Skip to main content

Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis

  • Conference paper
  • First Online:
Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism

Abstract

In this review, we present the determination of the various glycation sites of synthetic neoglycoconjugates formed by conjugation of the antigenic saccharide hapten to BSA using tandem mass spectrometry. The ratio of hapten: BSA was determined by the matrix-assisted laser desorption/ionization-TOF/TOF-MS analyses of the glycoconjugates. We also tentatively propose that all glycated residues are located mainly near the outer surface of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plotkin SA (2008) Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis 47:401–409

    Article  Google Scholar 

  2. Heidelberger M, Avery OT (1923) The soluble specific substance of pneumococcus. J Exp Med 38:73–79

    Article  CAS  Google Scholar 

  3. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  Google Scholar 

  4. Rumbo M, Nempont C, Kraehenbuhl J-P, Sirard J-C (2006) Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and Toll-like receptor 5. FEBS Lett 12:2976–2984

    Article  Google Scholar 

  5. Shetty N, Aarons E, Andrews J (2009) Structure and functions of microbes. In: Shetty N, Tang JW, Andrews J (eds) Infectious disease: pathogenesis, prevention, and case studies. Wiley, London, p 15

    Google Scholar 

  6. Corbett D, Hudson T, Roberts IS (2010) Bacterial polysaccharide capsules. In: Konig H (ed) Prokaryotic cell wall compounds. Springer, Heidelberg, p 111

    Chapter  Google Scholar 

  7. Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2:747–765

    Article  CAS  Google Scholar 

  8. Westphal O, Liideritz O, Bister F (1952) Ueber die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch 7B:148–155

    CAS  Google Scholar 

  9. Pupo E, Aguila A, Santana H, Núnez JF, Castellanos-Serra L, Hardy E (1999) Mice immunization with gel electrophoresis-micropurified bacterial lipopolysaccharides. Electrophoresis 20:458–461

    Article  CAS  Google Scholar 

  10. Davis MR Jr, Goldberg JB (2012) Purification and visualization of lipopolysaccharide from Gram-negative bacteria by hot aqueous-phenol extraction. J Vis Exp 28:e3916, 1–3

    Google Scholar 

  11. Nagy G, Pál T (2008) Lipopolysaccharide: a tool and target in enterobacterial vaccine development. Biol Chem 389:513–520

    Article  CAS  Google Scholar 

  12. Reisser D, Pance A, Jeannin JF (2002) Mechanisms of the antitumoral effect of lipid A. Bioessays 24:284–289

    Article  CAS  Google Scholar 

  13. Bowden RA, Cloeckaert A, Zygmunt MS, Dubray G (1995) Outer-membrane protein- and rough lipopolysaccharide-specific monoclonal antibodies protect mice against Brucella ovis. J Med Microbiol 43:344–347

    Article  CAS  Google Scholar 

  14. Fulop M, Mastroeni P, Green M, Titball RW (2001) Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine 19:4465–4472

    Article  CAS  Google Scholar 

  15. Ada G, Isaacs D (2003) Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect 9:79–85

    Article  CAS  Google Scholar 

  16. Landsteiner K (1945) The specificity of serological reactions. Harvard University Press, Cambridge

    Google Scholar 

  17. Avery OT, Goebel WF (1929) Chemo-immunological studies on conjugated carbohydrate-proteins. II. Immunological specificity of synthetic sugar-protein antigens. J Exp Med 50:533–550

    Article  CAS  Google Scholar 

  18. Pollard AJ, Perrett KP, Beverley PC (2009) Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev 9:213–220

    CAS  Google Scholar 

  19. Daum RS, Hogerman D, Rennels MB, Bewley K, Malinoski F, Rothstein E, Reisinger K, Block S, Keyserling H, Steinhoff M (1997) Infant immunization with pneumococcal CRM197 vaccines: effect of saccharide size on immunogenicity and interactions with simultaneously administrated vaccines. J Infect Dis 176:445–455

