Skip to main content

Active Urea Transport in Lower Vertebrates and Mammals

  • Chapter
  • First Online:
Urea Transporters

Part of the book series: Subcellular Biochemistry ((SCBI,volume 73))

Abstract

Some unicellular organisms can take up urea from the surrounding fluids by an uphill pumping mechanism. Several active (energy-dependent) urea transporters (AUTs) have been cloned in these organisms. Functional studies show that active urea transport also occurs in elasmobranchs, amphibians, and mammals. In the two former groups, active urea transport may serve to conserve urea in body fluids in order to balance external high ambient osmolarity or prevent desiccation. In mammals, active urea transport may be associated with the need to either store and/or reuse nitrogen in the case of low nitrogen supply, or to excrete nitrogen efficiently in the case of excess nitrogen intake. There are probably two different families of AUTs, one with a high capacity able to establish only a relatively modest transepithelial concentration difference (renal tubule of some frogs, pars recta of the mammalian kidney, early inner medullary collecting duct in some mammals eating protein-poor diets) and others with a low capacity but able to maintain a high transepithelial concentration difference that has been created by another mechanism or in another organ (elasmobranch gills, ventral skin of some toads, and maybe mammalian urinary bladder). Functional characterization of these transporters shows that some are coupled to sodium (symports or antiports) while others are sodium-independent. In humans, only one genetic anomaly, with a mild phenotype (familial azotemia), is suspected to concern one of these transporters. In spite of abundant functional evidence for such transporters in higher organisms, none have been molecularly identified yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUT:

Active urea transporter

CD:

Collecting duct

FEurea :

Fractional excretion of urea

GFR:

Glomerular filtration rate

IMCD:

Inner medullary collecting duct

Purea :

Plasma urea concentration

U/P urea:

Ratio of urine urea concentration to plasma urea concentration

UT:

Facilitated urea transporter

References

  1. Abreu C, Sanguinetti M, Amillis S, Ramon A (2010) UreA, the major urea/H+ symporter in Aspergillus nidulans. Fungal Genet Biol 47(12):1023–1033

    CAS  PubMed  Google Scholar 

  2. Ahloulay M, Bouby N, Machet F, Kubrusly M, Coutaud C, Bankir L (1992) Effects of glucagon on glomerular filtration rate and urea and water excretion. Am J Physiol 263 (Renal Fluid Electrolyte Physiol. 32):F24–F36

    Google Scholar 

  3. Ahloulay M, Déchaux M, Laborde K, Bankir L (1995) Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. Am J Physiol 269 (Renal Fluid and Electrolyte Physiol. 38):225–235

    Google Scholar 

  4. Anderson WG, Dasiewicz PJ, Liban S, Ryan C, Taylor JR, Grosell M, Weihrauch D (2010) Gastro-intestinal handling of water and solutes in three species of elasmobranch fish, the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate Raja eglanteria. Comp Biochem Physiol A: Mol Integr Physiol 155(4):493–502

    Google Scholar 

  5. Armsen T, Glossmann V, Weinzierl M, Edel HH (1986) Familial proximal tubular azotemia. Elevated urea plasma levels in normal kidney function. Dtsch Med Wochenschr 111(18):702–706

    CAS  PubMed  Google Scholar 

  6. Armsen T, Reinhardt HW (1971) Transtubular movement of urea at different degrees of water diuresis. Pflugers Arch 326(3):270–280

    CAS  PubMed  Google Scholar 

  7. Ashkar ZM, Martial S, Isozaki T, Price SR, Sands JM (1995) Urea transport in initial IMCD of rats fed a low-protein diet: functional properties and mRNA abundance. Am J Physiol 268(6 Pt 2):F1218–F1223

    CAS  PubMed  Google Scholar 

  8. Bankir L, Ahloulay M, Bouby N, Machet F, Trinh-Trang-Tan MM (1993) Direct and indirect effects of vasopressin on renal hemodynamics. In: Gross P (ed) Vasopressin. John Libbey Eurotext, London, pp 393–406

    Google Scholar 

  9. Bankir L, Ahloulay M, Bouby N, Trinh-Trang-Tan MM, Machet F, Lacour B, Jungers P (1993) Is the process of urinary urea concentration responsible for a high glomerular filtration rate? J Am Soc Nephrol 4(5):1091–1103

    CAS  PubMed  Google Scholar 

  10. Bankir L, Bouby N, Ritz E (2013) Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol 9(4):223–239

    CAS  PubMed  Google Scholar 

  11. Bankir L, de Rouffignac C (1985) Urinary concentrating ability: insights from comparative anatomy. Am J Physiol 249(6 Pt 2):R643–R666

    CAS  PubMed  Google Scholar 

  12. Bankir L, Fischer C, Fischer S, Jukkala K, Specht HC, Kriz W (1988) Adaptation of the rat kidney to altered water intake and urine concentration. Pflugers Arch 412(1–2):42–53

