Skip to main content

Isoprenoid Production via Plant Cell Cultures: Biosynthesis, Accumulation and Scaling-Up to Bioreactors

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Plant cell culture is traditionally viewed as a unique artificially created biological system representing a heterogenous population of dedifferentiated cells. This system undergoes a continuous process of autoselection based on the intensity and stability of cell proliferation. We discuss here the details of formation and regulation of isoprenoid biosynthesis in plant cell in vitro based on literature survey and our research. Obviously, secondary metabolism differs in cell culture compared to the plant per se, because in cell culture metabolites are synthesized and compartmentalized within a single heterotrophic cell with sparse or underdeveloped vacuoles and plastids. For example, in plant cell cultures isoprenoid biosynthesis via MVA pathway was found to be more active than via plastid-localized MEP pathway. Also, it was hypothesized that cell cultures preferably produce metabolites, which promote cell proliferation and growth. Indeed, cell cultures of Dioscorea deltoidea produced mainly furostanol glycosides, which promoted cell division. Triterpene glycosides (ginsenosides) in the cell cultures of various Panax species are represented mainly by Rg- and Rb-groups. Rb ginsenosides are predominantly found as malonyl-esters that may influence their intracellular localization.

Despite the difference in the isoprenoid composition in plant and cell culture the latter became an attractive source of phytochemicals as an alternative to plant harvesting. We provide in this chapter the guidelines to biotechnological production of plant isoprenoids using plant cell cultures and discuss the optimal methods of bioreactor-based cultivation and cryopreservation of plant cell collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669. doi:10.1111/j.1365-313X.2008.03449.x

    PubMed  CAS  Google Scholar 

  2. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Ann Rev Plant Biol 60:335–355. doi:10.1146/annurev.arplant.043008.091955

    CAS  Google Scholar 

  3. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429. doi:http://dx.doi.org/10.1016/j.plipres.2005.09.003

    PubMed  CAS  Google Scholar 

  4. Solovchenko AE, Merzlyak MN (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ J Plant Physiol 55:719–737. doi:10.1134/s1021443708060010

    CAS  Google Scholar 

  5. Suzuki M, Muranaka T (2007) Molecular genetics of plant sterol backbone synthesis. Lipids 42:47–54. doi:10.1007/s11745-006-1000-5

    PubMed  CAS  Google Scholar 

  6. Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166–169

    PubMed  Google Scholar 

  7. Nosov AM (2012) Application of cell technologies for production of plant-derived bioactive substances of plant origin. Appl Biochem Microbiol 48:609–624. doi:10.1134/s000368381107009x

    CAS  Google Scholar 

  8. Ceunen S, Geuns JMC (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201–1228. doi:10.1021/np400203b

    PubMed  CAS  Google Scholar 

  9. Vasil’eva IS, Paseshnichenko VA (1996) Steroid glycosides from suspension cultures of Dioscorea deltoidea cells and their biological activity. In: Waller G, Yamasaki K (eds) Saponins used in traditional and modern medicine, vol 404, Advances in experimental medicine and biology. Springer, New York, pp 15–22. doi:10.1007/978-1-4899-1367-8_2

    Google Scholar 

  10. Vincken J-P, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297. doi:http://dx.doi.org/10.1016/j.phytochem.2006.10.008

    PubMed  CAS  Google Scholar 

  11. Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457. doi:http://dx.doi.org/10.1016/j.phytochem.2011.01.015

    PubMed  CAS  Google Scholar 

  12. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45. doi:10.1111/j.1469-8137.2011.04049.x

    PubMed  CAS  Google Scholar 

  13. Dinan L, Harmatha J, Volodin V, Lafont R (2009) Phytoecdysteroids: diversity, biosynthesis and distribution. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Netherlands, pp 3–45. doi:10.1007/978-1-4020-9112-4_1

    Google Scholar 

  14. Smolenskaya I, Reshetnyak O, Nosov A, Zoriniants S, Chaiko A, Smirnova Y (2007) Ginsenoside production, growth and cytogenetic characteristics of sustained Panax japonicus var. Repens cell suspension culture. Biol Plant 51:235–241. doi:10.1007/s10535-007-0047-3

    CAS  Google Scholar 

  15. Bondarev N, Reshetnyak O, Nosov A (2001) Peculiarities of diterpenoid steviol glycoside production in in vitro cultures of Stevia rebaudiana Bertoni. Plant Sci 161:155–163. doi:http://dx.doi.org/10.1016/S0168-9452(01)00400-9

    CAS  Google Scholar 

  16. Cane DE (1999) 2.01 – Isoprenoid biosynthesis: overview. In: Barton SD, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry. Pergamon, Oxford, pp 1–13. doi:http://dx.doi.org/10.1016/B978-0-08-091283-7.00034-5

    Google Scholar 

  17. Takahashi S, Koyama T (2006) Structure and function of cis-prenyl chain elongating enzymes. Chem Rec 6:194–205. doi:10.1002/tcr.20083

    PubMed  CAS  Google Scholar 

  18. Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412–3442. doi:10.1021/cr050286w

    PubMed  CAS  Google Scholar 

  19. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304. doi:http://dx.doi.org/10.1016/j.pbi.2006.03.014

    PubMed  CAS  Google Scholar 

  20. Keeling CI, Weisshaar S, Lin RPC, Bohlmann J (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci U S A 105:1085–1090. doi:10.1073/pnas.0709466105

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771. doi:10.1111/j.1365-313X.2005.02417.x

    PubMed  CAS  Google Scholar 

  22. Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci U S A 102(3):933–938. doi:10.1073/pnas.0407360102

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Hampel D, Mosandl A, Wüst M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305–311. doi:http://dx.doi.org/10.1016/j.phytochem.2004.12.010

    PubMed  CAS  Google Scholar 

  24. Bartram S, Jux A, Gleixner G, Boland W (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry 67:1661–1672. doi:http://dx.doi.org/10.1016/j.phytochem.2006.02.004

    PubMed  CAS  Google Scholar 

  25. Walker K, Schoendorf A, Croteau R (2000) Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch Biochem Biophys 374:371–380. doi:http://dx.doi.org/10.1006/abbi.1999.1609

    PubMed  CAS  Google Scholar 

  26. Nosov AM (1999) Plant cell culture: unique system, model, and tool. Russ J Plant Physiol 46:731–738

    CAS  Google Scholar 

  27. Butenko RG (1985) Some features of cultured plant cells. In: Butenko RG (ed) Plant cell culture. MIR Publ, Moscow, pp 11–34

    Google Scholar 

  28. Wink M, Schimmer O (2010) Molecular modes of action of defensive secondary metabolites. In: Functions and biotechnology of plant secondary metabolites, vol 39, Annual plant reviews. Wiley-Blackwell, Oxford, UK, pp 21–161. doi:10.1002/9781444318876.ch2

    Google Scholar 

  29. Nosov AM (1994) Functions of plant secondary metabolites in vivo and in vitro. Russ J Plant Physiol 41:873–878

    CAS  Google Scholar 

  30. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UB, Nevoigt E (eds) Food biotechnology, vol 111, Advances in biochemical engineering/biotechnology. Springer, Berlin/Heidelberg, pp 187–228. doi:10.1007/10_2008_103

    Google Scholar 

  31. Alfermann A-W (2010) Production of natural products by plant cell and organ cultures. In: Functions and biotechnology of plant secondary metabolites, vol 39, Annual plant reviews. Wiley-Blackwell, Oxford, UK, pp 381–399. doi:10.1002/9781444318876.ch6

    Google Scholar 

  32. Sautour M, Mitaine-Offer A-C, Lacaille-Dubois M-A (2007) The Dioscorea genus: a review of bioactive steroid saponins. J Nat Med 61:91–101. doi:10.1007/s11418-006-0126-3

    CAS  Google Scholar 

  33. Lacaille-Dubois M-A (2005) Bioactive saponins with cancer related and immunomodulatory activity: recent developments. In: Atta-ur R (ed) Studies in natural products chemistry, vol 32, part I. Elsevier, USA, pp 209–246. doi:http://dx.doi.org/10.1016/S1572-5995(05)80057-2

  34. Yang C-R, Zhang Y, Jacob MR, Khan SI, Zhang Y-J, Li X-C (2006) Antifungal activity of C-27 steroidal saponins. Antimicrob Agents Chemother 50:1710–1714. doi:10.1128/aac.50.5.1710-1714.2006