    Article  CAS  Google Scholar 

  20. Lefeber DJ, Kamerling JP, Vliegenthart JFG (2001) Synthesis of Streptococcus pneumoniae type 3 neoglycoproteins varying in oligosaccharide chain length, loading and carrier protein. Chem Eur J 7:4411

    Article  CAS  Google Scholar 

  21. Paoletti LC, Kasper DL, Michon F, DiFabio J, Jennings HJ, Tosteson TD, Wessels MR (1992) Effects of chain length on the immunogenicity in rabbits of group B Streptococcus type III oligosaccharide-tetanus toxoid conjugates. J Clin Invest 89:203

    Article  CAS  Google Scholar 

  22. Chernyak A, Kondo S, Wade TK, Meeks MD, Alzari PM, Fournier JM, Taylor RK, Kováč P, Wade WF (2002) Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. J Infect Dis 185:950–962

    Article  CAS  Google Scholar 

  23. Dick WE Jr, Beurret M (1989) A survey and consideration of design and preparation factors. In: Cruse JM, Lewis RE Jr (eds) Glycoconjugates of bacterial carbohydrate antigens, vol 10. Krager, Basel, pp 48–114

    Google Scholar 

  24. Tietze LF, Arlt M, Beller M, Glüsenkamp KH, Jähde E, Rajewsky MF (1991) Anticancer agents, 15. Squaric acid diethyl ester: a new coupling reagent for the formation of drug biopolymer conjugates. Synthesis of squaric acid ester amides and diamides. Chem Ber 124:1215–1221

    Article  CAS  Google Scholar 

  25. Glüsenkamp KH, Drosdziok W, Eberle G, Jähde E, Rajewsky MFZ (1991) Naturforsch C Biosci 46:498–501

    Google Scholar 

  26. Tietze LF, Schröter C, Gabius S, Brinck U, Goerlach-Graw A, Gabius HJ (1991) Conjugation of p-aminophenyl glycosides with squaric acid diesters to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectines. Bioconjug Chem 2:148–153

    Article  CAS  Google Scholar 

  27. Cohen S, Cohen SG (1966) Preparation and reactions of derivatives of squaric acid. Alkoxy-, hydroxy-, and aminocyclobutenediones1. J Am Chem Soc 88:1533–1536

    Article  CAS  Google Scholar 

  28. Grünefeld J, Bredhauer G, Zinner G (1985) Zur reaktion von quadratsäuredimethylester mit N,N-disubstituierten hydrazin-derivaten. Arch Pharm (Weinheim) 318:984–988

    Article  Google Scholar 

  29. Bergh A, Magnusson BG, Ohlsson J, Wellmar U, Nilsson UJ (2001) Didecyl squarate – a practical amino-reactive cross-linking reagent for neoglycoconjugate synthesis. Glycoconj J 18:615–621

    Article  CAS  Google Scholar 

  30. Kamath VP, Diedrich P, Hindsgaul O (1996) Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconj J 13:315–319

    Article  CAS  Google Scholar 

  31. Hou S-J, Saksena R, Kováč P (2008) Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydr Res 343:196–210

    Article  CAS  Google Scholar 

  32. Saksena R, Adamo R, Kováč P (2007) Immunogens related to the synthetic tetrasaccharide side chain of the Bacillus anthracis exosporium. Bioorg Med Chem 15:4283–4310

    Article  CAS  Google Scholar 

  33. Bongat AFG, Saksena R, Adamo R, Fujimoto Y, Shiokawa Z, Peterson DC, Fukase K, Vann WF, Kováč P (2010) Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides and a glycopeptide adjuvant. Glycoconj J 27:69–77

    Article  CAS  Google Scholar 

  34. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  Google Scholar 

  35. Morelle W, Michalski JC (2005) Glycomics and mass spectrometry. Curr Pharm Des 11:2615–2645

    Article  CAS  Google Scholar 

  36. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  Google Scholar 

  37. Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem 3:433–465

    Article  CAS  Google Scholar 

  38. Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G (2005) Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 105:1869–1915