    CAS  PubMed  Google Scholar 

  13. Bankir L, Kriz W (1995) Adaptation of the kidney to protein intake and to urine concentrating activity: similar consequences in health and CRF. Kidney Int 47(1):7–24

    CAS  PubMed  Google Scholar 

  14. Bankir L, Trinh-Trang-Tan MM (2000) Urea and the kidney. In: Brenner BM (ed) The kidney, 6th edn. W B Saunders Company, Philadelphia, pp 637–679

    Google Scholar 

  15. Bankir L, Yang B (2012) New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism. Kidney Int 81(12):1179–1198. doi:10.1038/ki.2012.67

    CAS  PubMed  Google Scholar 

  16. Beyenbach KW (2004) Kidneys sans glomeruli. Am J Physiol Renal Physiol 286(5):F811–F827

    CAS  PubMed  Google Scholar 

  17. Beyenbach KW, Liu PL (1996) Mechanism of fluid secretion common to aglomerular and glomerular kidneys. Kidney Int 49(6):1543–1548

    CAS  PubMed  Google Scholar 

  18. Beyer KH, Gelarden RT, Vesell ES (1992) Inhibition of urea transport across renal tubules by parazinoylguanidine and analogs. Pharmacology 44:124–138

    CAS  PubMed  Google Scholar 

  19. Beyer KHJ, Gelarden RT (1988) Active transport of urea by mammalian kidney. Proc Natl Acad Sci 85:4030–4031

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bosch JP, Lew S, Glabman S, Lauer A (1986) Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneys. Am J Med 81(5):809–815

    CAS  PubMed  Google Scholar 

  21. Bouby N, Ahloulay M, Nsegbe E, Déchaux M, Schmitt F, Bankir L (1996) Vasopressin increases GFR in conscious rats through its antidiuretic action. J Am Soc Nephrol 7:842–851

    CAS  PubMed  Google Scholar 

  22. Bouby N, Bankir L (1988) Effect of high protein intake on sodium, potassium-dependent adenosine triphosphatase activity in the thick ascending limb of Henle’s loop in the rat. Clinical science (London, England: 1979) 74 (3):319–329

    Google Scholar 

  23. Bouby N, Bankir L, Trinh-Trang-Tan MM, Minuth WW, Kriz W (1985) Selective ADH-induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney Int 28(3):456–466

    CAS  PubMed  Google Scholar 

  24. Bouby N, Trinh-Trang-Tan MM, Coutaud C, Bankir L (1991) Vasopressin is involved in renal effects of high-protein diet: study in homozygous Brattleboro rats. Am J Physiol 260(1 Pt 2):F96–F100

    CAS  PubMed  Google Scholar 

  25. Bouby N, Trinh-Trang-Tan MM, Laouari D, Kleinknecht C, Grunfeld JP, Kriz W, Bankir L (1988) Role of the urinary concentrating process in the renal effects of high protein intake. Kidney Int 34(1):4–12

    CAS  PubMed  Google Scholar 

  26. Browning J (1978) Urea levels in plasma and erythrocytes of the southern fiddler skate, Trygonorhina fasciata guanerius. J Exp Zool 203(2):325–329

    CAS  PubMed  Google Scholar 

  27. Carlisky NJ, Jard S, Morel F (1966) In vivo tracer studies of renal urea formation in the bullfrog. Am J Physiol 211(3):593–599

    CAS  PubMed  Google Scholar 

  28. Caulfield MJ, Munroe PB, O’Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw-Hawkins S, Dobson RJ, Wallace C, Newhouse SJ, Brown M, Connell JM, Dominiczak A, Farrall M, Lathrop GM, Samani NJ, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Moley KH, Cheeseman C (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5(10):e197

    PubMed Central  PubMed  Google Scholar 

  29. Chan AYM, Cheng ML, Keil LC, Myers BD (1988) Functional response of healthy and diseased glomeruli to a large, protein-rich protein meal. J Clin Invest 81:245–254

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Chen G, Yang Y, Frohlich O, Klein JD, Sands JM (2010) Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base. Physiol Genomics 41(3):203–211

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Christensen S, Marcussen N, Petersen JS, Shalmi M (1992) Effects of uninephrectomy and high protein feeding on lithium-induced chronic renal failure in rats. Ren Physiol Biochem 15(3–4):141–149

    CAS  PubMed  Google Scholar 

  32. Clapp JR (1965) Urea reabsorption by the proximal tubule in the dog. Proc Soc Exp Biol (NY) 120:521–523

    CAS  Google Scholar 

  33. Clapp JR (1970) The effect of protein depletion on urea reabsorption by the kidney. In: Schmidt-Nielsen B (ed) Urea and the Kidney. Excerpta Medica Foundation, Amsterdam, pp 200–206