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Kohara A, Nakajima C, Hashimoto K, Ikenaga T, Tanaka H, Shoyama Y, Yoshida S, Muranaka T (2005) A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum. Plant Mol Biol 57:225–239. doi:10.1007/s11103-004-7204-2

    PubMed  CAS  Google Scholar 

  36. Thakur M, Melzig M, Fuchs H, Weng A (2011) Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Botanic Targets Ther 1:19–29. doi:http://dx.doi.org/10.2147/BTAT.S17261

    Google Scholar 

  37. Inoue K, Shibuya M, Yamamoto K, Ebizuka Y (1996) Molecular cloning and bacterial expression of a cDNA encoding furostanol glycoside 26-O-β-glucosidase of Costus speciosus. FEBS Lett 389:273–277. doi:http://dx.doi.org/10.1016/0014-5793(96)00601-1

    PubMed  CAS  Google Scholar 

  38. Arthan D, Kittakoop P, Esen A, Svasti J (2006) Furostanol glycoside 26-O-b-glucosidase from the leaves of Solanum torvum. Phytochemistry 67:27–33

    PubMed  CAS  Google Scholar 

  39. Vasil’eva IS, Udalova ZV, Zinov’eva SV, Paseshnichenko VA (2009) Steroid furostanol glycosides: a new class of natural adaptogenes (review). Appl Biochem Microbiol 45:463–472. doi:10.1134/s0003683809050019

    Google Scholar 

  40. Djerassi C (1992) Steroid research at Syntex: “the pill” and cortisone. Steroids 57:631–641. doi:http://dx.doi.org/10.1016/0039-128X(92)90016-3

    PubMed  CAS  Google Scholar 

  41. Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104:1947–1952. doi:10.1073/pnas.0605728104

    PubMed  PubMed Central  Google Scholar 

  42. Drapeau D, Sauvaire Y, Blanch HW, Wilke CR (1986) Improvement of diosgenin yield from Dioscorea deltoidea plant cell cultures by use of a non-traditional hydrolysis method. Planta Med 52:474–478. doi:10.1055/s-2007-969257

    Google Scholar 

  43. Kaul B (1969) An examination of the callu cultures of some Dioscorea, Yucca and Lycopersicon species for the presence of diosgenin and related steroids. Lloydia 32:528–536

    Google Scholar 

  44. Mehta AR, Staba EJ (1970) Presence of diosgenin in tissue cultures of Dioscorea composita hemsl. and related species. J Pharm Sci 59:864–865. doi:10.1002/jps.2600590635

    PubMed  CAS  Google Scholar 

  45. Tomita Y, Uomori A, Minato H (1970) Steroidal sapogenins and sterols in tissue cultures of Dioscorea tokoro. Phytochemistry 9:111–114. doi:http://dx.doi.org/10.1016/S0031-9422(00)86621-2

    CAS  Google Scholar 

  46. Heble MR, Narayanaswami S, Chadha MS (1968) Diosgenin and β-sitosterol: isolation from Solanum xanthocarpum tissue cultures. Science 161:1145. doi:10.1126/science.161.3846.1145

    PubMed  CAS  Google Scholar 

  47. Khanna P, Manot SK, Rathore AK (1978) Isolation & characterization of sapogenins & sterols from in vitro static tissue cultures of some solanaceous species. Indian J Exp Biol 16:616–618

    CAS  Google Scholar 

  48. Khanna P, Jain SC (1973) Diosgenin, gitogenin and tigogenin from Trigonella foenum-graecum tissue cultures. Lloydia 36:96–98

    CAS  Google Scholar 

  49. Khanna P, Mohan S (1973) Isolation and identification of diosgenin and sterols from fruits and in vitro cultures of Momordica charantia L. Indian J Exp Biol 11:58–60

    CAS  Google Scholar 

  50. Khanna P, Sharma GL, Rathore AK, Manot SK (1977) Effect of cholesterol on in vitro suspension tissue cultures of Costus speciosus (Koen) Sm., Dioscorea floribunda Mart. & Gal., Solanum aviculare Forst. & Solanum xanthocarpum Schard & Wendl. Indian J Exp Biol 15:1025–1027

    CAS  Google Scholar 

  51. Stohs SJ, Sabatka JJ, Obrist JJ, Rosenberg H (1974) Sapogenins of Yucca glauca tissue cultures. Lloydia 37:504–505

    PubMed  CAS  Google Scholar 

  52. Stohs SJ, Rosenberg H (1975) Steroids and steroid metabolism in plant tissue cultures. Lloydia 38:181–194

    PubMed  CAS  Google Scholar 

  53. Brain KR, Lockwood GB (1976) Hormonal control of steroid levels in tissue cultures from Trigonella foenumgraecum. Phytochemistry 15:1651–1654. doi:http://dx.doi.org/10.1016/S0031-9422(00)97446-6

    CAS  Google Scholar 

  54. Chaturvedi HC, Chowdhury AR (1980) Effect of growth hormones & some nitrogen sources on diosgenin biosynthesis by tuber callus of Dioscorea deltoidea. Indian J Exp Biol 18(8):913–915

    CAS  Google Scholar 

  55. Heble MR, Narayanaswami S, Chadha MS (1971) Hormonal control of steroid synthesis in Solanum xanthocarpum tissue cultures. Phytochemistry 10:2393–2394. doi:http://dx.doi.org/10.1016/S0031-9422(00)89885-4

    CAS  Google Scholar 

  56. Hosoda N, Yatazawa M (1979) Sterols, steroidal sapogenin and steroidal alkaloid in callus culture of Solanum laciniatum. Agric Biol Chem 43:821–825

    CAS  Google Scholar 

  57. Kaul B, Stohs SJ, Staba EJ (1969) Dioscorea tissue cultures. 3. Influence of various factors on diosgenin production by Dioscorea deltoidea callus and suspension cultures. Lloydia 32:347–359

    PubMed  CAS  Google Scholar 

  58. Pal A, Roy A (1991) Embryo culture of Costus speciosus (Koen.) Sm. to regenerate variable diosgenin yielding clones. Plant Cell Rep 10:565–568. doi:10.1007/bf00232512

    PubMed  CAS  Google Scholar 

  59. Kaul B, Staba J (1968) Biosynthesis and isolation of diosgenin from Dioscorea deltoidea callus and suspension cells. Lloydia 31:171–179

    CAS  Google Scholar 

  60. Tarakanova GA, Gudskov NL, Vinnikova NV (1979) Some peculiarities of primary metabolism and diosgenin formation in Dioscorea deltoidea plant cell culture. Sov Plant Physiol 26:24–63 (in Russ)

    Google Scholar 

  61. Tal B, Gressel J, Goldberg I (1982) The effect of medium constituents on growth and diosgenin production by Dioscorea deltoidea cells grown in batch cultures. Planta Med 44:111–115. doi:10.1055/s-2007-971414

    PubMed  CAS  Google Scholar 

  62. Tal B, Rokem JS, Goldberg I (1983) Factors affecting growth and product formation in plant cells grown in continuous culture. Plant Cell Rep 2:219–222. doi:10.1007/bf00270109

    PubMed  CAS  Google Scholar 

  63. Sengupta J, Mitra GC, Sharma AK (1989) Steroid formation during morphogenesis in callus cultures of Dioscorea floribunda. J Plant Physiol 135:27–30. doi:http://dx.doi.org/10.1016/S0176-1617(89)80219-6

    CAS  Google Scholar 

  64. Tal B, Goldberg I (1982) Growth and diosgenin production by Dioscorea deltoidea cells in batch and continuous cultures. Planta Med 44:107–110. doi:10.1055/s-2007-971413

    PubMed  CAS  Google Scholar 

  65. Battat E, Rokem JS, Goldberg I (1989) Growth of Dioscorea deltoidea at high sugar concentrations. Plant Cell Rep 7:652–654. doi:10.1007/bf00272052

    PubMed  CAS  Google Scholar 

  66. Ravishankar GA, Grewal S (1991) Development of media for growth of Dioscorea deltoidea cells and in vitro diosgenin production: influence of media constituents and nutrient stress. Biotechnol Lett 13:125–130. doi:10.1007/bf01030463

