the 36th international SAMPE symposium, Anaheim, 15–18 Apr 1991

    Google Scholar 

  58. McConnell RF, Popper P (1988) Complex shaped braided structures. US Patent 4719837, 19 Jan 1988

    Google Scholar 

  59. Chen JL, El-Shiekh A (1994) Construction and geometry of 6 step braided preforms for composites. Paper presented at the 39th international SAMPE symposium, Anaheim, CA, 11–14 Apr 1994

    Google Scholar 

  60. Bilisik AK (1998) Multiaxial and multilayered 8-step circular braided preform for composite application. Paper presented at the 8. international machine design and production conference, Middle East Technical University, Ankara, 9–11 Sep 1998

    Google Scholar 

  61. Bilisik K (2012) Multiaxis three dimensional weaving for composites: a review. Text Res J 82:725–743

    Article  CAS  Google Scholar 

  62. Naumann R, Wilkens C (1987) Warp knitting machine. US Patent 4703631, 3 Nov 1987

    Google Scholar 

  63. Wunner R (1989) Apparatus for laying transverse weft threads for a warp knitting machine. US Patent 4872323, 10 Oct 1989

    Google Scholar 

  64. Ciobanu L (2011) Development of 3D knitted fabrics for advanced composite materials. In: Attaf B (ed) Advances in composite materials—ecodesign and analysis. InTech Open Access, Rijeka, pp 161–192

    Google Scholar 

  65. Olry P (1988) Process for manufacturing homogeneously needled a three-dimensional structures of fibrous material. US Patent 4,790,052, 13 Dec 1988

    Google Scholar 

  66. Ko FK (1999) 3-D textile reinforcements in composite materials. In: Miravete A (ed) 3-D textile reinforcements in composite materials. Woodhead Publishing Ltd, Cambridge, pp 9–41

    Chapter  Google Scholar 

  67. Vandeurzen P, Ivens J, Verpoest I (1999) Mechanical modelling of solid woven fabric composites. In: Miravete A (ed) 3-D textile reinforcements in composite materials. Woodhead Publishing Ltd, Cambridge, pp 67–99

    Chapter  Google Scholar 

  68. Ge Z, Hu H (2013) Innovative three-dimensional fabric structure with negative Poisson’s ratio for composite reinforcement. Text Res J 83:543–550

    Article  CAS  Google Scholar 

  69. Wang Z, Hu H (2014) Auxetic materials and their potential applications in textiles. Text Res J 84:1600–1611

    Article  Google Scholar 

  70. Wang Z, Hu H, Xiao X (2014) Deformation behaviors of three-dimensional auxetic spacer fabrics. Text Res J 84:1361–1372

    Article  CAS  Google Scholar 

  71. Ugboluea SC, Kim YK, Warner SB et al (2010) The formation and performance of auxetic textiles. Part I: theoretical and technical considerations. J Text I 101:660–667

    Article  Google Scholar 

  72. Ugboluea SC, Kim YK, Warner SB et al (2011) The formation and performance of auxetic textiles. Part II: geometry and structural properties. J Text I 102:424–433

    Article  Google Scholar 

  73. Subramani P, Rana S, Oliveira DV et al (2014) Development of novel auxetic structures based on braided composites. Mater Des 61:286–295

    Article  CAS  Google Scholar 

  74. Liu Y, Hu H, Lam JKC et al (2010) Negative Poisson’s ratio weft-knitted fabrics. Text Res J 80:856–863

    Article  CAS  Google Scholar 

  75. Sanami M, Ravirala N, Alderson K et al (2014) Auxetic materials for sports applications. Proc Eng 72:453–458

    Article  Google Scholar 

  76. Textile Learner Blog (2015). http://textilelearner.blogspot.com.tr/2011/06/weaving-weaving-mechanism_643.html. Accessed 20 Mar 2015

  77. Deemey S (2002) The new generation of carpet weaving machines combines flexibility and productivity, Technical notes, Van de Wiele Incorporations

    Google Scholar 

  78. Mohamed MH, Zhang ZH (1992) Method of forming variable cross-sectional shaped three dimensional fabrics. US Patent 5085252, 4 Feb 1992

    Google Scholar 

  79. King RW (1977) Three dimensional fabric material. US Patent 4038440, 26 July 1977

    Google Scholar 

  80. Fukuta K, Nagatsuka Y, Tsuburaya S et al (1974) Three dimensional fabric, and method and loom construction for the production thereof. US Patent 3834424, 10 Sept 1974