    Article  CAS  Google Scholar 

  39. Zhang Y, Go EP, Desaire H (2008) Maximizing coverage of glycosylation heterogeneity in MALDI-MS analysis of glycoproteins with up to 27 glycosylation sites. Anal Chem 80:3144–3158

    Article  CAS  Google Scholar 

  40. Laštovičková M, Chmelik J, Bobalova J (2009) The combination of simple MALDI matrices for the improvement of intact glycoproteins and glycans analysis. Int J Mass Spectrom 281:82–88

    Article  Google Scholar 

  41. Kamath VP, Diedrich P, Hindsgaul O (1996) Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconj J 13:315–319

    Article  CAS  Google Scholar 

  42. Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD (2003) SELDI-TOF MS for diagnostic proteomics. Anal Chem 75:148A–155A

    Article  CAS  Google Scholar 

  43. Liu C (2011) The application of SELDI-TOF-MS in clinical diagnosis of cancers. J Biomed Biotechnol 2011:6, Article ID 245821

    Google Scholar 

  44. Chernyak A, Karavanov A, Ogawa Y, Kováč P (2001) Conjugating oligosaccharides to proteins by squaric acid diester chemistry: rapid monitoring of the progress of conjugation, and recovery of the unused ligand. Carbohydr Res 330:479–486

    Article  CAS  Google Scholar 

  45. Jahouh F, Saksena R, Aiello D, Napoli A, Sindona G, Kováč P, Banoub JH (2010) Glycation sites in neoglycoconjugates from the terminal monosaccharide antigen of the O-PS of Vibrio cholerae O1, serotype Ogawa, and BSA revealed by matrix-assisted laser desorption-ionization tandem mass spectrometry. J Mass Spectrom 10:1148–1159

    Article  Google Scholar 

  46. Jahouh F, Saksena R, Kováč P, Banoub JH (2012) Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS. J Mass Spectrom 47:890–900

    Article  CAS  Google Scholar 

  47. Jahouh F, Hou SJ, Kováč P, Banoub JH (2011) Determination of the glycation sites of Bacillus anthracis neoglycoconjugate vaccine by MALDI-TOF/TOF-CID-MS/MS and LC-ESI-QqTOF-tandem mass spectrometry. J Mass Spectrom 46:993–1003

    Article  CAS  Google Scholar 

  48. Jahouh F, Hou SJ, Kováč P, Banoub JH (2012) Determination of glycation sites by tandem mass spectrometry in a synthetic lactose-bovine serum albumin conjugate, a vaccine model prepared by dialkyl squarate chemistry. Rapid Commun Mass Spectrom 26:749–758

    Article  CAS  Google Scholar 

  49. Jahouh F, Xu P, Vann WF, Kováč P, Banoub JH (2013) Mapping the glycation sites in the neoglycoconjugate from hexasaccharide antigen of Vibrio cholerae, serotype Ogawa and the recombinant tetanus toxin C-fragment carrier. J Mass Spectrom 48:1083–1090

    Article  CAS  Google Scholar 

  50. McCarthy PC, Saksena R, Peterson DC, Lee CH, An Y, Cipollo JF, Vann WF (2013) Chemoenzymatic synthesis of immunogenic meningococcal group C polysialic acid-tetanus Hc fragment glycoconjugates. Glycoconj J 30:857–870

    Google Scholar 

  51. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biol Mass Spectrom 11:601

    Article  CAS  Google Scholar 

  52. Johnson RS, Martin SA, Biemann K, Stults JT, Watson JT (1987) Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem 59:2621–2625

    Article  CAS  Google Scholar 

  53. Domon B, Costello C (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

  54. Rietschel ET, Brade L, Lindner B, Zahringer U (1992) Biochemistry oflipopolysaccharides. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides, 1st edn. CRC Press, Boca Raton, p 3

    Google Scholar 

  55. Chatterjee S, Chaudhuri K (2003) Lipopolysaccharides of Vibrio cholerae. I. Physical and chemical characterization. Biochem Biophys Acta 1639:65–79