    Google Scholar 

  34. Collins D, Walpole C, Ryan E, Winter D, Baird A, Stewart G (2011) UT-B1 mediates transepithelial urea flux in the rat gastrointestinal tract. J Membr Biol 239(3):123–130

    CAS  PubMed  Google Scholar 

  35. Collins D, Winter DC, Hogan AM, Schirmer L, Baird AW, Stewart GS (2010) Differential protein abundance and function of UT-B urea transporters in human colon. Am J Physiol Gastrointest Liver Physiol 298(3):G345–G351

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Conte G, DalCanton A, Terribile M, Cianciaruso B, DiMinno G, Pannain M, Russo D, Andreucci VE (1987) Renal handling of urea in subjects with persistent azotemia and normal renal function. Kidney Int 32:721–727

    CAS  PubMed  Google Scholar 

  37. Daniels BS, Hostetter TH (1990) Effect of dietary protein intake on vasoactive hormones. Am J Physiol 258 (Regulatory Integrative Comp. Physiol. 27):R1095–R1100

    Google Scholar 

  38. DeSanto NG, Coppola S, Anastasio P, Coscarella G, Capasso G, Castellino P, De Mercato R, Bellini L, Strazzullo P, Guadagno P et al (1990) Pancreatectomy abolishes the renal hemodynamic response to a meat meal in man. Nephron 55(1):85–86

    CAS  PubMed  Google Scholar 

  39. Dytko G, Smith PL, Kinter LB (1993) Urea transport in toad skin (Bufo marinus). J Pharmacol Exp Ther 267:364–449

    CAS  PubMed  Google Scholar 

  40. Ehrenfeld J (1998) Active proton and urea transport by amphibian skin. Comp Biochem Physiol A: Mol Integr Physiol 119(1):35–45

    CAS  Google Scholar 

  41. ElBerry HM, Majumdar ML, Cunningham TS, Sumrada RA, Cooper TG (1993) Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J Bacteriol 175(15):4688–4698

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Epstein FH, Kleeman CR, Pursel S, Hendrikx A (1957) The effect of feeding protein and urea on the renal concentrating process. J Clin Invest 36(5):635–641. doi:10.1172/jci103463

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Fenton RA (2008) Urea transporters and renal function: lessons from knockout mice. Curr Opin Nephrol Hypertens 17(5):513–518

    PubMed  Google Scholar 

  44. Fenton RA, Cooper GJ, Morris ID, Smith CP (2002) Coordinated expression of UT-A and UT-B urea transporters in rat testis. Am J Physiol Cell Physiol 282(6):C1492–C1501

    CAS  PubMed  Google Scholar 

  45. Fenton RA, Flynn A, Shodeinde A, Smith CP, Schnermann J, Knepper MA (2005) Renal phenotype of UT-A urea transporter knockout mice. J Am Soc Nephrol 16(6):1583–1592

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Fenton RA, Howorth A, Cooper GJ, Meccariello R, Morris ID, Smith CP (2000) Molecular characterization of a novel UT-A urea transporter isoform (UT-A5) in testis. Am J Physiol Cell Physiol 279(5):C1425–C1431

    CAS  PubMed  Google Scholar 

  47. Fines GA, Ballantyne JS, Wright PA (2001) Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch. Am J Physiol Regul Integr Comp Physiol 280(1):R16–R24

    CAS  PubMed  Google Scholar 

  48. Forster RP (1954) Active cellular transport of urea by frog renal tubules. Am J Physiol 179(2):372–377

    CAS  PubMed  Google Scholar 

  49. Forster RP (1970) Active tubular transport of urea and its role in environmental physiology. In: Schmidt-Nielsen B (ed) Urea and the kidney. Excerpta Medica Foundation, Amsterdam, pp 229–237

    Google Scholar 

  50. Friedlander G, Blanchet-Benque F, Nitenberg A, Laborie C, Assan R, Amiel C (1990) Glucagon secretion is essential for aminoacid-induced hyperfiltration in man. Nephrol Dial Transplant 5(2):110–117

    CAS  PubMed  Google Scholar 

  51. Friedman AN (2004) High-protein diets: potential effects on the kidney in renal health and disease. Am J Kidney Dis 44(6):950–962

    PubMed  Google Scholar 

  52. Fritz IB, Lyon MF, Setchell BP (1983) Evidence for a defective seminiferous tubule barrier in testes of Tfm and Sxr mice. J Reprod Fertil 67(2):359–363

    CAS  PubMed  Google Scholar 

  53. Garcia-Romeu F, Masoni A, Isaia J (1981) Active urea transport through isolated skins of frog and toad. Am J Physiol 241(3):R114–R123

    CAS  PubMed  Google Scholar 

  54. Giordano M, Castellino P, McConnell EL, DeFronzo RA (1994) Effect of amino acid infusion on renal hemodynamics in humans: a dose-response study. Am J Physiol 267(5 Pt 2):F703–F708

