Skip to main content

Perspectives on Yersinia pestis: A Model for Studying Zoonotic Pathogens

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 918))

Abstract

Yersinia pestis is a typical zoonotic bacterial pathogen. The following reasons make this pathogen a model for studying zoonotic pathogens: (1) Its unique lifestyle makes Y. pestis an ideal model for studying host–vector–environment–pathogen interactions; (2) population diversity characters in Y. pestis render it a model species for studying monomorphic bacterial evolution; (3) the pathogenic features of bacteria provide us with good opportunities to study human immune responses; (4) typical animal and vector models of Y. pestis infection create opportunities for experimental studies on pathogenesis and evolution; and (5) repeated pandemics and local outbreaks provide us with clues about the infectious disease outbreaks that have occurred in human history.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhou D, Yang R. Formation and regulation of Yersinia biofilms. Protein Cell. 2011;2(3):173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hinnebusch BJ, Perry RD, Schwan TG. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science. 1996;273(5273):367–70.

    Article  CAS  PubMed  Google Scholar 

  3. Sun YC, Jarrett CO, Bosio CF, Hinnebusch BJ. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe. 2014;15(5):578–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun YC, Hinnebusch BJ, Darby C. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A. 2008;105(23):8097–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun YC, Guo XP, Hinnebusch BJ, Darby C. The Yersinia pestis Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT. J Bacteriol. 2012;194(8):2020–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zimbler DL, Schroeder JA, Eddy JL, Lathem WW. Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat Commun. 2015;6:7487.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T, Weinert LA, Wang Z, Guo Z, Xu L, et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A. 2013;110(2):577–82.

    Article  CAS  PubMed  Google Scholar 

  8. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y, et al. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet. 2010;42(12):1140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ari TB, Gershunov A, Tristan R, Cazelles B, Gage K, Stenseth NC. Interannual variability of human plague occurrence in the Western United States explained by tropical and North Pacific Ocean climate variability. Am J Trop Med Hyg. 2010;83(3):624–32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ben-Ari T, Neerinckx S, Gage KL, Kreppel K, Laudisoit A, Leirs H, Stenseth NC. Plague and climate: scales matter. PLoS Pathog. 2011;7(9):e1002160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davis S, Begon M, De Bruyn L, Ageyev VS, Klassovskiy NL, Pole SB, Viljugrein H, Stenseth NC, Leirs H. Predictive thresholds for plague in Kazakhstan. Science. 2004;304(5671):736–8.

    Article  CAS  PubMed  Google Scholar 

  12. Easterday WR, Kausrud KL, Star B, Heier L, Haley BJ, Ageyev V, Colwell RR, Stenseth NC. An additional step in the transmission of Yersinia pestis? ISME J. 2012;6(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kausrud KL, Viljugrein H, Frigessi A, Begon M, Davis S, Leirs H, Dubyanskiy V, Stenseth NC. Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks. Proc Biol Sci. 2007;274(1621):1963–9.

    Article  PubMed  Google Scholar 

  14. Samia NI, Kausrud KL, Heesterbeek H, Ageyev V, Begon M, Chan KS, Stenseth NC. Dynamics of the plague-wildlife-human system in Central Asia are controlled by two epidemiological thresholds. Proc Natl Acad Sci U S A. 2011;108(35):14527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmid BV, Buntgen U, Easterday WR, Ginzler C, Walloe L, Bramanti B, Stenseth NC. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc Nat Acad Sci USA. 2015;112:3020–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, Rahalison L. Plague: past, present, and future. PLoS Med. 2008;5(1):e3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stenseth NC, Samia NI, Viljugrein H, Kausrud KL, Begon M, Davis S, Leirs H, Dubyanskiy VM, Esper J, Ageyev VS, et al. Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A. 2006;103(35):13110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu L, Liu Q, Stige LC, Ben Ari T, Fang X, Chan KS, Wang S, Stenseth NC, Zhang Z. Nonlinear effect of climate on plague during the third pandemic in China. Proc Natl Acad Sci U S A. 2011;108(25):10214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu L, Schmid BV, Liu J, Si X, Stenseth NC, Zhang Z: The trophic responses of two different rodent-vector-plague systems to climate change. Proc Biol Sci. 2015;282(1800):20141846

    Google Scholar 

  20. Tripp DW, Gage KL, Montenieri JA, Antolin MF. Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics. Vector Borne Zoonotic Dis. 2009;9(3):313–21.