    CAS  Google Scholar 

  67. Karanova SL, Shamina ZB, Rappoport IA (1975) Effect of N-NMU on variation in cell population of Dioscorea deltoidea Wall in vitro. Genetika 11:35–40 (in Russ)

    CAS  Google Scholar 

  68. Popov AS, Volkova LA (1994) Cryopreservation and some characteristics of Dioscorea deltoidea cell cultures in the vitamin-free medium. Russ J Plant Physiol 41:815–820

    Google Scholar 

  69. Popov AS, Volkova LA, Butenko RG (1995) Cryopreservation of germplasm of Dioscorea deltoidea (medicinal jam). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 32. Springer, Berlin, pp 487–498

    Google Scholar 

  70. Smolenskaya IN (1993) Cell proliferation in two lines of Dioscorea deltoidea suspension culture. In: Butenko RG (ed) The 2nd international conference biology of plant cell cultures and biotechnology. Almaty, p 31 (in Russ)

    Google Scholar 

  71. Lipsky AK, Nosov AM, Paukov VN, Karanova SL (1985) Growth and metabolism of the Dioscorea deltoidea cell culture on submerged cultivation. In: Butenko RG (ed) Plant cell culture. MIR Publ, Moscow, pp 76–107

    Google Scholar 

  72. Karanova SL, Nosov AM, Paukov VN, Shamina ZB (1986) The productivity of different cell lines of Dioscorea deltoidea plant cell culture. In: Butenko R (ed) Plant cell culture and biotechnology. NAUKA Publ, Moscow, pp 83–87 (in Russ)

    Google Scholar 

  73. Butenko RG, Vorob’ev AS, Nosov AM, Knyaz’kov IE (1992) Synthesis, accumulation, and location os steroid glycosides in cells of different strains of Dioscorea deltoidea Wall. Sov Plant Physiol 39:763–768 (in Russ)

    Google Scholar 

  74. Nosov AM, Paukov VN, Kintya PK (1986) Investigation of steroid compounds in Dioscorea deltoidea plant cell culture. In: Butenko R (ed) Plant cell culture and biotechnology. NAUKA Publ, Moscow, pp 79–83 (in Russ)

    Google Scholar 

  75. Knyaz’kov IE, Lobakova EC, Nosov AM (1994) Steroid glycoside location and ultrastructure of Dioscorea deltoidea cells in culture. Russ J Plant Physiol 41:789

    Google Scholar 

  76. Nosov AM, Paukov VN, Butenko RG (1986) Physiological regulation of steroids biosynthesis in Dioscorea deltoidea plant cell culture. In: Butenko R (ed) In plant cell culture and biotechnology. NAUKA Publ, Moscow, pp 76–79 (in Russ)

    Google Scholar 

  77. Nosov A (1991) Regulation of secondary metabolites synthesis in plant cell cultures. In: Butenko R (ed) Biology of cultivated plant cells and plant biotechnology. NAUKA Publ, Moscow, pp 5–20 (in Russ)

    Google Scholar 

  78. Urmantseva VV, Nosov AM, personal communication, unpublished data

    Google Scholar 

  79. Butenko R (1986) Cells technologies for production of economical important substances of plants origin. In: Butenko R (ed) Plant cell culture and biotechnology. NAUKA Publ, Moscow, pp 3–20 (in Russ)

    Google Scholar 

  80. Nosov AM (1992) Peculiarities of steroids metabolism in Dioscorea deltoidea plant cell culture as basis for biotechnological production of furostanol glycosides. Doctoral dissertation/Master’s thesis. Institute of Applied Biotechnology, Moscow, 245 pp

    Google Scholar 

  81. Azechi S, Hashimoto T, Yuyama T, Nagatsuka S (1983) Continuous cultivation of tobacco plant cells in an industrial scale plant. Hakkokogaku 61:117–128

    CAS  Google Scholar 

  82. Kandarakov O, Titel C, Volkova L, Nosov A, Ehwald R (2000) Additional phosphate stabilises uninterrupted growth of a Dioscorea deltoidea cell culture. Plant Sci 157(2):209–216. doi:http://dx.doi.org/10.1016/S0168-9452(00)00284-3

    PubMed  CAS  Google Scholar 

  83. Kandarakov OF, Vorob’ev AS, Nosov AM (1994) Biosynthetic characteristics of Dioscorea deltoidea cell population in continuous culture. Russ J Plant Physiol 41(6):805–809

    Google Scholar 

  84. Osbourn A (1996) Saponins and plant defence a soap story. Trends Plant Sci 1(1):4–9

    Google Scholar 

  85. Christensen LP (2009) Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutrit Res 55:1–99. doi:10.1016/s1043-4526(08)00401-4

    CAS  Google Scholar 

  86. Pollier J, Moses T, Gonzalez-Guzman M, De Geyter N, Lippens S, Vanden Bossche R, Marhavy P, Kremer A, Morreel K, Guerin CJ, Tava A, Oleszek W, Thevelein JM, Campos N, Goormachtig S, Goossens A (2013) The protein quality control system manages plant defence compound synthesis. Nature 504:148–152. doi:10.1038/nature12685

    PubMed  CAS  Google Scholar 

  87. Krokida A, Delis C, Geisler K, Garagounis C, Tsikou D, Pena-Rodriguez LM, Katsarou D, Field B, Osbourn AE, Papadopoulou KK (2013) A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytol 200:675–690. doi:10.1111/nph.12414

    PubMed  CAS  Google Scholar 

  88. Mugford ST, Louveau T, Melton R, Qi X, Bakht S, Hill L, Tsurushima T, Honkanen S, Rosser SJ, Lomonossoff GP, Osbourn A (2013) Modularity of plant metabolic gene clusters: a trio of linked genes that are collectively required for acylation of triterpenes in oat. Plant Cell 25:1078–1092. doi:10.1105/tpc.113.110551

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Sashida Y, Ogawa K, Yamanouchi T, Tanaka H, Shoyama Y, Nishioka I (1994) Triterpenoids from callus tissue of Actinidia polygama. Phytochemistry 35:377–380. doi:http://dx.doi.org/10.1016/S0031-9422(00)94767-8

    CAS  Google Scholar 

  90. Takazawa H, Yoshimura K, Ikuta A, Kawaguchi K (2002) Production of triterpenes from the callus tissues of actinidiaceous plants. Plant Biotechnol 19:181–186. doi: 10.5511/plantbiotechnology.19.181

    CAS  Google Scholar 

  91. Profumo P, Caviglia AM, Gastaldo P (1992) Formation of aescin glucosides by callus tissue from cotyledonary explants of Aesculus hippocastanum L. Plant Sci 85:161–164. doi:http://dx.doi.org/10.1016/0168-9452(92)90111-X

    CAS  Google Scholar 

  92. Ikuta A (1995) Saponins and triterpenes from callus tissues of Akebia trifoliata and comparison with the constituents of other lardizabalaceous callus tissues. J Nat Prod 58:1378–1383. doi:10.1021/np50123a007

    CAS  Google Scholar 

  93. Majumdar S, Garai S, Jha S (2012) Use of the cryptogein gene to stimulate the accumulation of Bacopa saponins in transgenic Bacopa monnieri plants. Plant Cell Rep 31:1899–1909. doi:10.1007/s00299-012-1303-3

    PubMed  CAS  Google Scholar 

  94. Katakura M, Kimura T, Endo I (1991) Production of saikosaponins by tissue culture of Bupleurum falcatum L. Bioprocess Eng 7:97–100. doi:10.1007/bf00369420

    CAS  Google Scholar 

  95. Szakiel A, Grzelak A, Dudek P, Janiszowska W (2003) Biosynthesis of oleanolic acid and its glycosides in Calendula officinalis suspension culture. Plant Physiol Biochem 41(3):271–275. doi:http://dx.doi.org/10.1016/S0981-9428(03)00018-4

    CAS  Google Scholar 

  96. Mangas S, Moyano E, Osuna L, Cusido RM, Bonfill M, Palazon J (2008) Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnol Lett 30:1853–1859. doi:10.1007/s10529-008-9766-6

    PubMed  CAS  Google Scholar 

  97. Hayashi H, Hiraoka N, Ikeshiro Y (2005) Differential regulation of soyasaponin and betulinic acid production by yeast extract in cultured licorice cells. Plant Biotechnol 22(3):241–244. doi:10.5511/plantbiotechnology.22.241