    CAS  PubMed  Google Scholar 

  55. Grantham JJ, Irwin RL, Qualizza PB, Tucker DR, Whittier FC (1973) Fluid secretion in isolated proximal straight renal tubules. Effect of human uremic serum. J Clin Invest 52(10):2441–2450

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Grantham JJ, Qualizza PB, Irwin RL (1974) Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am J Physiol 226(1):191–197

    CAS  PubMed  Google Scholar 

  57. Hadj-Aissa A, Bankir L, Fraysse M, Bichet DG, Laville M, Zech P, Pozet N (1992) Influence of the level of hydration on the renal response to a protein meal. Kidney Int 42(5):1207–1216

    CAS  PubMed  Google Scholar 

  58. Hays RM (1978) Familial azotemia. N Engl J Med 298:160–161

    CAS  PubMed  Google Scholar 

  59. Hazon N, Wells A, Pillans RD, Good JP, Gary Anderson W, Franklin CE (2003) Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity. Comp Biochem Physiol B: Biochem Mol Biol 136(4):685–700

    Google Scholar 

  60. Hellerá J, Kleinová M, Janácek K, Rybová R (1985) High concentration of urea in renal cortex. In: Dzúrik R, Lichardus B, Guder W (eds) Kidney metabolism and function. Martinus Nijhoff Publishers, Boston, pp 298–302

    Google Scholar 

  61. Hendrikx A, Epstein FH (1958) Effect of feeding protein and urea on renal concentrating ability in the rat. Am J Physiol 195(3):539–542

    CAS  PubMed  Google Scholar 

  62. Hentschel H, Mahler S, Herter P, Elger M (1993) Renal tubule of dogfish, Scyliorhinus caniculus: a comprehensive study of structure with emphasis on intramembrane particles and immunoreactivity for H(+)-K(+)-adenosine triphosphatase. The Anatomical record 235(4):511–532

    CAS  PubMed  Google Scholar 

  63. Hentschel H, Storb U, Teckhaus L, Elger M (1998) The central vessel of the renal countercurrent bundles of two marine elasmobranchs–dogfish (Scyliorhinus caniculus) and skate (Raja erinacea)–as revealed by light and electron microscopy with computer-assisted reconstruction. Anat Embryol 198(1):73–89

    CAS  PubMed  Google Scholar 

  64. Howards SS, Turner TT (1978) The blood-testis barrier: a morphologic or physiologic phenomenon? Trans Am Assoc Genito-Urinary Surg 70:74–75

    CAS  Google Scholar 

  65. Hsu CH, Kurtz TW, Massari PU, Ponze SA, Chang BS (1978) Familial azotemia. Impaired urea excretion despite normal renal function. N Engl J Med 298:117–121

    CAS  PubMed  Google Scholar 

  66. Inoue H, Jackson SD, Vikulina T, Klein JD, Tomita K, Bagnasco SM (2004) Identification and characterization of a Kidd antigen/UT-B urea transporter expressed in human colon. Am J Physiol Cell Physiol 287(1):C30–C35

    CAS  PubMed  Google Scholar 

  67. Inoue H, Kozlowski SD, Klein JD, Bailey JL, Sands JM, Bagnasco SM (2005) Regulated expression of renal and intestinal UT-B urea transporter in response to varying urea load. Am J Physiol Renal Physiol 289(2):F451–F458

    CAS  PubMed  Google Scholar 

  68. Isozaki T, Gillin AG, Swanson CE, Sands JM (1994) Protein restriction sequentially induces new urea transport processes in rat initial IMCD. Am J Physiol 266(5 Pt 2):F756–F761

    CAS  PubMed  Google Scholar 

  69. Isozaki T, Lea JP, Tumlin JA, Sands JM (1994) Sodium-dependent net urea transport in rat initial inner medullary collecting ducts. J Clin Invest 94(4):1513–1517

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Isozaki T, Verlander JW, Sands JM (1993) Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest 92(5):2448–2457

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Jahns T, Kaltwasser H (1989) Energy-dependent uptake of urea by Bacillus megaterium. FEMS Microbiol Lett 48(1):13–17

    CAS  PubMed  Google Scholar 

  72. Janech MG, Fitzgibbon WR, Chen R, Nowak MW, Miller DH, Paul RV, Ploth DW (2003) Molecular and functional characterization of a urea transporter from the kidney of the Atlantic stingray. Am J Physiol Renal Physiol 284(5):F996–F1005

    CAS  PubMed  Google Scholar 

  73. Janech MG, Fitzgibbon WR, Nowak MW, Miller DH, Paul RV, Ploth DW (2006) Cloning and functional characterization of a second urea transporter from the kidney of the Atlantic stingray, Dasyatis sabina. Am J Physiol Regul Integr Comp Physiol 291(3):R844–R853