    Article  PubMed  Google Scholar 

  21. Schotthoefer AM, Bearden SW, Holmes JL, Vetter SM, Montenieri JA, Williams SK, Graham CB, Woods ME, Eisen RJ, Gage KL. Effects of temperature on the transmission of Yersinia pestis by the flea, Xenopsylla Cheopis, in the late phase period. Parasit Vector. 2011;4:191.

    Article  Google Scholar 

  22. Schotthoefer AM, Bearden SW, Vetter SM, Holmes J, Montenieri JA, Graham CB, Woods ME, Eisen RJ, Gage KL. Effects of temperature on early-phase transmission of Yersina pestis by the flea, Xenopsylla cheopis. J Med Entomol. 2011;48(2):411–7.

    Article  PubMed  Google Scholar 

  23. Williams SK, Schotthoefer AM, Montenieri JA, Holmes JL, Vetter SM, Gage KL, Bearden SW. Effects of low-temperature flea maintenance on the transmission of yersinia pestis by Oropsylla montana. Vector Borne Zoonotic Dis. 2013;13(7):468–78.

    Article  PubMed  Google Scholar 

  24. Smith T. Parasitism and disease. Princeton: Princeton University Press; 1934.

    Google Scholar 

  25. Zhou D, Han Y, Song Y, Huang P, Yang R. Comparative and evolutionary genomics of Yersinia pestis. Microb Infect/Inst Pasteur. 2004;6(13):1226–34.

    Article  CAS  Google Scholar 

  26. Zhang Y, Dai X, Wang X, Maituohuti A, Cui Y, Rehemu A, Wang Q, Meng W, Luo T, Guo R, et al. Dynamics of Yersinia pestis and its antibody response in great gerbils (Rhombomys opimus) by subcutaneous infection. PLoS ONE. 2012;7(10):e46820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou D, Yang R. Molecular Darwinian evolution of virulence in Yersinia pestis. Infect Immun. 2009;77(6):2242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu P, Elliott J, McCready P, Skowronski E, Garnes J, Kobayashi A, Brubaker RR, Garcia E. Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol. 1998;180(19):5192–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, et al. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A. 2004;101(51):17837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1999;96(24):14043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rasmussen S, Allentoft Morten E, Nielsen K, Orlando L, Sikora M, Sjögren K-G, Pedersen Anders G, Schubert M, Van Dam A, Kapel Christian Moliin O, et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell. 2015;163(3):571–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Achtman M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol. 2008;62:53–70.

    Article  CAS  PubMed  Google Scholar 

  33. Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, et al. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis. 2014;14(4):319–26.

    Article  PubMed  Google Scholar 

  34. Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005;50:505–28.

    Article  CAS  PubMed  Google Scholar 

  35. Cui Y, Li Y, Gorge O, Platonov ME, Yan Y, Guo Z, Pourcel C, Dentovskaya SV, Balakhonov SV, Wang X, et al. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS ONE. 2008;3(7):e2652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li Y, Dai E, Cui Y, Li M, Zhang Y, Wu M, Zhou D, Guo Z, Dai X, Cui B, et al. Different region analysis for genotyping Yersinia pestis isolates from China. PLoS ONE. 2008;3(5):e2166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Li Y, Cui Y, Hauck Y, Platonov ME, Dai E, Song Y, Guo Z, Pourcel C, Dentovskaya SV, Anisimov AP, et al. Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci. PLoS ONE. 2009;4(6):e6000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhou D, Han Y, Yang R. Molecular and physiological insights into plague transmission, virulence and etiology. Microb Infect/Inst Pasteur. 2006;8(1):273–84.

    Article  CAS  Google Scholar 

  39. Fukuto HS, Bliska JB. Editorial: Yersinia pestis survives in neutrophils and sends a PS to macrophages: bon appetit! J Leukoc Biol. 2014;95(3):383–5.

    Article  PubMed  CAS  Google Scholar 

  40. Gonzalez RJ, Miller VL. A deadly path: bacterial spread during bubonic plague. Trends Microbiol. 2016;24(4):239–41.

    Article  CAS  PubMed  Google Scholar 

  41. Du Z, Yang H, Tan Y, Tian G, Zhang Q, Cui Y, Yanfeng Y, Wu X, Chen Z, Cao S, et al. Transcriptomic response to Yersinia pestis: RIG-I like receptor signaling response is detrimental to the host against plague. J Genet Genom = Yi chuan xue bao. 2014;41(7):379–96.

    Article  Google Scholar 

  42. Viboud GI, Bliska JB. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol. 2005;59:69–89.

    Article  CAS  PubMed  Google Scholar 

  43. Bergsbaken T, Cookson BT. Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 2007;3(11):e161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bi Y, Wang X, Han Y, Guo Z, Yang R. Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages. Scand J Immunol. 2012;76(6):541–51.

    Article  CAS  PubMed  Google Scholar 

  45. Bi Y, Du Z, Han Y, Guo Z, Tan Y, Zhu Z, Yang R. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW. Immunology. 2009;128(1 Suppl):e406–17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bi Y, Zhou J, Yang H, Wang X, Zhang X, Wang Q, Wu X, Han Y, Song Y, Tan Y, et al. IL-17A produced by neutrophils protects against pneumonic plague through orchestrating IFN-gamma-activated macrophage programming. J Immunol. 2014;192(2):704–13.

    Article  CAS  PubMed  Google Scholar 

  47. Pechous RD, Sivaraman V, Stasulli NM, Goldman WE. Pneumonic plague: the darker side of Yersinia pestis. Trends Microbiol. 2015;24(3):190–7.

    Article  PubMed  CAS  Google Scholar 

  48. Pradel E, Lemaitre N, Merchez M, Ricard I, Reboul A, Dewitte A, Sebbane F. New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. PLoS Pathog. 2014;10(3):e1004029.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Anderson DM, Ciletti NA, Lee-Lewis H, Elli D, Segal J, DeBord KL, Overheim KA, Tretiakova M, Brubaker RR, Schneewind O. Pneumonic plague pathogenesis and immunity in Brown Norway rats. Am J Pathol. 2009;174(3):910–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Zhang X, Zhou D, Yang R. Live-attenuated Yersinia pestis vaccines. Expert Rev Vaccine. 2013;12(6):677–86.

    Article  CAS  Google Scholar 

  51. Lawrenz MB. Model systems to study plague pathogenesis and develop new therapeutics. Front Microbiol. 2010;1:119.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Layton RC, Brasel T, Gigliotti A, Barr E, Storch S, Myers L, Hobbs C, Koster F. Primary pneumonic plague in the African Green monkey as a model for treatment efficacy evaluation. J Med Primatol. 2011;40(1):6–17.

    Article  PubMed  Google Scholar 

  53. Layton RC, Mega W, McDonald JD, Brasel TL, Barr EB, Gigliotti AP, Koster F. Levofloxacin cures experimental pneumonic plague in African green monkeys. PLoS Negl Trop Dis. 2011;5(2):e959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian G, Qiu Y, Qi Z, Wu X, Zhang Q, Bi Y, Yang Y, Li Y, Yang X, Xin Y, et al. Histopathological observation of immunized rhesus macaques with plague vaccines after subcutaneous infection of Yersinia pestis. PLoS ONE. 2011;6(4):e19260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hinnebusch BJ, Erickson DL. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol. 2008;322:229–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Johnson TL, Hinnebusch BJ, Boegler KA, Graham CB, MacMillan K, Montenieri JA, Bearden SW, Gage KL, Eisen RJ. Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae). Microbiology. 2014;160(Pt 11):2517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jarrett CO, Sebbane F, Adamovicz JJ, Andrews GP, Hinnebusch BJ. Flea-borne transmission model to evaluate vaccine efficacy against naturally acquired bubonic plague. Infect Immun. 2004;72(4):2052–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sebbane F, Jarrett C, Gardner D, Long D, Hinnebusch BJ. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague. PLoS ONE. 2010;5(12):e14379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Comer JE, Sturdevant DE, Carmody AB, Virtaneva K, Gardner D, Long D, Rosenke R, Porcella SF, Hinnebusch BJ. Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague. Infect Immun. 2010;78(12):5086–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang SS, Park CG, Zhang P, Bartra SS, Plano GV, Klena JD, Skurnik M, Hinnebusch BJ, Chen T. Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem. 2008;283(46):31511–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Comer JE, Lorange EA, Hinnebusch BJ. Examining the vector-host-pathogen interface with quantitative molecular tools. Methods Mol Biol. 2008;431:123–31.

    CAS  PubMed  Google Scholar 

  62. Vadyvaloo V, Jarrett C, Sturdevant D, Sebbane F, Hinnebusch BJ. Analysis of Yersinia pestis gene expression in the flea vector. Adv Exp Med Biol. 2007;603:192–200.

    Article  PubMed  Google Scholar 

  63. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis. 2004;190(4):783–92.

    Article  PubMed  Google Scholar 

  64. Hinnebusch BJ. Transmission factors: Yersinia pestis genes required to infect the flea vector of plague. In: Skurnik M, Bengoechea JA, Granfors K, editors. The genus Yersinia. New York: Kluwer Academic/Plenum Publishers; 2003. p. 55–62.