    CAS  Google Scholar 

  98. Wongwicha W, Tanaka H, Shoyama Y, Tuvshintogtokh I, Putalun W (2008) Production of glycyrrhizin in callus cultures of licorice. Z Naturforsch C 63(5–6):413–417

    PubMed  CAS  Google Scholar 

  99. Veerashree V, Anuradha CM, Kumar V (2012) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. Plant Cell Tiss Organ Cult 108(1):27–35. doi:10.1007/s11240-011-0008-6

    CAS  Google Scholar 

  100. Henry M, Rahier A, Taton M (1992) Effect of gypsogenin 3, O-glucuronide pretreatment of Gypsophila paniculata and Saponaria officinalis cell suspension cultures on the activities of microsomal 2,3-oxidosqualene cycloartenol and amyrin cyclases. Phytochemistry 31:3855–3859. doi:http://dx.doi.org/10.1016/S0031-9422(00)97541-1

    CAS  Google Scholar 

  101. Besson V, Lavaud C, Massiot G, Le Men-Olivier L, Bianchi S, Flament P, Dattee Y (1989) Medicagenic acid and saponins in callus and suspension cultures of alfalfa. Phytochemistry 28:1379–1380. doi:http://dx.doi.org/10.1016/S0031-9422(00)97750-1

    CAS  Google Scholar 

  102. Furuya T, Kojima H, Syono K, Ishii T (1970) Isolation of panaxatriol from Panax ginseng callus. Chem Pharm Bull 18:2371–2372

    CAS  Google Scholar 

  103. Zhong JJ, Bai Y, Wang SJ (1996) Effects of plant growth regulators on cell growth and ginsenoside saponin production by suspension cultures of Panax quinquefolium. J Biotechnol 45:227–234. doi:http://dx.doi.org/10.1016/0168-1656(95)00170-0

    CAS  Google Scholar 

  104. Fujioka N, Kohda H, Yamasaki K, Kasai R, Shoyama Y, Nishioka I (1989) Dammarane and oleanane saponins from callus tissue of Panax japonicus. Phytochemistry 28:1855–1858. doi:http://dx.doi.org/10.1016/S0031-9422(00)97874-9

    CAS  Google Scholar 

  105. Chi H, Kim H (1985) Saponins from the callus mass of Phytolacca americana. Arch Pharm Res 8:15–20. doi:10.1007/bf02897561

    CAS  Google Scholar 

  106. Desbene S, Hanquet B, Shoyama Y, Wagner H, Lacaille-Dubois MA (1999) Biologically active triterpene saponins from callus tissue of Polygala amarella. J Nat Prod 62:923–926. doi:10.1021/np980577i

    PubMed  CAS  Google Scholar 

  107. Okršlar V, Plaper I, Kovač M, Erjavec A, Obermajer T, Rebec A, Ravnikar M, Žel J (2007) Saponins in tissue culture of Primula veris L. In Vitro Cell Dev Biol Plant 43:644–651. doi:10.1007/s11627-007-9072-3

    Google Scholar 

  108. Ikuta A, Morikawa A, Kubota K (1991) A saponin from callus tissue of Stauntonia hexaphylla. Phytochemistry 30:2425–2427. doi:http://dx.doi.org/10.1016/0031-9422(91)83672-8

    PubMed  CAS  Google Scholar 

  109. Ikuta A, Itokawa H (1986) Triterpenoids of Akebia quinata callus tissue. Phytochemistry 25:1625–1628. doi:http://dx.doi.org/10.1016/S0031-9422(00)81222-4

    CAS  Google Scholar 

  110. Li Y-l, Yang Y, Fu C-h, Yu L-j (2012) Production of glycyrrhizin in cell suspension of Glycyrrhiza inflata Batalin cultured in bioreactor. Biotechnol Biotechnol Equip 26:3231–3235. doi:10.5504/bbeq.2012.0083

    CAS  Google Scholar 

  111. Akashi T, Furuno T, Takahashi T, Ayabe S-I (1994) Biosynthesis of triterpenoids in cultured cells, and regenerated and wild plant organs of Taraxacum officinale. Phytochemistry 36(2):303–308. doi:http://dx.doi.org/10.1016/S0031-9422(00)97065-1

    CAS  Google Scholar 

  112. Fernandes-Ferreira M, Pais MS, Novais JM (1992) The effects of medium composition on biomass, sterols and triterpenols production by in-vitro cultures of Euphorbia characias. Bioresour Technol 42:67–73. doi:http://dx.doi.org/10.1016/0960-8524(92)90089-G

    CAS  Google Scholar 

  113. Furuya T, Orihara Y, Hayashi C (1987) Triterpenoids from Eucalyptus perriniana cultured cells. Phytochemistry 26:715–719. doi:http://dx.doi.org/10.1016/S0031-9422(00)84771-8

    CAS  Google Scholar 

  114. Nath S, Buragohain AK (2005) Establishment of callus and cell suspension cultures of Centella asiatica. Biol Planta 49:411–413. doi:10.1007/s10535-005-0017-6

    Google Scholar 

  115. Loc N, An N (2010) Asiaticoside production from centella (Centella asiatica L. Urban) cell culture. Biotechnol Bioprocess Eng 15:1065–1070. doi:10.1007/s12257-010-0061-8

    Google Scholar 

  116. Grzelak A, Janiszowska W (2002) Initiation and growth characteristics of suspension cultures of Calendula officinalis cells. Plant Cell Tiss Organ Cult 71:29–40. doi:10.1023/a:1016553909002

    CAS  Google Scholar 

  117. Bonfill M, Mangas S, Moyano E, Cusido R, Palazón J (2011) Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tiss Organ Cult 104(1):61–67. doi:10.1007/s11240-010-9804-7

    CAS  Google Scholar 

  118. Yoon H, Kim H, Ma C-J, Huh H (2000) Induced accumulation of triterpenoids in Scutellaria baicalensis suspension cultures using a yeast elicitor. Biotechnol Lett 22(13):1071–1075. doi:10.1023/a:1005610400511

    CAS  Google Scholar 

  119. Wiktorowska E, Długosz M, Janiszowska W (2010) Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enz Microb Technol 46:14–20. doi:http://dx.doi.org/10.1016/j.enzmictec.2009.09.002

    CAS  Google Scholar 

  120. Elyakov G, Ovodov Y (1972) Glycosides of araliaceae. Chem Nat Comp 8:683–693. doi:10.1007/bf00564583

    Google Scholar 

  121. Iwabuchi H, Kato N, Yoshikura M (1990) Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. IV. Chem Pharm Bull 38:1405–1407

    PubMed  CAS  Google Scholar 

  122. Wang C-Z, McEntee E, Wicks S, Wu J-A, Yuan C-S (2006) Phytochemical and analytical studies of Panax notoginseng (Burk.) F.H. Chen. J Nat Med 60:97–106. doi:10.1007/s11418-005-0027-x

    CAS  Google Scholar 

  123. Wang JY, Li XG, Yang XW (2006) Ginsenine, a new alkaloid from the berry of Panax ginseng C. A. Meyer. J Asian Nat Prod Res 8:605–608. doi:10.1080/10286020500208444

    PubMed  CAS  Google Scholar 

  124. Qi LW, Wang CZ, Yuan CS (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72(8):689–699. doi:10.1016/j.phytochem.2011.02.012

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Court WE (2000) The principal active chemicals in Panax species. In: Ginseng, the genus Panax, Medicinal and aromatic plants – industrial profiles. CRC Press, Boca Raton, pp 55–116. doi:10.1201/9780203304518.ch5

    Google Scholar 

  126. Popov AM (2002) Comparative study of cytotoxic and hemolytic effects of triterpenoids isolated from Ginseng and Sea cucumber. Izv Akad Nauk Ser Biol 2:155–164 (in Russ)

    PubMed  Google Scholar 

  127. Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R (2012) Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front Pharmacol 3:25. doi:10.3389/fphar.2012.00025

    PubMed  PubMed Central  Google Scholar 

  128. Leung KW, Wong AS (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:20. doi:10.1186/1749-8546-5-20

    PubMed  PubMed Central  Google Scholar 

  129. Wu J, Zhong JJ (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 68:89–99

    PubMed  CAS  Google Scholar 

  130. Butenko RG (1968) Plant tissue culture and plant morphogenesis. Israel Program for Scientific Translations Ltd, Jerusalem