    CAS  PubMed  Google Scholar 

  74. Jorgensen CB (1997) Urea and amphibian water economy. Comp Biochem Physiol A Physiol 117(2):161–170

    CAS  PubMed  Google Scholar 

  75. Kakumura K, Watanabe S, Bell JD, Donald JA, Toop T, Kaneko T, Hyodo S (2009) Multiple urea transporter proteins in the kidney of holocephalan elephant fish (Callorhinchus milii). Comp Biochem Physiol B: Biochem Mol Biol 154(2):239–247

    Google Scholar 

  76. Kato A, Sands JM (1998) Active sodium-urea counter-transport is inducible in the basolateral membrane of rat renal initial inner medullary collecting ducts. J Clin Invest 102(5):1008–1015

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Kato A, Sands JM (1998) Evidence for sodium-dependent active urea secretion in the deepest subsegment of the rat inner medullary collecting duct. J Clin Invest 101(2):423–428

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Kato A, Sands JM (1999) Urea transport processes are induced in rat IMCD subsegments when urine concentrating ability is reduced. Am J Physiol 276(1 Pt 2):F62–F71

    CAS  PubMed  Google Scholar 

  79. Katz U, Garcia-Romeu F, Masoni A, Isaia J (1981) Active transport of urea across the skin of the euryhaline toad, Bufo viridis. Pflugers Arch 390(3):299–300

    CAS  PubMed  Google Scholar 

  80. Kawamura S, Kokko JP (1976) Urea secretion by the straight segment of the proximal tubule. J Clin Invest 58(3):604–612

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kiran D, Mutsvangwa T (2010) Effects of partial ruminal defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. J Anim Sci 88(3):1034–1047

    CAS  PubMed  Google Scholar 

  82. Knepper MA (1983) Urea transport in nephron segments from medullary rays of rabbits. Am J Physiol 244(6):F622–F627

    CAS  PubMed  Google Scholar 

  83. Knepper MA, Gunter CV, Danielson RA (1976) Effects of glucagon on renal function in protein-deprived rats. Surg Forum 27:29–31

    CAS  PubMed  Google Scholar 

  84. Knepper MA, Roch-Ramel F (1987) Pathways of urea transport in the mammalian kidney. Kidney Int 31(2):629–633

    CAS  PubMed  Google Scholar 

  85. Kojima S, Bohner A, Gassert B, Yuan L, von Wiren N (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52(1):30–40

    CAS  PubMed  Google Scholar 

  86. Kojima S, Bohner A, von Wiren N (2006) Molecular mechanisms of urea transport in plants. J Membr Biol 212(2):83–91

    CAS  PubMed  Google Scholar 

  87. Lacoste I, Dunel-Erb S, Harvey BJ, Laurent P, Ehrenfeld J (1991) Active urea transport independent of H+ and Na+ transport in frog skin epithelium. Am J Physiol 261(4 Pt 2):R898–R906

    CAS  PubMed  Google Scholar 

  88. Layton AT, Bankir L (2013) Impacts of active urea secretion into pars recta on urine concentration and urea excretion rate. Physiol Rep 1(3). pii: e00034

    Google Scholar 

  89. Layton AT, Pannabecker TL, Dantzler WH, Layton HE (2010) Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. Am J Physiol Renal Physiol 298(4):F962–F972

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Leung DW, Loo DD, Hirayama BA, Zeuthen T, Wright EM (2000) Urea transport by cotransporters. J Physiol 528(Pt 2):251–257

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Lew SW, Bosch JP (1991) Effect of diet on creatinine clearance and excretion in young and elderly healthy subjects and in patients with renal disease. J Am Soc Nephrol 2(4):856–865

    CAS  PubMed  Google Scholar 

  92. Liew HJ, De Boeck G, Wood CM (2013) An in vitro study of urea, water, ion and CO2/HCO3- transport in the gastrointestinal tract of the dogfish shark (Squalus acanthias): the influence of feeding. J Exp Biol 216(Pt 11):2063–2072

    CAS  PubMed  Google Scholar 

  93. Liu L, Lei T, Bankir L, Zhao D, Gai X, Zhao X, Yang B (2011) Erythrocyte permeability to urea and water: comparative study in rodents, ruminants, carnivores, humans, and birds. J Comp Physiol B Biochem Syst Env Physiol 181(1):65–72

    CAS  Google Scholar 

  94. Liu LH, Ludewig U, Frommer WB, von Wiren N (2003) AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15(3):790–800

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Long WS (1970) Renal secretion of urea in Rana Catesbeiana. In: Schmidt-Nielsen B (ed) Urea and the kidney. Excerpta Medica Foundation, Amsterdam, pp 216–222