    Google Scholar 

  81. Crawford JA (1985) Recent developments in multidirectional weaving. NASA publication no. 2420, pp 259–269

    Google Scholar 

  82. Bilisik K, Karaduman NS, Bilisik NE (2015) Applications of braided structures in transportation. In: Fangueiro R, Rana S (eds) Braided structures and composites: production properties mechanics and technical applications. Taylor and Francis, Boca Raton (Accepted for Publication)

    Google Scholar 

  83. Wilden KS, Harris CG, Flynn BW et al (1997) Advanced technology composite fuselage-manufacturing, The Boeing Company, NASA contractor report 4735

    Google Scholar 

  84. Fiber innovations Inc. (2002) Technical documents, 8 Jan 2002

    Google Scholar 

  85. Schneider M, Pickett AK, Wulfhorst B (2000) A new rotary braiding machine and CAE procedures to produce efficient 3D braided textiles for composites. Paper presented at the 45th international SAMPE symposium, Long Beach, CA, 21–25 May 2000

    Google Scholar 

  86. Tsuzuki M, Kimbara M, Fukuta K et al (1991) Three dimensional fabric woven by interlacing threads with rotor driven carriers. US Patent 5067525, 26 Nov 1991

    Google Scholar 

  87. Uozumi T (1995) Braid structure body. US Patent 5438904, 8 Aug 1995

    Google Scholar 

  88. Core77 web site (2015) http://www.core77.com/blog/materials/video_of_lexus_360-degree_carbon_fiber_loom_19146.asp. Accessed 20 Mar 2015

  89. Bilisik K (2011) Three dimensional (3D) axial braided preforms: experimental determination of effects of structure-process parameters on unit cell. Text Res J 81:2095–2116

    Article  CAS  Google Scholar 

  90. Spain RG (1990) Method for making 3D fiber reinforced metal/glass matrix composite article. US Patent 4916997, 17 Apr 1990

    Google Scholar 

  91. Langer H, Pickett A, Obolenski B et al (2000) Computer controlled automated manufacture of 3D braids for composite. Paper presented at the Euromat symposium, Munich, Germany

    Google Scholar 

  92. Schneider M, Pickett AK, Langer H (2000) Exemplary CAE design tools for textile reinforced composites by means of FE-analysis. Paper presented at the Euromat symposium, Munich, Germany

    Google Scholar 

  93. Mungalov D, Duke P, Bogdanovich A (2007) High performance 3-D braided fiber preforms: design and manufacturing advancements for complex composite structures. SAMPE J 43:53–60

    Google Scholar 

  94. Mungalov D, Bogdanovich A (2004) Complex shape 3-D braided composite preforms: structural shapes for marine and aerospace. SAMPE J 40:7–21

    Google Scholar 

  95. Schreiber F, Theelen K, Schulte S et al (2011) 3D-hexagonal braiding: possibilities in near-net shape preform production for lightweight and medical applications. Paper presented at the 18th international conference on composite materials, Jeju Island, Korea, 21–26 Aug 2011

    Google Scholar 

  96. Kostar TD, Tchou TW (1994) Process simulation and fabrication of advanced multistep 3-dimensional braided performs. J Mater Sci 29:2159–2167

    Article  Google Scholar 

  97. National Programme on Technology Enhanced Learning (2015) http://nptel.ac.in/courses/116102005/3. Accessed 20 Mar 2015

  98. Tausif M, Russell SJ (2012) Characterisation of the z-directional tensile strength of composite hydroentangled nonwovens. Polym Testing 31:944–952

    Article  CAS  Google Scholar 

  99. Dewalt PL, Reichard RP (1994) Just how good are knitted fabrics? J Reinf Plast Comp 13:908–917

    Article  Google Scholar 

  100. Offermann P, Hoffmann G, Engelmann U (1996) Mehrlagengestricke und verfahren zu seiner herstellung. DE Patent 4419985C2, 4 Apr 1996

    Google Scholar 

  101. Offermann P, Hoffmann G, Engelmann U (2001) Multilayer knitted structure and method of producing the same. US Patent 6244077, 12 June 2001