    CAS  Google Scholar 

  56. Kossaczka Z, Shiloach J, Johnson V, Taylor DN, Finkelstein RA, Robbins JB, Szu SC (2000) Vibrio cholerae O139 conjugate vaccines: synthesis and immunogenicity of V. cholerae O139 capsular polysaccharide conjugates with recombinant diphtheria toxin mutant in mice. Infect Immun 68:5037–5043

    Article  CAS  Google Scholar 

  57. Xu P, Alam MM, Kalsy A, Charles RC, Calderwood SB, Qadri F, Ryan ET, Kováč P (2011) Simple, direct conjugation of bacterial O-SP-core antigens to proteins: development of cholera conjugate vaccines. Bioconjug Chem 22:2179–2185

    Article  CAS  Google Scholar 

  58. Manning PA, Stroeher UH, Morona R (1994) In: Wachsmuth IK, Blake PA, Olsvik O (eds) Vibrio cholerae and cholera: molecular to global perspectives. American Society for Microbiology, Washington, DC, p 77

    Chapter  Google Scholar 

  59. Dick WE Jr, Beurret M (1989) In: Cruse JM, Lewis RE Jr (eds) Conjugate vaccines, vol 10. Krager, Basel, p 48

    Google Scholar 

  60. McNaught AD (1997) International union of pure and applied chemistry and international union of biochemistry and molecular biology. Joint commission on biochemical nomenclature. Nomenclature of carbohydrates. Carbohydr Res 297:1–92

    Article  CAS  Google Scholar 

  61. Kenne L, Lindberg B, Unger P, Gustafsson B, Holme T (1982) Structural studies of the Vibrio cholerae O-antigen. Carbohydr Res 100:341–349

    Article  CAS  Google Scholar 

  62. Hisatsune K, Kondo S, Isshiki Y, Igushi T, Haishima Y (1993) Occurrence of 2-OMethyl-N-(3-Deoxy-L-glycero-tetronyl)-D-perosamine (4-amino-4,6-dideoxy-D-mannopyranose) in lipopolysaccharide from Ogawa but not from Inaba O forms of O1 Vibrio cholerae. Biochem Biophys Res Commun 190:302–307

    Article  CAS  Google Scholar 

  63. Isshiki Y, Kondo S, Haishima Y, Iguchi T, Hisatsune K (1996) Identification of N-3-hydroxypropionyl-2-O-methyl-D-perosamine as a specific constituent of the lipopolysaccharide from Vibrio bio-serogroup 1875 which has Ogawa antigen factor B of Vibrio cholerae O1. J Endotoxin Res 3:143–149

    CAS  Google Scholar 

  64. Saksena R, Chernyak A, Karavanov A, Kovác P (2003) Conjugating low molecular mass carbohydrates to proteins. 1. Monitoring the progress of conjugation. Methods Enzymol 362:125–139

    Article  CAS  Google Scholar 

  65. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  66. Peitsch MC (1995) Protein modeling by E-mail. Biotechnology 13:658–660

    Article  CAS  Google Scholar 

  67. Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  CAS  Google Scholar 

  68. Pries FG (1993) In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular biology. American Society for Microbiology, Washington, DC, p 3

    Google Scholar 

  69. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  Google Scholar 

  70. Boutiba-Ben Boubaker I, Ben Redjeb S (2001) Bacillus anthracis: causative agent of anthrax. Tunis Med 79:642–646

    CAS  Google Scholar 

  71. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033

    Article  CAS  Google Scholar 

  72. Turnbull PCB (1999) Definitive identification of Bacillus anthracis-a review. J Appl Microbiol 87:237–240

    Article  CAS  Google Scholar 

  73. Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  74. Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T (2002) Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg Infect Dis 8:1111–1116

    Article  CAS  Google Scholar 

  75. Chun J-H, Hong K-J, Cha SH, Cho M-H, Lee KJ, Jeong DH, Yoo C-K, Rhie G-e (2012) Complete genome sequence of Bacillus anthracis H9401, an isolate from a Korean patient with anthrax. J Bacteriol 194:4116–4117

    Article  CAS  Google Scholar 

  76. Williams DD, Benedek O, Turnbough CL Jr (2003) Species-specific peptide ligands for the detection of Bacillus anthracis spores. Appl Environ Microbiol 69:6288–6293