    Google Scholar 

  96. Long WS (1973) Renal handling of urea in Rana catesbeiana. Am J Physiol 224(2):482–490

    CAS  PubMed  Google Scholar 

  97. Lucien N, Bruneval P, Lasbennes F, Belair MF, Mandet C, Cartron J, Bailly P, Trinh-Trang-Tan MM (2005) UT-B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse. Am J Physiol Regul Integr Comp Physiol 288(4):R1046–R1056

    CAS  PubMed  Google Scholar 

  98. MacKay EM, MacKay LL, Addis T (1928) Factors which determine renal weight. V. The protein intake. Am J Physiol 86:459–465

    CAS  Google Scholar 

  99. Marini JC, Klein JD, Sands JM, Van Amburgh ME (2004) Effect of nitrogen intake on nitrogen recycling and urea transporter abundance in lambs. J Anim Sci 82(4):1157–1164

    CAS  PubMed  Google Scholar 

  100. McDonald MD, Gilmour KM, Walsh PJ (2012) New insights into the mechanisms controlling urea excretion in fish gills. Respir Physiol Neurobiol 184(3):241–248

    CAS  PubMed  Google Scholar 

  101. McDonald MD, Smith CP, Walsh PJ (2006) The physiology and evolution of urea transport in fishes. J Membr Biol 212(2):93–107

    CAS  PubMed  Google Scholar 

  102. Mills J, Wyborn NR, Greenwood JA, Williams SG, Jones CW (1998) Characterisation of a binding-protein-dependent, active transport system for short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus. Eur J Biochem/FEBS 251(1–2):45–53

    CAS  Google Scholar 

  103. Molony DA, Reeves WB, Andreoli TE (1987) Some transport characteristics of mammalian renal diluting segments. Miner Electrolyte Metab 13(6):442–450

    CAS  PubMed  Google Scholar 

  104. Morel M, Jacob C, Fitz M, Wipf D, Chalot M, Brun A (2008) Characterization and regulation of PiDur3, a permease involved in the acquisition of urea by the ectomycorrhizal fungus Paxillus involutus. Fungal Genet Biol 45(6):912–921

    CAS  PubMed  Google Scholar 

  105. Morgan RL, Ballantyne JS, Wright PA (2003) Regulation of a renal urea transporter with reduced salinity in a marine elasmobranch, Raja erinacea. J Exp Biol 206(Pt 18):3285–3292

    CAS  PubMed  Google Scholar 

  106. Morgan RL, Wright PA, Ballantyne JS (2003) Urea transport in kidney brush-border membrane vesicles from an elasmobranch, Raja erinacea. J Exp Biol 206(Pt 18):3293–3302

    CAS  PubMed  Google Scholar 

  107. Murdaugh HV Jr, Schmidt-Nielsen B, Doyle EM, O’Dell R (1958) Renal tubular regulation of urea excretion in man. J Appl Physiol 13(2):263–268

    CAS  PubMed  Google Scholar 

  108. Navarathna DH, Das A, Morschhauser J, Nickerson KW, Roberts DD (2011) Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2. Microbiology 157(Pt 1):270–279

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Nelson RA (1980) Protein and fat metabolism in hibernating bears. Fed Proc 39(12):2955–2958

    CAS  PubMed  Google Scholar 

  110. Nelson RA, Jones JD, Wahner HW, McGill DB, Code CF (1975) Nitrogen metabolism in bears: urea metabolism in summer starvation and in winter sleep and role of urinary bladder in water and nitrogen conservation. Mayo Clin Proc 50(3):141–146.

    Google Scholar 

  111. O’Connor WJ, Summerill RA (1976) The excretion of urea by dogs following a meat meal. J Physiol 256:93–102

    PubMed Central  PubMed  Google Scholar 

  112. O’Dell RM, Schmidt-Nielsen B (1961) Retention of urea by frog and mammalian kidney slices in vitro. J Cell Comp Physiol A 57(3):211

    Google Scholar 

  113. Panayotova-Heiermann M, Wright EM (2001) Mapping the urea channel through the rabbit Na(+)-glucose cotransporter SGLT1. J Physiol 535(Pt 2):419–425

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Pateman JA, Dunn E, Mackay EM (1982) Urea and thiourea transport in Aspergillus nidulans. Biochem Genet 20(7–8):777–790

    CAS  PubMed  Google Scholar 

  115. Preitner F, Bonny O, Laverriere A, Rotman S, Firsov D, Da Costa A, Metref S, Thorens B (2009) Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA 106(36):15501–15506

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Rabinowitz L, Gunther RA, Shoji ES, Freedland RA, Avery EH (1973) Effects of high and low protein diets on sheep renal function and metabolism. Kidney Int 4(3):188–207

    CAS  PubMed  Google Scholar 

  117. Rapoport J, Abuful A, Chaimovitz C, Noeh Z, Hays RM (1988) Active urea transport by the skin of Bufo viridis: amiloride- and phloretin-sensitive transport sites. Am J Physiol 255(3 Pt 2):F429–F433