    Google Scholar 

  102. Cebulla H, Diestel O, Offermann P (2002) Fully fashioned biaxial weft knitted fabrics. AUTEX Res J 2:8–13

    Google Scholar 

  103. Cherif C, Krzywinski S, Diestel O et al (2012) Development of a process chain for the realization of multilayer weft knitted fabrics showing complex 2D/3D geometries for composite applications. Text Res J 82:1195–1210

    Article  CAS  Google Scholar 

  104. Scardino FL, Ko FK (1981) Triaxial woven fabrics: Part I, Behavior under tensile, shear and burst deformations. Text Res J 51:80–89

    Article  Google Scholar 

  105. Schwartz P (1981) The mechanical behavior of fabrics having three, non-orthogonal thread directions (triaxial) and the equivalence of conventional fabrics. Dissertation, NCSU

    Google Scholar 

  106. Skelton J (1971) Triaxial woven fabrics: their structure and properties. Text Res J 41:637–647

    Article  Google Scholar 

  107. Nishimoto H, Ohtani A, Nakai A et al (2010) Prediction method for temporal change in fiber orientation on cylindrical braided performs. Text Res J 80:814–821

    Article  CAS  Google Scholar 

  108. Long AC (2001) Process modelling for liquid moulding of braided performs. Compos A Appl Sci 32:941–953

    Article  Google Scholar 

  109. Song YS, Chung K, Kang TJ et al (2004) Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell. Compos Sci Technol 64:1629–1636

    Article  CAS  Google Scholar 

  110. Nasu S, Ohtani A, Nakai A et al (2010) Deformation behavior and mechanical properties of braided rectangular pipes. Compos Struct 92:752–756

    Article  Google Scholar 

  111. Fujihara K, Yoshida E, Nakai A et al (2007) Influence of micro-structures on bending properties of braided laminated composites. Compos Sci Technol 67:2191–2198

    Article  CAS  Google Scholar 

  112. Goyal D, Tang XD, Whitcomb JD et al (2005) Effect of various parameters on effective engineering properties of 2 × 2 braided composites. Mech Adv Mater Struct 12:113–128

    Article  CAS  Google Scholar 

  113. Smith LV, Swanson SR (1996) Effect of architecture on the strength of braided tubes under biaxial tension and compression. J Eng Mater Technol 118:478–484

    Article  CAS  Google Scholar 

  114. Smith LV, Swanson SR (1993) Response of braided composites under compressive loading. Compos Eng 3:1165–1184

    Article  CAS  Google Scholar 

  115. Tsai JS, Li SJ, Lee LJ (1998) Microstructural analysis of composite tubes made from braided preform and resin transfer molding. J Compos Mater 32:829–850

    Article  CAS  Google Scholar 

  116. Byun JH (2000) The analytical characterization of 2-D braided textile composites. Compos Sci Technol 60:705–716

    Article  Google Scholar 

  117. Yan Y, Hoa SV (2002) Energy approach for prediction of mechanical behavior of 2-D triaxially braided composites. Part II: Parameter analysis. J Compos Mater 36:1233–1253

    Article  CAS  Google Scholar 

  118. Ramakrishna S, Hamada H, Rydin R et al (1995) Impact damage resistance of knitted glass fiber fabric reinforced polypropylene composite laminates. Sci Eng Comp Mater 4:61–72

    CAS  Google Scholar 

  119. Bilisik K, Yolacan G (2011) Multiaxis multilayered non-interlaced/non-Z e-glass/polyester preform composites and determination of flexural properties by statistical model. J Reinf Plast Comp 30:1065–1083

    Article  CAS  Google Scholar 

  120. Bilisik K (2011) Experimental determination of ballistic performance of newly developed multiaxis non-interlaced/non-Z e-glass/polyester and 3D woven carbon/epoxy composites with soft backing aramid fabric structures. Text Res J 81:520–537

    Article  CAS  Google Scholar 

  121. Bilisik K, Yolacan G (2014) Warp and weft directional tensile properties of multistitched biaxial woven e-glass/polyester composites. J Text I 105:1014–1028

    Article  CAS  Google Scholar 

  122. Bilisik K, Yolacan G (2014) Warp and weft directional bending properties of multistitched biaxial woven e-glass/polyester nano composites. J Ind Text. doi:10.1177/1528083714523163

    Google Scholar 

  123. Bilisik K (2010) Multiaxis 3D weaving: comparison of developed two weaving methods-tube-rapier weaving versus tube-carrier weaving and effects of bias yarn path to the preform properties. Fibers Polym 11:104–114