    Google Scholar 

  131. Butenko RG, Popov AS, Volkova LA, Chernyak ND, Nosov AM (1984) Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng cells in liquid nitrogen. Plant Sci Lett 33:285–292. doi:http://dx.doi.org/10.1016/0304-4211(84)90019-1

    CAS  Google Scholar 

  132. Mathur A, Shukla YN, Pal M, Ahuja PS, Uniyal GC (1994) Saponin production in callus and cell suspension cultures of Panax quinquefolium. Phytochemistry 35:1221–1225. doi:http://dx.doi.org/10.1016/S0031-9422(00)94824-6

    CAS  Google Scholar 

  133. Chaiko AL, Reshetnyak OV, Kulichenko IE (1999) The Panax japonicus (var. repens) cell culture: callus and suspension culture production, growth optimization and analysis of ginsenosides. Biotekhnologiya 6:51–55 (in Russ)

    Google Scholar 

  134. Nguyen TT, Nguyen VK, Paek KY (2007) Effecting of medium composition on biomass and ginsenoside production in cell suspension culture of Panax vietnamensis Ha et Grushv. VNU J Sci, Nat Sci Technol 23:269–274

    Google Scholar 

  135. Mathur A, Mathur AK, Pal M, Uniyal GC (1999) Comparison of qualitative and quantitative in vitro ginsenoside production in callus cultures of three Panax species. Planta Med 65:484–486. doi:10.1055/s-2006-960823

    PubMed  CAS  Google Scholar 

  136. Kunakh VA, Mozhilevskaya LP, Adonin VI, Gubar SI (2003) Productivity and genetic structure of Panax ginseng C.A. Mey cell populations during the in vitro cultivation. Biotekhnologiya 3:25–35 (in Russ)

    Google Scholar 

  137. Lobakova ES, Baulina OI (1986) Ultrastructure of cells in suspension culture of ginseng as a source component for association with cyanobacteria. In: Butenko RG (ed) Plant cell culture and biotechnology. Nauka, Moskow, pp 246–252 (in Russ)

    Google Scholar 

  138. Dolgykh YI, Shamina ZB (1986) Genetic variability in somatic cell population of ginseng in vitro. Russ J Genet 22:2820–2824

    Google Scholar 

  139. Asaka I, Ii I, Hirotani M, Asada Y, Furuya T (1994) Ginsenoside contents of plantlets regenerated from Panax ginseng embryoids. Phytochemistry 36:61–63. doi:http://dx.doi.org/10.1016/S0031-9422(00)97012-2

    CAS  Google Scholar 

  140. Demidova E, Reshetnyak O, Oreshnikov A, Nosov A (2006) Growth and biosynthetic characteristics of ginseng (Panax japonicus var. repens) deep-tank cell culture in bioreactors. Russ J Plant Physiol 53:134–140. doi:10.1134/s1021443706010171

    CAS  Google Scholar 

  141. Hu F-X, Zhong J-J (2007) Role of jasmonic acid in alteration of ginsenoside heterogeneity in elicited cell cultures of Panax notoginseng. J Biosci Bioeng 104:513–516. doi:http://dx.doi.org/10.1263/jbb.104.513

    PubMed  CAS  Google Scholar 

  142. Kochan E, Chmiel A (2011) Dynamics of ginsenoside biosynthesis in suspension culture of Panax quinquefolium. Acta Physiol Plant 33:911–915. doi:10.1007/s11738-010-0619-2

    CAS  Google Scholar 

  143. Reshetnyak OV, Chernyak ND, Smolenskaya IN, Oreshnikov AV, Smirnova YN, Nosov AM (2008) Comparative analysis of ginsenosides in different root parts and cultured cells from Chinese ginseng. Pharm Chem J 42:32–36. doi:10.1007/s11094-008-0052-7

    CAS  Google Scholar 

  144. Khrolenko YA, Burundukova OL, Lauve LS, Muzarok TI, Makhan’kov VV, Zhuravlev YN (2012) Characterization of the variability of nucleoli in the cells of Panax ginseng Meyer in vivo and in vitro. J Ginseng Res 36:322–326. doi:10.5142/jgr.2012.36.3.322

    PubMed  PubMed Central  Google Scholar 

  145. Wu J, Ho K-p (1999) Assessment of various carbon sources and nutrient feeding strategies for Panax ginseng cell culture. Appl Biochem Biotechnol 82:17–26. doi:10.1385/abab:82:1:17

    PubMed  CAS  Google Scholar 

  146. Bonfill M, Cusidó R, Palazón J, Piñol MT, Morales C (2002) Influence of auxins on organogenesis and ginsenoside production in Panax ginseng calluses. Plant Cell Tiss Organ Cult 68:73–78. doi:10.1023/a:1012996116836

    CAS  Google Scholar 

  147. Furuya T, Yoshikawa T, Orihara Y, Oda H (1983) Saponin production in cell suspension cultures of Panax ginseng. Planta Med 48:83–87. doi:10.1055/s-2007-969892

    PubMed  CAS  Google Scholar 

  148. Linsefors L, Björk L, Mosbach K (1989) Influence of elicitors and mevalonic acid on the biosynthesis of ginsenosides in tissue cultures of Panax ginseng. Biochemie und Physiologie der Pflanzen 184(5–6):413–418. doi:http://dx.doi.org/10.1016/S0015-3796(89)80039-3

    CAS  Google Scholar 

  149. Wang J, Gao W-Y, Zhang J, Huang T, Wen T-T, Huang L-Q (2011) Combination effect of lactoalbumin hydrolysate and methyl jasmonate on ginsenoside and polysaccharide production in Panax quinquefolium L. cells cultures. Acta Physiol Plant 33:861–866. doi:10.1007/s11738-010-0611-x

    CAS  Google Scholar 

  150. Huang C, Qian ZG, Zhong JJ (2013) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36. doi:10.1016/j.jbiotec.2013.02.012

    PubMed  CAS  Google Scholar 

  151. Huang C, Zhong J-J (2013) Elicitation of ginsenoside biosynthesis in cell cultures of Panax ginseng by vanadate. Process Biochem 48:1227–1234. doi:http://dx.doi.org/10.1016/j.procbio.2013.05.019

    CAS  Google Scholar 

  152. Han J, Zhong J-J (2003) Effects of oxygen partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enz Microb Technol 32(3–4):498–503. doi:http://dx.doi.org/10.1016/S0141-0229(02)00337-X

    Google Scholar 

  153. Dong Y, Gao W-Y, Man S, Zuo B, Wang J, Huang L, Xiao P (2013) Effect of bioreactor angle and aeration rate on growth and hydromechanics parameters in bioreactor culture of ginseng suspension cells. Acta Physiol Plant 35:1497–1501. doi:10.1007/s11738-012-1190-9

    CAS  Google Scholar 

  154. Odnevall A, Björk L (1989) Effects of light on growth, morphogenesis and ginsenoside formation in tissue cultures of Panax ginseng. Biochemie und Physiologie der Pflanzen 185:253–259. doi:http://dx.doi.org/10.1016/S0015-3796(89)80091-5

    CAS  Google Scholar 

  155. Lin L, Wu J, Ho K-P, Qi S (2001) Ultrasound-induced physiological effects and secondary metabolite (saponin) production in Panax ginseng cell cultures. Ultrasound Med Biol 27:1147–1152. doi:http://dx.doi.org/10.1016/S0301-5629(01)00412-4

    PubMed  CAS  Google Scholar 

  156. Smirnova YN, Reshetnyak OV, Smolenskaya IN, Voevudskaya SY, Nosov AM (2010) Effect of growth regulators on ginsenoside production in the cell culture of two ginseng species. Russ J Plant Physiol 57:430–437. doi:10.1134/s1021443710030167

    CAS  Google Scholar 

  157. Smolenskaya IN, Reshetnyak OV, Smirnova YN, Chernyak ND, Globa EB, Nosov AM, Nosov AV (2007) Opposite effects of synthetic auxins, 2,4-dichlorophenoxyacetic acid and 1-naphthalene acetic acid on growth of true ginseng cell culture and synthesis of ginsenosides. Russ J Plant Physiol 54:215–223. doi:10.1134/s1021443707020094

    CAS  Google Scholar 

  158. Demidova EV, Reshetnyak OV, Nosov AM (2006) Influence of the medium composition of growth and ginsenoside content in a Panax japonicus cell suspension. Biotechnol Rus 2:41–49