    CAS  PubMed  Google Scholar 

  118. Rapoport J, Chaimovitz C, Hays RM (1989) Active urea transport in toad skin is coupled to H+ gradients. Am J Physiol 256(5 Pt 2):F830–F835

    CAS  PubMed  Google Scholar 

  119. Roch-Ramel F, Chomety F, Peters G (1968) Urea concentrations in tubular fluid and in renal tissue of nondiuretic rats. Am J Physiol 215(2):429–438

    CAS  PubMed  Google Scholar 

  120. Roch-Ramel F, Diezi J, Chomety F, Michoud P, Peters G (1970) Disposal of large urea overloads by the rat kidney: a micropuncture study. Am J Physiol 218(6):1524–1532

    CAS  PubMed  Google Scholar 

  121. Roch-Ramel F, Peters G (1967) Intrarenal urea and electrolyte concentrations as influenced by water diuresis and by hydrochlorothiazide. Eur J Pharmacol 1:124–139

    CAS  PubMed  Google Scholar 

  122. Safirstein R, Miller P, Dikman S, Lyman N, Shapiro C (1981) Cisplatin nephrotoxicity in rats: defect in papillary hypertonicity. Am J Physiol 241(2):F175–F185

    CAS  PubMed  Google Scholar 

  123. Sands JM, Martial S, Isozaki T (1996) Active urea transport in the rat inner medullary collecting duct: functional characterization and initial expression cloning. Kidney Int 49(6):1611–1614

    CAS  PubMed  Google Scholar 

  124. Sands JM, Nonoguchi H, Knepper MA (1987) Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253(5 Pt 2):F823–F832

    CAS  PubMed  Google Scholar 

  125. Schmidt-Nielsen B (1958) Urea excretion in mammals. Physiol Rev 38(2):139–168

    CAS  PubMed  Google Scholar 

  126. Schmidt-Nielsen B, Osaki H (1958) Renal response to changes in nitrogen metabolism in sheep. Am J Physiol 193:657–661

    CAS  PubMed  Google Scholar 

  127. Schmidt-Nielsen B, Osaki H, Murdaugh HV Jr, O’Dell R (1958) Renal regulation of urea excretion in sheep. Am J Physiol 194(2):221–228

    CAS  PubMed  Google Scholar 

  128. Schmidt-Nielsen B, Rabinowitz L (1964) Methylurea and acetamide: active reabsorption by elasmobranch renal tubules. Science (New York, NY) 146(3651):1587–1588

    CAS  Google Scholar 

  129. Schmidt-Nielsen B, Robinson RR (1970) Contribution of urea to urinary concentrating ability in the dog. Am J Physiol 218(5):1363–1369

    CAS  PubMed  Google Scholar 

  130. Schmidt-Nielsen B, Shrauger CR (1963) Handling of urea and related compounds by the renal tubules of the frog. Am J Physiol 205:483–488

    CAS  PubMed  Google Scholar 

  131. Schmidt-Nielsen B, Truniger B, Rabinowitz L (1972) Sodium-linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comp Biochem Physiol A: Comp Physiol 42(1):13–25

    CAS  Google Scholar 

  132. Seney FD, Persson AEG, Wright FS (1987) Modification of tubuloglomerular feedback signal by dietary protein. Am J Physiol 252 (Renal Fluid Electrolyte Physiol. 21):F83–F90

    Google Scholar 

  133. Shoemaker VH, Nagy KA (1977) Osmoregulation in amphibians and reptiles. Annu Rev Physiol 39:449–471

    CAS  PubMed  Google Scholar 

  134. Simmons NL, Chaudhry AS, Graham C, Scriven ES, Thistlethwaite A, Smith CP, Stewart GS (2009) Dietary regulation of ruminal bovine UT-B urea transporter expression and localization. J Anim Sci 87(10):3288–3299

    CAS  PubMed  Google Scholar 

  135. Smith CP, Potter EA, Fenton RA, Stewart GS (2004) Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. Am J Physiol Cell Physiol 287(4):C1087–C1093

    CAS  PubMed  Google Scholar 

  136. Smith CP, Wright PA (1999) Molecular characterization of an elasmobranch urea transporter. Am J Physiol 276(2 Pt 2):R622–R626

    CAS  PubMed  Google Scholar 

  137. Spector DA, Deng J, Stewart KJ (2012) Dietary protein affects urea transport across rat urothelia. Am J Physiol Renal Physiol 303(7):F944–F953

    CAS  PubMed  Google Scholar 

  138. Stenvinkel P, Frobert O, Anderstam B, Palm F, Eriksson M, Bragfors-Helin AC, Qureshi AR, Larsson T, Friebe A, Zedrosser A, Josefsson J, Svensson M, Sahdo B, Bankir L, Johnson RJ (2013) Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos). PLoS One 8(9):e72934