    Article  CAS  Google Scholar 

  77. Chabot DJ, Scorpio A, Tobery SA, Little SF, Norris SL, Friedlander AM (2004) Anthrax capsule vaccine protects against experimental infection. Vaccine 23:43–47

    Article  CAS  Google Scholar 

  78. Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, Pritchard DG Jr, Turnbough CL (2004) Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J Biol Chem 279:30945–30953

    Article  CAS  Google Scholar 

  79. Burkitt WI, Giannakopulos AE, Sideridou F, Bashir S, Derrick PJ (2003) Discrimination effects in MALDI-MS of mixtures of peptides-analysis of the proteome. Aust J Chem 56:369–377

    Article  CAS  Google Scholar 

  80. Kratzer R, Eckerskorn C, Karas M, Lottspeich F (1998) Suppression effects in enzymatic peptide ladder sequencing using ultraviolet – matrix assisted laser desorption/ionization – mass spectrometry. Electrophoresis 19:1910–1919

    Article  CAS  Google Scholar 

  81. Gao GF, Jakobsen BK (2000) Molecular interactions of coreceptor CD+8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol Today 21:630

    Article  CAS  Google Scholar 

  82. Roy R (2004) New trends in carbohydrate-based vaccines. Drug Discov Today Technol 1:327

    Article  CAS  Google Scholar 

  83. Roy R, Shiao TC, Rittenhouse-Olson K (2013) Glycodendrimers: versatile tools for nanotechnology. Braz J Pharm Sci 49:85

    Article  CAS  Google Scholar 

  84. Roy R, Shiao TC (2012) Glycodendrimers as functional antigens and antitumorales vaccines. New J Chem 36:324

    Article  Google Scholar 

  85. Roy R, Shiao TC (2011) Organic chemistry and immunochemical strategies in the design of potent carbohydrate-based vaccines. Chimia 65:24

    Article  CAS  Google Scholar 

  86. Icart LP, Fernandez-Santana V, Veloso RC, Carmenate T, Sirois S, Roy R, Verez Bencomo V (2007) T-cell immunity of carbohydrates. In: Roy R (ed) Carbohydrate-based vaccines. ACS Symposium Series, 989, p 1

    Google Scholar 

  87. Daniels MA, Jameson SC (2000) Critical role for CD+8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 191:335

    Article  CAS  Google Scholar 

  88. Kim YS, Gum J, Brockhausen I (1996) Mucin glycoproteins in neoplasia. Glycoconj J 13:693

    Article  CAS  Google Scholar 

  89. Kim YJ, Varki A (1997) Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj J 14:569

    Article  CAS  Google Scholar 

  90. Ono M, Hakomori S (2004) Glycosylation defining cancer cell motility and invasiveness. Glycoconj J 20:71

    Article  CAS  Google Scholar 

  91. Springer GF (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75:594

    Article  CAS  Google Scholar 

  92. Campbell BJ, Finnie IA, Hounsell EF, Rhodes JM (1995) Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J Clin Invest 95:571

    Article  CAS  Google Scholar 

  93. Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224:1198

    Article  CAS  Google Scholar 

  94. Dippold W, Steinborn A, Büschenfelde KHM (1990) The role of the Thomsen-Friedenreich antigen as a tumor-associated molecule. Environ Health Perspect 88:255

    Article  CAS  Google Scholar 

  95. Baek M-G, Roy R (2002) Glycodendrimers: novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. Rev Mol Biotechnol 90:291

    Article  Google Scholar 

  96. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350

    Article  CAS  Google Scholar 

  97. Kartazer R, Eckerskorn C, Karas M, Lottspeich F (1998) Suppression effects in enzymatic peptide ladder sequencing using ultraviolet – matrix assisted laser desorption/ionization- mass spectrometry. Electrophoresis 19:1910

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Banoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Jahouh, F. et al. (2014). Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis. In: Banoub, J. (eds) Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9238-7_16

Download citation

Publish with us

Policies and ethics