    Google Scholar 

  65. Chouikha I, Hinnebusch BJ. Yersinia-flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr Opin Microbiol. 2012;15(3):239–46.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ni B, Du Z, Guo Z, Zhang Y, Yang R. Curing of four different plasmids in Yersinia pestis using plasmid incompatibility. Lett Appl Microbiol. 2008;47(4):235–40.

    Article  CAS  PubMed  Google Scholar 

  67. Gonzalez RJ, Weening EH, Frothingham R, Sempowski GD, Miller VL. Bioluminescence imaging to track bacterial dissemination of Yersinia pestis using different routes of infection in mice. BMC Microbiol. 2012;12:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nham T, Filali S, Danne C, Derbise A, Carniel E. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis. PLoS ONE. 2012;7(4):e34714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schofield DA, Molineux IJ, Westwater C. ‘Bioluminescent’ reporter phage for the detection of category a bacterial pathogens. J Vis Exp. 2011;53:e2740.

    PubMed  Google Scholar 

  70. Sha J, Rosenzweig JA, Kirtley ML, van Lier CJ, Fitts EC, Kozlova EV, Erova TE, Tiner BL, Chopra AK. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague. Microb Pathog. 2013;55:39–50.

    Article  PubMed  Google Scholar 

  71. Sun Y, Connor MG, Pennington JM, Lawrenz MB. Development of bioluminescent bioreporters for in vitro and in vivo tracking of Yersinia pestis. PLoS ONE. 2012;7(10):e47123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Uliczka F, Pisano F, Kochut A, Opitz W, Herbst K, Stolz T, Dersch P. Monitoring of gene expression in bacteria during infections using an adaptable set of bioluminescent, fluorescent and colorigenic fusion vectors. PLoS ONE. 2011;6(6):e20425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Warawa JM, Lawrenz MB. Bioluminescent imaging of bacteria during mouse infection. Methods Mol Biol. 2014;1098:169–81.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou J, Bi Y, Xu X, Qiu Y, Wang Q, Feng N, Cui Y, Yan Y, Zhou L, Tan Y, et al. Bioluminescent tracking of colonization and clearance dynamics of plasmid-deficient Yersinia pestis strains in a mouse model of septicemic plague. Microb Infect/Inst Pasteur. 2014;16(3):214–24.

    Article  Google Scholar 

  75. Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev. 2004;17(2):434–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perry RD, Fetherston JD. Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nishiura H. Epidemiology of a primary pneumonic plague in Kantoshu, Manchuria, from 1910 to 1911: statistical analysis of individual records collected by the Japanese Empire. Int J Epidemiol. 2006;35(4):1059–65.

    Article  PubMed  Google Scholar 

  78. Panda SK, Nanda SK, Ghosh A, Sharma C, Shivaji S, Kumar GS, Kannan K, Batra HV, Tuteja U, Ganguly NK, et al. The 1994 plague epidemic of India: molecular diagnosis and characterization of Yersinia pestis isolates from Surat and Beed. Curr Sci. 1994;71(10):794–9.

    Google Scholar 

  79. Isaacson M, Levy D, Pienaar BJ, Bubb HD, Louw JA, Genis GK. Unusual cases of human plague in Southern Africa. S Afr Med J. 1973;47(44):2109–13.

    CAS  PubMed  Google Scholar 

  80. Shepherd AJ, Hummitzsch DE, Leman PA, Hartwig EK. Studies on plague in the eastern Cape Province of South Africa. Trans R Soc Trop Med Hyg. 1983;77(6):800–8.

    Article  CAS  PubMed  Google Scholar 

  81. Davis DH. Plague in Africa from 1935 to 1949; a survey of wild rodents in African territories. Bull World Health Organ. 1953;9(5):665–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gordon DH, Isaacson M, Taylor P. Plague antibody in large African mammals. Infect Immun. 1979;26(2):767–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Shepherd AJ, Leman PA. Plague in South African rodents 1972–1981. Trans R Soc Trop Med Hyg. 1983;77(2):208–11.

    Article  CAS  PubMed  Google Scholar 

  84. Quan SF, Von Fintel H, Mc MA. Ecological studies of wild rodent plague in the San Francisco Bay area of California. II. Efficiency of bacterial culture compared to animal inoculation as methods for detecting Pasteurella pestis in wild rodent fleas. Am J Trop Med Hyg. 1958;7(4):411–5.