    Google Scholar 

  159. Du XW, Wills RBH, Stuart DL (2004) Changes in neutral and malonyl ginsenosides in American ginseng (Panax quinquefolium) during drying, storage and ethanolic extraction. Food Chem 86(2):155–159. doi:http://dx.doi.org/10.1016/j.foodchem.2003.11.003

    CAS  Google Scholar 

  160. Hu P, Luo G-A, Wang Q, Zhao Z-Z, Wang W, Jiang Z-H (2008) The retention behavior of ginsenosides in HPLC and its application to quality assessment of radix ginseng. Arch Pharm Res 31:1265–1273. doi:10.1007/s12272-001-2105-2

    PubMed  CAS  Google Scholar 

  161. Inomata S, Yokoyama M, Gozu Y, Shimizu T, Yanagi M (1993) Growth pattern and ginsenoside production of Agrobacterium-transformed Panax ginseng roots. Plant Cell Rep 12:681–686. doi:10.1007/bf00233419

    PubMed  CAS  Google Scholar 

  162. Woo S-S, Song J-S, Lee J-Y, In DS, Chung H-J, Liu JR, Choi D-W (2004) Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis. Phytochemistry 65:2751–2761. doi:http://dx.doi.org/10.1016/j.phytochem.2004.08.039

    PubMed  CAS  Google Scholar 

  163. Osaka I, Hisatomi H, Ueno Y, Taira S, Sahashi Y, Kawasaki H, Arakawa R (2013) Two-dimensional mapping using different chromatographic separations coupled with mass spectrometry for the analysis of ginsenosides in Panax Ginseng root and callus. Anal Sci 29:429–434

    PubMed  CAS  Google Scholar 

  164. Wang J, Man S, Gao W, Zhang L, Huang L (2013) Cluster analysis of ginseng tissue cultures, dynamic change of growth, total saponins, specific oxygen uptake rate in bioreactor and immuno-regulative effect of ginseng adventitious root. Ind Crop Prod 41:57–63. doi:http://dx.doi.org/10.1016/j.indcrop.2012.04.005

    Google Scholar 

  165. Kochkin DV, Kachala VV, Nosov AM (2011) Malonyl-ginsenoside rb1 in cell suspension culture of Panax japonicus var. repens. Dokl Biochem Biophys 441:294–297. doi:10.1134/s1607672911060135

    PubMed  CAS  Google Scholar 

  166. Kochkin DV, Kachala VV, Shashkov AS, Chizhov AO, Chirva VY, Nosov AM (2013) Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens. Phytochemistry 93:18–26. doi:http://dx.doi.org/10.1016/j.phytochem.2013.03.021

    PubMed  CAS  Google Scholar 

  167. Wink M (2010) Introduction. In: Biochemistry of plant secondary metabolism. Annual plant reviews, vol 40. Wiley-Blackwell, Oxford, UK, pp 1–19. doi:10.1002/9781444320503.ch1

  168. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477. doi:10.1007/s00299-011-1165-0

    PubMed  CAS  Google Scholar 

  169. Chaturvedi P, Misra P, Tuli R (2011) Sterol glycosyltransferases – the enzymes that modify sterols. Appl Biochem Biotechnol 165:47–68. doi:10.1007/s12010-011-9232-0

    PubMed  CAS  Google Scholar 

  170. Muffler K, Leipold D, Scheller M-C, Haas C, Steingroewer J, Bley T, Neuhaus HE, Mirata MA, Schrader J, Ulber R (2011) Biotransformation of triterpenes. Process Biochem 46:1–15. doi:10.1016/j.procbio.2010.07.015

    CAS  Google Scholar 

  171. Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR, Baldwin IT (2010) Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273–292. doi:10.1105/tpc.109.071449

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins G, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij F, Bowles D, Poppenberger B (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 11:51

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. BBA Bioenerg 1807:977–988. doi:http://dx.doi.org/10.1016/j.bbabio.2010.12.007

    Google Scholar 

  174. Taguchi G, Ubukata T, Nozue H, Kobayashi Y, Takahi M, Yamamoto H, Hayashida N (2010) Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J 63:1031–1041. doi:10.1111/j.1365-313X.2010.04298.x

    PubMed  CAS  Google Scholar 

  175. Reinhold D, Handell L, Saunders FM (2011) Callus cultures for phytometabolism studies: phytometabolites of 3-trifluoromethylphenol in Lemnaceae plants and callus cultures. Int J Phytoremed 13:642–656. doi:10.1080/15226514.2010.507639

    CAS  Google Scholar 

  176. Wybraniec S, Nowak-Wydra B, Mitka K, Kowalski P, Mizrahi Y (2007) Minor betalains in fruits of Hylocereus species. Phytochemistry 68:251–259. doi:http://dx.doi.org/10.1016/j.phytochem.2006.10.002

    PubMed  CAS  Google Scholar 

  177. Yang T, Stoopen G, Yalpani N, Vervoort J, de Vos R, Voster A, Verstappen FWA, Bouwmeester HJ, Jongsma MA (2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab Eng 13:414–425. doi:http://dx.doi.org/10.1016/j.ymben.2011.01.011

    PubMed  CAS  Google Scholar 

  178. Matern U, Heller W, Himmelspach K (1983) Conformational changes of apigenin 7-O-(6-O-malonylglucoside), a vacuolar pigment from parsley, with solvent composition and proton concentration. Eur J Biochem 133:439–448

    PubMed  CAS  Google Scholar 

  179. Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Yamaguchi M-a, Tanaka Y, Kusumi T, Nishino T (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:Anthocyanidin 3-O-glucoside-6″-O-malonyltransferase from dahlia flowers. Plant Physiol 130:2142–2151. doi:10.1104/pp. 010447

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu C-J, Dixon RA (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci USA 104:17909–17915. doi:10.1073/pnas.0708697104

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Yang W-z, Ye M, Qiao X, Liu C-f, Miao W-j, Bo T, Tao H-y, Guo D-A (2012) A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal Chim Acta 739:56–66. doi:10.1016/j.aca.2012.06.017

    PubMed  CAS  Google Scholar 

  182. Tan N, Zhou J, Zhao S (1999) Advances in structural elucidation of glucuronide oleanane-type triterpene carboxylic acid 3,28-O-bisdesmosides (1962–1997). Phytochemistry 52:153–192. doi:http://dx.doi.org/10.1016/S0031-9422(98)00454-3

    CAS  Google Scholar 

  183. Klein M, Martinoia E, Weissenböck G (1998) Directly energized uptake of β-estradiol 17-(β-d-glucuronide) in plant vacuoles is strongly stimulated by glutathione conjugates. J Biol Chem 273:262–270. doi:10.1074/jbc.273.1.262

    PubMed  CAS  Google Scholar 

  184. Szakiel A, Ruszkowski D, Janiszowska W (2005) Saponins in Calendula officinalis L. – structure, biosynthesis, transport and biological activity. Phytochem Rev 4:151–158. doi:10.1007/s11101-005-4053-9

    CAS  Google Scholar 

  185. Furmanowa M, Nosov AM, Oreshnikov AV, Klushin AG, Kotin AM, Starosciak B, Sliwinska A, Guzewska J, Bloch R (2002) Antimicrobial activity of Polyscias filicifolia cell biomass extracts. Pharmazie 57:424–426

    PubMed  CAS  Google Scholar 

  186. Sukhanova ES, Chernyak ND, Nosov AM (2010) Obtaining and description of Polyscias filicifolia and Polyscias fruticosa calli and suspension cell cultures. Biotekhnologiya 4:44–50 (in Russ)

    Google Scholar 

  187. Paphassarang S, Raynaud J, Lussignol M, Cabalion P (1990) A new oleanolic glycoside from Polyscias scutellaria. J Nat Prod 53:163–166. doi:10.1021/np50067a023

    CAS  Google Scholar 

  188. Huan VD, Yamamura S, Ohtani K, Kasai R, Yamasaki K, Nham NT, Chau HM (1998) Oleanane saponins from Polyscias fruticosa. Phytochemistry 47:451–457. doi:http://dx.doi.org/10.1016/S0031-9422(97)00618-3