    Article  Google Scholar 

  124. Gowayed YA, Pastore CM (1992) An integrated approach to the mechanical and geometrical modeling of textile structural composites. Presented at the sixth conference on advanced engineering fibers and textile structures for composites, FIBER-TEX’92. North Carolina State University, Raleigh

    Google Scholar 

  125. Gu P (1994) Analysis of 3D woven preforms and their composite properties. Dissertation, NCSU

    Google Scholar 

  126. Dickinson LC (1990) Evaluation of 3D woven carbon/epoxy composites. Dissertation, NCSU

    Google Scholar 

  127. Babcock W, Rose D (2001) Composite preforms. AMPTIAC Newsl 5:7–11

    Google Scholar 

  128. Bilisik K (2010) Dimensional stability of multiaxis 3D woven carbon preform. J Text I 101:380–388

    Article  CAS  Google Scholar 

  129. Bilisik K (2010) Multiaxis 3D weaving: comparison of developed two weaving methods—tube-rapier weaving versus tube-carrier weaving and effects of bias yarn path to the preform properties. Fiber Polym 11:104–114

    Article  Google Scholar 

  130. Bilisik K, Mohamed MH (2010) Multiaxis three dimensional (3D) flat woven preform-tube carrier weaving. Text Res J 80:696–711

    Article  CAS  Google Scholar 

  131. Bilisik K (2010) Multiaxis three dimensional (3D) circular woven preforms—“Radial crossing weaving” and “Radial in-out weaving”: preliminary investigation of feasibility of weaving and methods. J Text I 101:967–987

    Article  CAS  Google Scholar 

  132. Bilisik K, Sahbaz N (2012) Structure-unit cell base approach on three dimensional (3D) representative braided preforms from 4-step braiding: experimental determination of effect of structure-process parameters on predetermined yarn path. Text Res J 82:220–241

    Article  CAS  Google Scholar 

  133. Byun JH, Chou TW (1996) Process-microstructure relationships of 2-step and 4-step braided composites. Compos Sci Technol 56:235–251

    Article  Google Scholar 

  134. Du GW, Chou TW, Popper P (1991) Analysis of 3-dimensional textile preforms for multidirectional reinforcement of composites. J Mater Sci 26:3438–3448

    Article  CAS  Google Scholar 

  135. Chen L, Tao XM, Choy CL (1999) On the microstructure of three-dimensional braided performs. Compos Sci Technol 59:391–404

    Article  CAS  Google Scholar 

  136. Ko F (1985) Development of high damage tolerant, net shape composites through textile structural design. In: Proceedings of 5th international conference on composite materials ICCM-V, San Diego, CA

    Google Scholar 

  137. Byun JH, Chou TW et al (1989) Modeling and characterization of textile structural composites-A review. J Strain Anal Eng 24:253–262

    Article  Google Scholar 

  138. Zeng T, Wu LZ, Guo LC et al (2005) A mechanical model of 3D braided composites with internal transverse crack. J Compos Mater 39:301–321

    Article  CAS  Google Scholar 

  139. Macander AB, Crane RM, Camponaschi ET Jr (1984) The fabrication, processing and characterization of multidimensionally braided graphite/epoxy composite materials. David Taylor Naval Ship Research and Development Centre, DTNSRDC/SME-84–66, July 1984

    Google Scholar 

  140. Kuo WS (1997) Topology of three-dimensionally braided fabrics using pultruded rods as axial reinforcements. Text Res J 67:623–634

    Article  CAS  Google Scholar 

  141. Li W, Hammad M, El-Shiekh A (1990) Structural analysis of 3D braided preforms for composites. Part II: Two step performs. J Text I 81:515–537

    Article  CAS  Google Scholar 

  142. Li W (1990) On the structural mechanics of 3D braided preforms for composites. Dissertation, North Carolina State University

    Google Scholar 

  143. Xu K, Xu XW (2008) Finite element analysis of mechanical properties of 3D five-directional braided composites. Mat Sci Eng A Struct 487:499–509

    Article  Google Scholar 

  144. Sun HY, Qiao X (1997) Prediction of the mechanical properties of three-dimensionally braided composites. Compos Sci Technol 57:623–629