    CAS  PubMed  Google Scholar 

  85. Quan SF, Kartman L, Prince FM, Miles VI. Ecological studies of wild rodent plague in the San Francisco Bay area of California. IV. The fluctuation and intensity of natural infection with Pasteurella pestis in fleas during an epizootic. Am J Trop Med Hyg. 1960;9:91–5.

    CAS  PubMed  Google Scholar 

  86. Quan SF, Miles VI, Kartman L. Ecological studies of wild rodent plague in the San Francisco Bay area of California. III. The natural infection rates with Pasteurella pestis in five flea species during an epizootic. Am J Trop Med Hyg. 1960;9:85–90.

    CAS  PubMed  Google Scholar 

  87. Hudson BW, Goldenberg MI, Quan TJ. Serologic and bacteriologic studies on the distribution of plague infection in a wild rodent plague pocket in the San Francisco Bay area of California. J Wildl Dis. 1972;8(3):278–86.

    Article  CAS  PubMed  Google Scholar 

  88. Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci U S A. 1998;95(21):12637–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Drancourt M, Raoult D. Molecular insights into the history of plague. Microb Infect/Inst Pasteur. 2002;4(1):105–9.

    Article  CAS  Google Scholar 

  90. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S, et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478(7370):506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tran TN, Raoult D, Drancourt M. Yersinia pestis DNA sequences in late medieval skeletal finds, Bavaria. Emerg Infect Dis. 2011;17(5):955–7; author reply 957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bos KI, Stevens P, Nieselt K, Poinar HN, Dewitte SN, Krause J. Yersinia pestis: new evidence for an old infection. PLoS ONE. 2012;7(11):e49803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Harbeck M, Seifert L, Hansch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, et al. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague. PLoS Pathog. 2013;9(5):e1003349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cano RJ, Rivera-Perez J, Toranzos GA, Santiago-Rodriguez TM, Narganes-Storde YM, Chanlatte-Baik L, Garcia-Roldan E, Bunkley-Williams L, Massey SE. Paleomicrobiology: revealing fecal microbiomes of ancient indigenous cultures. PLoS ONE. 2014;9(9):e106833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Darling MI, Donoghue HD. Insights from paleomicrobiology into the indigenous peoples of pre-colonial America – a review. Mem Inst Oswaldo Cruz. 2014;109(2):131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dagli N, Dagli R, Baroudi K, Tarakji B. Oral paleomicrobiology: study of ancient oral microbiome. J Contemp Dent Pract. 2015;16(7):588–94.

    Article  PubMed  Google Scholar 

  97. Fournier PE, Drancourt M, Aboudharam G, Raoult D. Paleomicrobiology of Bartonella infections. Microb Infect/Inst Pasteur. 2015;17(11–12):879–83.

    Article  Google Scholar 

  98. Huynh HT, Verneau J, Levasseur A, Drancourt M, Aboudharam G. Bacteria and archaea paleomicrobiology of the dental calculus: a review. Mol Oral Microbiol. 2015;31:234–42.

    Article  PubMed  CAS  Google Scholar 

  99. Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, Ogata H, Fournier PE, Crubezy E, Raoult D. Genotyping, orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis. 2004;10(9):1585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Drancourt M, Raoult D. Molecular detection of Yersinia pestis in dental pulp. Microbiology. 2004;150(Pt 2):263–4; discussion 264–5.

    Article  CAS  PubMed  Google Scholar 

  101. Raoult D, Aboudharam G, Crubezy E, Larrouy G, Ludes B, Drancourt M. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. Proc Natl Acad Sci U S A. 2000;97(23):12800–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Drancourt M, Signoli M, Dang LV, Bizot B, Roux V, Tzortzis S, Raoult D. Yersinia pestis Orientalis in remains of ancient plague patients. Emerg Infect Dis. 2007;13(2):332–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vergnaud G. Yersinia pestis genotyping. Emerg Infect Dis. 2005;11(8):1317–8; author reply 1318–19.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, et al. Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog. 2010;6(10).

    Google Scholar 

  105. Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J, Mittnik A, Forrest S, Coombes BK, Wood JW, Earn DJ, et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc Natl Acad Sci U S A. 2011;108(38):E746–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tran TN, Aboudharam G, Raoult D, Drancourt M. Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. BioTech. 2011;50(6):370–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Guangwei Liu from Beijing Normal University for his helpful discussion on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, R., Cui, Y., Bi, Y. (2016). Perspectives on Yersinia pestis: A Model for Studying Zoonotic Pathogens. In: Yang, R., Anisimov, A. (eds) Yersinia pestis: Retrospective and Perspective. Advances in Experimental Medicine and Biology, vol 918. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0890-4_14

Download citation

Publish with us

Policies and ethics