    CAS  Google Scholar 

  189. Chaturvedula VSP, Schilling JK, Miller JS, Andriantsiferana R, Rasamison VE, Kingston DGI (2003) New cytotoxic oleanane saponins from the infructescences of Polyscias amplifolia from the Madagascar rainforest. Planta Med 69:440–444. doi:10.1055/s-2003-39711

    PubMed  CAS  Google Scholar 

  190. Mitaine-Offer AC, Tapondjou LA, Lontsi D, Sondengam BL, Choudhary MI, Atta-ur R, Lacaille-Dubois MA (2004) Constituents isolated from Polyscias fulva. Biochem Syst Ecol 32:607–610. doi:http://dx.doi.org/10.1016/j.bse.2003.10.008

    CAS  Google Scholar 

  191. Slepyan LI, Arnautov NN, Grushvitskij IV (1975) Tissue culture of certain species of genus Polyscias JR et G. Forst (Araliaceae). Plant Resour 11:198–204

    CAS  Google Scholar 

  192. Slepyan LI, Djabava LA, Loschilina IA (1975) Chemical and pharmacological studies of tissue culture biomass of Polyscias filicifolia Bailey. Plant Resour 11:523–528

    Google Scholar 

  193. Titova MV, Shumilo NA, Chernyak ND, Krivokharchenko AS, Oreshnikov AV, Nosov AM (2007) Use of cryoconservation to maintaining strain stability upon outfit culturing of Polyscias filicifolia Bailey cell suspension I. growth characteristics of restored culture. Biotekhnologiya 5:60–65 (in Russ)

    Google Scholar 

  194. Titova MV, Berkovich EA, Reshetnyak OV, Kulichenko IE, Oreshnikov AV, Nosov AM (2011) Respiration activity of suspension cell culture of Polyscias filicifolia Bailey, Stephania glabra (Roxb.) miers, and Dioscorea deltoidea Wall. Appl Biochem Microbiol 47:87–92. doi:10.1134/s0003683811010170

    CAS  Google Scholar 

  195. Marczewska J, Karwicka E, Drozd J, Anuszewskal E, Sliwinska A, Nosov AM, Olszowska O (2011) Assessment of cytotoxic and genotoxic activity of alcohol extract of Polyscias filicifolia shoot, leaf, cell biomass of suspension culture and saponin fraction. Acta Pol Pharm 68:703–710

    PubMed  CAS  Google Scholar 

  196. Sukhanova ES, Kochkin DV, Titova MV, Nosov AM (2012) Growth and biosynthetic characteristics of different Polyscias plant cell culture strains. Forest ecology nature management. Vestnik of Volga State University of Technology. 2(16):57–66 (in Kazan, Russia)

    Google Scholar 

  197. Kochkin DV, Sukhanova ES, Nosov AM (2010) Triterpene glycosides in suspension-cell culture of Polyscias fruticosa (L.) Harms. In: Vinokurova AV (ed) International conference with elements of scientific school for youth “Perspectives of phytobiotechnology to improving the quality of life in the North”. The North-Eastern Federal University, Yakutsk, 11–16 Oct 2010, pp 101–104

    Google Scholar 

  198. Sukhanova ES, Kochkin DV, Gafiyatova EI, Nosov AM (2011) The isoprenoid synthesis precursor effect on growth and biosynthesis characteristics of Polyscias fruticosa (L.) Harms cell culture. Vestn North East Fed Univ 8:40–44 (in Russ)

    Google Scholar 

  199. Yin Z, Shangguan X, Chen J, Zhao Q, Li D (2013) Growth and triterpenic acid accumulation of Cyclocarya paliurus cell suspension cultures. Biotechnol Bioprocess Eng 18:606–614. doi:10.1007/s12257-012-0751-5

    CAS  Google Scholar 

  200. Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440

    PubMed  CAS  Google Scholar 

  201. Zhong J-J (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599

    PubMed  CAS  Google Scholar 

  202. Smith R (2002) Cameron S domesticating ground hemlock (Taxus canadensis) for producing taxanes: a case study. In: Halifax NS (ed) Proceedings of 29th annual meeting of the Plant Growth Regulation Society of America. Plant Growth Regulation Society of America, LaGrange, pp 40–45

    Google Scholar 

  203. Ji Y, Bi J-N, Yan B, Zhu X-D (2006) Taxol-producing fungi: a new approach to industrial production of taxol. Chin J Biotechnol 22:1–6. doi:http://dx.doi.org/10.1016/S1872-2075(06)60001-0

    Google Scholar 

  204. Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau RB (2005) Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis. Biotechnol Bioeng 89:588–598. doi:10.1002/bit.20390

    PubMed  CAS  Google Scholar 

  205. Rohr R (1973) Production de cals par les gamétophytes mâles de Taxus baccata L. cultivés sur un milieu artificiel. Caryologia 25:117–189

    Google Scholar 

  206. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    CAS  Google Scholar 

  207. Cusidó RM, Vidal H, Gallego A, Abdoli M, Palazón J (2013) Biotechnological production of taxanes: a molecular approach. In: Muñoz-Torrero D (ed) Recent advances in pharmaceutical sciences III. Transworld Research Network, Kerala, pp 91–107

    Google Scholar 

  208. Exposito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusido RM, Palazon J (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anti Cancer Agents Med Chem 9:109–121

    CAS  Google Scholar 

  209. Eisenreich W, Menhard B, Hylands PJ, Zenk MH, Bacher A (1996) Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci U S A 93:6431–6436

    PubMed  CAS  PubMed Central  Google Scholar 

  210. Cusidó RM, Palazón J, Bonfill M, Expósito O, Moyano E, Piñol MT (2007) Source of isopentenyl diphosphate for taxol and baccatin III biosynthesis in cell cultures of Taxus baccata. Biochem Eng J 33:159–167. doi:http://dx.doi.org/10.1016/j.bej.2006.10.016

    Google Scholar 

  211. Wheeler AL, Long RM, Ketchum REB, Rithner CD, Williams RM, Croteau R (2001) Taxol biosynthesis: differential transformations of taxadien-5α-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells. Arch Biochem Biophys 390:265–278. doi:http://dx.doi.org/10.1006/abbi.2001.2377

    PubMed  CAS  Google Scholar 

  212. Yuan Y-J, Ma Z-Y, Wu J-C, Zeng A-P (2002) Taxol-induced apoptotic cell death in suspension cultures of Taxus cuspidata. Biotechnol Lett 24:615–618. doi:10.1023/a:1015062405020

    CAS  Google Scholar 

  213. Ma Z-Y, Yuan Y-J, Wu J-C, Zeng A-P (2002) Apoptotic cell death in suspension cultures of Taxus chinensis var. mairei. Biotechnol Lett 24:573–577. doi:10.1023/a:1014820810258

    CAS  Google Scholar 

  214. Kim BJ, Gibson DM, Shuler ML (2005) Relationship of viability and apoptosis to taxol production in Taxus sp. suspension cultures elicited with methyl jasmonate. Biotechnol Prog 21:700–707. doi:10.1021/bp050016z

    PubMed  CAS  Google Scholar 

  215. Wada Y, Tamura T, Kodama T, Yamada T, Ushida Y (1981) Callus cultures and morphogenesis of Stevia rebaudiana. Yukagaku 30:215–219

    CAS  Google Scholar 

  216. Hsing YI, Su WF, Chang WC (1983) Accumulation of stevioside and rebaudioside A in callus cultures of Stevia rebadiana Bertoni. Bot Bull Acad Sin 24:115–119

    CAS  Google Scholar 

  217. Miyagawa H, Fujita Y, Fujioka N, Kohda H, Yamasaki K (1984) Studies on the tissue culture of Stevia rebaudiana and its components. Shoyakugaku Zasshi 38:12–18

    CAS  Google Scholar 

  218. Striedner J, Czygan FC, Braunegg G (1991) Contributions to the biotechnological production of sweeteners from Stevia rebaudiana Bertoni. I. A method for the serial analysis of diterpene glycosides by HPLC. Acta Biotechnol 11:495–499. doi:10.1002/abio.370110515

    CAS  Google Scholar 

  219. Yamazaki T, Flores HE, Shimomura K, Yoshihira K (1991) Examination of steviol glucosides production by hairy root and shoot cultures of Stevia rebaudiana. J Nat Prod 54:986–992. doi:10.1021/np50076a010

    CAS  Google Scholar 

  220. Swanson S, Mahady G, Beecher CW (1992) Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell Tiss Organ Cult 28:151–157. doi:10.1007/bf00055510

    CAS  Google Scholar 

  221. Bondarev NI, Sukhanova MA, Reshetnyak OV, Nosov AM (2003) Steviol glycoside content in different organs of Stevia rebaudiana and its dynamics during ontogeny. Biol Planta 47:261–264. doi:10.1023/B:BIOP.0000022261.35259.4f

    CAS  Google Scholar 

  222. Bondarev NI, Sukhanova MA, Semenova GA, Goryaeva OV, Andreeva SE, Nosov AM (2010) Morphology and ultrastructure of trichomes of intact and in vitro plants of Stevia rebaudiana Bertoni with reference to biosynthesis and accumulation of steviol glycosides. Moscow Univ Biol Sci Bull 65:12–16. doi:10.3103/s0096392510010037

    Google Scholar 

  223. Bondarev N, Reshetnyak O, Nosov A (2002) Features of development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Planta Med 68:759–762. doi:10.1055/s-2002-33809

    PubMed  CAS  Google Scholar 

  224. Ladygin VG, Bondarev NI, Semenova GA, Smolov AA, Reshetnyak OV, Nosov AM (2008) Chloroplast ultrastructure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro. Biol Planta 52:9–16. doi:10.1007/s10535-008-0002-y

    CAS  Google Scholar 

  225. Chattopadhyay S, Srivastava AK, Bisaria VS (2004) Production of phytochemicals in plant cell bioreactors. In: Srivastava PS, Narula A, Srivastava S (eds) Plant Biotechnology and molecular markers. Springer, Netherlands, pp 117–128. doi:10.1007/1-4020-3213-7_7

    Google Scholar 

  226. Su W (2006) Bioreactor engineering for recombinant protein production using plant cell suspension culture. In: Gupta SD, Ibaraki Y (eds) Plan tissue culture engineering, vol 6, Focus on biotechnology. Springer, Netherlands, pp 135–159. doi:10.1007/978-1-4020-3694-1_8

    Google Scholar 

  227. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598. doi:10.1007/s11101-007-9083-z

    CAS  Google Scholar 

  228. Sun X, Linden JC (1999) Shear stress effects on plant cell suspension cultures in a rotating wall vessel bioreactor. J Ind Microbiol Biotechnol 22:44–47. doi:10.1038/sj.jim.2900600

    CAS  Google Scholar 

  229. Reinhoud PJ, Van Iren FV, Kijne JW (2000) Cryopreservation of undifferentiated plant cells. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and applications. JIRCAS, IPGRI, Rome, pp 91–102

    Google Scholar 

  230. Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433. doi:10.1079/ivp2004541

    Google Scholar 

  231. Quatrano RS (1968) Freeze-preservation of cultured flax cells utilizing dimethyl sulfoxide. Plant Physiol 43(12):2057–2061. doi:10.1104/pp. 43.12.2057

    PubMed  CAS  PubMed Central  Google Scholar 

  232. Latta R (1971) Preservation of suspension cultures of plant cells by freezing. Can J Bot 49:1253–1254. doi:10.1139/b71-175

    Google Scholar 

  233. Diettrich B, Popov AS, Pfeiffer B, Neumann D, Butenko R, Luckner M (1982) Cryopreservation of Digitalis lanata cell cultures. Planta Med 46:82–87. doi:10.1055/s-2007-970026

    PubMed  CAS  Google Scholar 

  234. Morán M, Cacho M, Fernández-Tárrago J, Corchete P (1999) A protocol for the cryopreservation of Digitalis thapsi L. cell cultures. Cryo Lett 20:193–198

    Google Scholar 

  235. Baskakova OY, Voinkova NM, Nikishina TV, Osipova EA, Popov AS, Zhivukhina EA (2003) Freezing resistance and cryopreservation of cell strains of Rhaponticum carthamoides and Thalictrum minus. Russ J Plant Physiol 50:666–671. doi:10.1023/a:1025648409749

    CAS  Google Scholar 

  236. An C, Wang X, Yuan X, Zhao B, Wang Y (2003) Optimization of cryopreservation of Artemisia annua L. callus. Biotechnol Lett 25:35–38. doi:http://dx.doi.org/10.1023/A%3A1021717828907

    CAS  Google Scholar 

  237. Popova E, Lee E-J, Wu C-H, Hahn E-J, Paek K-Y (2009) A simple method for cryopreservation of Ginkgo biloba callus. Plant Cell Tiss Organ Cult 97:337–343. doi:10.1007/s11240-009-9522-1

    CAS  Google Scholar 

  238. Lu ZW, Popova EV, Wu CH, Lee EJ, Hahn EJ, Paek KY (2009) Cryopreservation of Ginkgo biloba cell culture: effect of pretreatment with sucrose and ABA. Cryo Lett 30:232–243

    Google Scholar 

  239. Popova EV, Paek KY, Kim HH (2011) Cryopreservation of medicinal plants: the case of in vitro cultures. In: Kumar A, Roy S (eds) Plant tissue culture and applied plant biotechnology. Pointer publishers, Jaipur, India, pp 153–196

    Google Scholar 

  240. Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryo Lett 28:151–172

    CAS  Google Scholar 

  241. Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil I, Thorpe T (eds) Plant cell and tissue culture. Springer, Netherlands, pp 195–230. doi:10.1007/978-94-017-2681-8_9

    Google Scholar 

  242. Steponkus PL (1985) Cryobiology of isolated protoplasts: applications to plant cell cryopreservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 49–60

    Google Scholar 

  243. Krivokharchenko AS, Chernyak ND, Nosov AM (1999) Cryopreservation of suspension cultures of plant cells by the freezing technique elaborated for mammalian embryos. Russ J Plant Physiol 46:831–834

    CAS  Google Scholar 

  244. Seitz U, Reinhard E (1987) Growth and ginsenoside patterns of cryopreserved Panax ginseng cell cultures. J Plant Physiol 131:215–223. doi:http://dx.doi.org/10.1016/S0176-1617(87)80161-X

    CAS  Google Scholar 

  245. Fedorovskii DN, Chernyak ND, Popov AS (1993) The disturbing effects of cryopreservation on the plasma membranes of ginseng cells. Sov Plant Physiol 40:94–98

    Google Scholar 

  246. Kim SI, Choi HK, Son JS, Yun JH, Jang MS, Kim HR, Song JY, Kim JH, Choi HJ, Hong SS (2001) Cryopreservation of Taxus chinensis suspension cell cultures. Cryo Lett 22:43–50

    Google Scholar 

  247. Popov AS, Fedorovskii DN (1992) Plasmalemma injuries in different strains of Dioscorea deltoidea during cryopreservation. Sov Plant Physiol 93:381–385 (in Russ)

    Google Scholar 

  248. Joshi A, Teng WL (2000) Cryopreservation of Panax ginseng cells. Plant Cell Rep 19:971–977. doi:10.1007/s002990000212

    CAS  Google Scholar 

  249. Mannonen L, Toivonen L, Kauppinen V (1990) Effects of long-term preservation on growth and productivity of Panax ginseng and Catharanthus roseus cell cultures. Plant Cell Rep 9:173–177. doi:10.1007/bf00232173

    PubMed  CAS  Google Scholar 

  250. Memelink J, Menke FML, Van der Fits L, Kijne JW (2000) Transkriptional regulators to modify secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht, pp 111–125

    Google Scholar 

  251. Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem Rev 6:353–362. doi:10.1007/s11101-006-9051-z

    CAS  Google Scholar 

  252. Bottcher C, von Roepenack-Lahaye E, Schmidt J, Schmotz C, Neumann S, Scheel D, Clemens S (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol 147:2107–2120. doi:10.1104/pp. 108.117754

    PubMed  PubMed Central  Google Scholar 

  253. Jiao Y, Lori Tausta S, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M, Zhang H-y, Zhao H, Deng X-W, Nelson T (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41:258–263. doi:http://www.nature.com/ng/journal/v41/n2/suppinfo/ng.282_S1.html

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr Uliana Bashtanova, TTP LabTech, UK for manuscript correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Nosov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nosov, A.M., Popova, E.V., Kochkin, D.V. (2014). Isoprenoid Production via Plant Cell Cultures: Biosynthesis, Accumulation and Scaling-Up to Bioreactors. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_23

Download citation

Publish with us

Policies and ethics