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Stewart GS, Fenton RA, Thevenod F, Smith CP (2004) Urea movement across mouse colonic plasma membranes is mediated by UT-A urea transporters. Gastroenterology 126(3):765–773

    CAS  PubMed  Google Scholar 

  140. Stewart GS, Graham C, Cattell S, Smith TP, Simmons NL, Smith CP (2005) UT-B is expressed in bovine rumen: potential role in ruminal urea transport. Am J Physiol Regul Integr Comp Physiol 289(2):R605–R612

    CAS  PubMed  Google Scholar 

  141. Sumrada R, Gorski M, Cooper T (1976) Urea transport-defective strains of Saccharomyces cerevisiae. J Bacteriol 125(3):1048–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Svelto M, Casavola V, Valenti G, Lippe C (1982) The nature of urea transport across the skin of of Rana esculenta. Bollettino della Societa italiana di biologia sperimentale 58(12):752–755

    CAS  PubMed  Google Scholar 

  143. Svelto M, Casavola V, Valenti G, Lippe C (1982) Phloretin sensitive active urea absorption in frog skin. Pflugers Arch 394(3):226–229

    CAS  PubMed  Google Scholar 

  144. Trinh-Trang-Tan MM, Bankir L, Doucet A, el Mernissi G, Imbert-Teboul M, Montegut M, Siaume S, Morel F (1985) Influence of chronic ADH treatment on adenylate cyclase and ATPase activity in distal nephron segments of diabetes insipidus Brattleboro rats. Pflugers Arch 405(3):216–222

    CAS  PubMed  Google Scholar 

  145. Turner TT, Hartmann PK, Howards SS (1979) Urea in the seminiferous tubule: evidence for active transport. Biol Reprod 20(3):511–515

    CAS  PubMed  Google Scholar 

  146. Uchida S, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S (2005) Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT-A2. Mol Cell Biol 25(16):7357–7363

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Valladares A, Montesinos ML, Herrero A, Flores E (2002) An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol Microbiol 43(3):703–715

    CAS  PubMed  Google Scholar 

  148. Valtin H (1977) Structural and functional heterogeneity of mammalian nephrons. Am J Physiol 233 (Renal Fluid Electrolyte Physiol. 2):F491–F501

    Google Scholar 

  149. Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, Knott SA, Kolcic I, Polasek O, Graessler J, Wilson JF, Marinaki A, Riches PL, Shu X, Janicijevic B, Smolej-Narancic N, Gorgoni B, Morgan J, Campbell S, Biloglav Z, Barac-Lauc L, Pericic M, Klaric IM, Zgaga L, Skaric-Juric T, Wild SH, Richardson WA, Hohenstein P, Kimber CH, Tenesa A, Donnelly LA, Fairbanks LD, Aringer M, McKeigue PM, Ralston SH, Morris AD, Rudan P, Hastie ND, Campbell H, Wright AF (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40(4):437–442

    CAS  PubMed  Google Scholar 

  150. Walser BL, Yagil Y, Jamison RL (1988) Urea flux in the ureter. Am J Physiol 255(2 Pt 2):F244–F249

    CAS  PubMed  Google Scholar 

  151. Wang WH, Kohler B, Cao FQ, Liu GW, Gong YY, Sheng S, Song QC, Cheng XY, Garnett T, Okamoto M, Qin R, Mueller-Roeber B, Tester M, Liu LH (2012) Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol 193(2):432–444

    CAS  PubMed  Google Scholar 

  152. Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293(3):284–301

    CAS  PubMed  Google Scholar 

  153. Wood CM, Liew HJ, De Boeck G, Walsh PJ (2013) A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias). PeerJ 1:e33

    PubMed Central  PubMed  Google Scholar 

  154. Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261(1):32–43

    CAS  PubMed  Google Scholar 

  155. Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch 447(5):510–518

    CAS  PubMed  Google Scholar 

  156. Yang B, Bankir L (2005) Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol Renal Physiol 288(5):F881–F896

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I want to thank specially Bodil Schmidt-Nielsen (Florida University, Gainesville, FL, USA) and Steve Hebert (✝) (Yale University, New Haven, CT, USA) for very stimulating discussions about active urea transport. Many thanks also to William Dantzler (University of Arizona, Tucson, AZ, USA), Robert Safirstein (Yale University, New Haven, CT, USA), and Anita Layton (Duke University, Durham, NC, USA) who all contributed to enrich and strengthen my views about this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Bankir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bankir, L. (2014). Active Urea Transport in Lower Vertebrates and Mammals. In: Yang, B., Sands, J. (eds) Urea Transporters. Subcellular Biochemistry, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9343-8_13

Download citation

Publish with us

Policies and ethics