    Article  CAS  Google Scholar 

  145. Yang JM, Ma CL, Chou TW (1986) Fiber inclination model of three dimensional textile structural composites. J Compos Mater 20:472–484

    Article  CAS  Google Scholar 

  146. Cox HL (1952) The elasticity and strength of papers and other fibrous materials. Br J Appl 3:72–74

    Article  Google Scholar 

  147. Tsai PP, Bresee R (1991) Fiber orientation distribution from electrical measurements, Part I: Theory. Inda Jnr 3-36–40

    Google Scholar 

  148. Ramakrishna S, Fujita A, Cuong NK et al (1994) Tensile failure mechanisms of knitted glass fiber fabric reinforced epoxy composites. In: Proceedings of 4th Japan international SAMPE symposium & exhibition, Tokyo, 24–28 Sep 1995

    Google Scholar 

  149. Hearle JWS (1994) Textile for composites. Text Horiz 11:11–15

    Google Scholar 

  150. Mouritz AP, Bannister MK, Falzon PJ et al (1999) Review of applications for advanced three dimensional fiber textile composites. Compos A Appl Sci 30:1445–1461

    Article  Google Scholar 

  151. Beyer S, Schmidth S, Maidi F et al (2006) Advanced composite materials for current and future propulsion and industrial applications. Adv Sci Tech 50:178–181

    Article  Google Scholar 

  152. Yamamoto Y, Hirokawa T (1990) Advanced joint of 3D composite materials for space structure. Presented at the 35th international SAMPE symposium, Anaheim, CA, 2–5 Apr 1990

    Google Scholar 

  153. Donnet JB, Bansal RC (1990) Carbon fibers. Marcel Dekker Inc., New York

    Google Scholar 

  154. Bilisik K (2009) Multiaxis three-dimensional (3-D) woven and braided preform unit cells and implementation of possible functional characterization for biomedical applications. Artif Organs 33:A101

    Google Scholar 

  155. Atkinson KR, Skourtis C, Hutton SR (2008) Properties and applications of dry-spun carbon nanotube yarns. Adv Sci Tech 60:11–20

    Article  CAS  Google Scholar 

  156. Jinlian HU (2008) 3-D fibrous assemblies: properties, applications and modeling of three dimensional textile structures. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  157. Pu G, Mohamed MH (2001) Shaped three dimensional engineered fiber preforms with insertion holes and rigid composite structures incorporating same and method thereof. US Patent 6,283,168, 4 Sep 2001

    Google Scholar 

  158. Technische Universitat Dresden (2015) http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenwesen/itm/forschung/forschungsthemen/gl_gestrick. Accessed 20 Mar 2015

  159. Gehring GG, Reisfeld A Jr (2001) Pointed thrust weapons protective fabric system, US Patent 6233978B1, 22 May 2001

    Google Scholar 

  160. Stanford University (2015) https://micromechanics.stanford.edu/advanced-homogenization-techniques-soft-matter-materials. Accessed 20 Mar 2015

  161. Bilisik K (2013) Three dimensional braiding for composites: a review. Text Res J 83:1414–1436

    Article  CAS  Google Scholar 

  162. Li D, Lu Z, Chen L et al (2009) Microstructure and mechanical properties of three-dimensional five-directional braided composites. Int J Solids Struct 46:3422–3432

    Article  Google Scholar 

  163. CFC Carbon Ltd. (2015) http://www.cfccarbon.com/graphite-felt/pan-rigid-graphite-felt.html. Accessed 20 Mar 2015

  164. Triaxial (2015) http://www.triaxial.us/Triaxial%20Fabric%20History%204.php. Accessed 20 Mar 2015

  165. Technische Universitat München (2015) http://www.lcc.mw.tum.de/en/research-groups/process-technology-for-fibers-and-textiles/braiding-technology/. Accessed 20 Mar 2015

  166. Pastore CM (1988) A processing science model for three dimensional braiding. Dissertation, Drexel University

    Google Scholar 

  167. Textile Learner Blog (2015) http://textilelearner.blogspot.com/2011/06/knitting-action-of-single-needle-bar_204.html#ixzz3OXswDfAO. Accessed 20 Mar 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Bilisik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bilisik, K., Karaduman, N.S., Bilisik, N.E. (2016). Fiber Architectures for Composite Applications. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0234-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0232-8

  • Online ISBN: 978-981-10-0234-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics