Skip to main content

MDM2 Overexpression, Activation of Signaling Networks, and Cell Proliferation

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

Frequent overexpression of MDM2 in human cancers suggests that the protein confers a survival advantage to cancer cells. However, overexpression of MDM2 in normal cells seems to restrict cell proliferation. This review discusses the cell growth regulatory functions of MDM2 in normal and genetically defective cells to assess how cancer cells evade the growth-restricting consequence of MDM2 overexpression. Similar to oncoproteins that induce a DNA damage response and oncogene induced senescence in non-transformed cells, MDM2 induces G1-arrest and intra-S phase checkpoint responses that control untimely DNA replication in the face of genetic challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565–1569

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    CAS  PubMed  Google Scholar 

  3. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    CAS  PubMed  Google Scholar 

  4. Senturk E, Manfredi JJ (2012) Mdm2 and tumorigenesis: evolving theories and unsolved mysteries. Genes Cancer 3:192–198

    PubMed Central  PubMed  Google Scholar 

  5. Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2:1–8

    CAS  PubMed  Google Scholar 

  6. Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8

    CAS  PubMed  Google Scholar 

  7. Bond GL, Levine AJ (2007) A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26:1317–1323

    CAS  PubMed  Google Scholar 

  8. Bond GL, Hu W, Levine A (2005) A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res 65:5481–5484

    CAS  PubMed  Google Scholar 

  9. Cordon-Cardo C, Latres E, Drobnjak M, Oliva MR, Pollack D, Woodruff JM, Marechal V, Chen J, Brennan MF, Levine AJ (1994) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 54:794–799

    CAS  PubMed  Google Scholar 

  10. Ko JL, Cheng YW, Chang SL, Su JM, Chen CY, Lee H (2000) MDM2 mRNA expression is a favorable prognostic factor in non-small-cell lung cancer. Int J Cancer J Int du Cancer 89:265–270

    CAS  Google Scholar 

  11. Miwa S, Uchida C, Kitagawa K, Hattori T, Oda T, Sugimura H, Yasuda H, Nakamura H, Chida K, Kitagawa M (2006) Mdm2-mediated pRB downregulation is involved in carcinogenesis in a p53-independent manner. Biochem Biophys Res Commun 340:54–61

    CAS  PubMed  Google Scholar 

  12. Vaughan C, Mohanraj L, Singh S, Dumur CI, Ramamoorthy M, Garrett CT, Windle B, Yeudall WA, Deb S, Deb SP (2011) Human oncoprotein MDM2 up-regulates expression of NF-kappaB2 precursor p100 conferring a survival advantage to lung cells. Genes Cancer 2:943–955

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Faur N, Araud L, Laroche-Clary A, Kanno J, Toutain J, Yamori T, Robert J, Le Morvan V (2009) The association between the T309G polymorphism of the MDM2 gene and sensitivity to anticancer drug is dependent on the p53 mutational status in cellular models. Br J Cancer 101:350–356

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lind H, Zienolddiny S, Ekstrom PO, Skaug V, Haugen A (2006) Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer J Int du Cancer 119:718–721

    CAS  Google Scholar 

  15. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A (1998) Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci U S A 95:15608–15612

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    CAS  PubMed  Google Scholar 

  18. Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    CAS  PubMed  Google Scholar 

  19. Barak Y, Gottlieb E, Juven-Gershon T, Oren M (1994) Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 8:1739–1749

    CAS  PubMed  Google Scholar 

  20. Barak Y, Juven T, Haffner R, Oren M (1993) Mdm2 expression is induced by wild type p53 activity. EMBO J 12:461–468

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Juven T, Barak Y, Zauberman A, George DL, Oren M (1993) Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8:3411–3416

    CAS  PubMed  Google Scholar 

  22. Gannon HS, Woda BA, Jones SN (2012) ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 21:668–679

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, Bhat KP, Godfrey VL, Evan GI, Zhang Y (2007) Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12:355–366

    CAS  PubMed  Google Scholar 

  24. Frum R, Ramamoorthy M, Mohanraj L, Deb S, Deb SP (2009) MDM2 controls the timely expression of cyclin A to regulate the cell cycle. Mol Cancer Res 7:1253–1267

    CAS  PubMed  Google Scholar 

  25. Frum RA, Singh S, Vaughan C, Mukhopadhyay ND, Grossman SR, Windle B, Deb S, Deb SP (2014) The human oncoprotein MDM2 induces replication stress eliciting early intra-S phase checkpoint response and inhibition of DNA replication origin firing. Nucleic Acids Res 42:926–940

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Singh S, Ramamoorthy M, Vaughan C, Yeudall WA, Deb S, Palit Deb S (2013) Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ 20:558–566

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Fahraeus R, Olivares-Illana V (2013) MDM2’s social network. Oncogene. doi:10.1038/onc.2013.410 [Epub ahead of print]

    PubMed  Google Scholar 

  28. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857–860

    CAS  PubMed  Google Scholar 

  29. Brown DR, Deb S, Munoz RM, Subler MA, Deb SP (1993) The tumor suppressor p53 and the oncoprotein simian virus 40 T antigen bind to overlapping domains on the MDM2 protein. Mol Cell Biol 13:6849–6857

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Haines DS, Landers JE, Engle LJ, George DL (1994) Physical and functional interaction between wild-type p53 and mdm2 proteins. Mol Cell Biol 14:1171–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Leng P, Brown DR, Shivakumar CV, Deb S, Deb SP (1995) N-terminal 130 amino acids of MDM2 are sufficient to inhibit p53-mediated transcriptional activation. Oncogene 10:1275–1282

    CAS  PubMed  Google Scholar 

  32. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    CAS  PubMed  Google Scholar 

  33. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    CAS  PubMed  Google Scholar 

  34. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    CAS  PubMed  Google Scholar 

  35. Deb SP (2002) Function and dysfunction of the human oncoprotein MDM2. Front Biosci J Virtual Libr 7:d235–d243

    CAS  Google Scholar 

  36. Iwakuma T, Lozano G (2003) MDM2, an introduction. Mol Cancer Res 1:993–1000

    CAS  PubMed  Google Scholar 

  37. Zauberman A, Barak Y, Ragimov N, Levy N, Oren M (1993) Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53–MDM2 complexes. EMBO J 12:2799–2808

    CAS  PubMed Central  PubMed  Google Scholar 

  38. White DE, Talbott KE, Arva NC, Bargonetti J (2006) Mouse double minute 2 associates with chromatin in the presence of p53 and is released to facilitate activation of transcription. Cancer Res 66:3463–3470

    CAS  PubMed  Google Scholar 

  39. Wang X, Taplick J, Geva N, Oren M (2004) Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett 561:195–201

    CAS  PubMed  Google Scholar 

  40. Cross B, Chen L, Cheng Q, Li B, Yuan ZM, Chen J (2011) Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J Biol Chem 286:16018–16029

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Brown DR, Deb D, Frum R, Hickes L, Munoz R, Deb S, Deb SP (2001) The human oncoprotein MDM2 uses distinct strategies to inhibit transcriptional activation mediated by the wild-type p53 and its tumor-derived mutants. Int J Oncol 18:449–459

    CAS  PubMed  Google Scholar 

  42. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186

    CAS  PubMed  Google Scholar 

  44. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Acetylation is indispensable for p53 activation. Cell 133:612–626

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 96:14973–14977

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y et al (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15:1067–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Dias SS, Milne DM, Meek DW (2006) c-Abl phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and regulates interaction with ARF. Oncogene 25:6666–6671

    CAS  PubMed  Google Scholar 

  48. Cheng Q, Chen L, Li Z, Lane WS, Chen J (2009) ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J 28:3857–3867

    CAS  PubMed Central  PubMed  Google Scholar 

  49. de Toledo SM, Azzam EI, Dahlberg WK, Gooding TB, Little JB (2000) ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-independent manner in normal and tumor human cells exposed to ionizing radiation. Oncogene 19:6185–6193

    PubMed  Google Scholar 

  50. Love IM, Grossman SR (2012) It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes Cancer 3:249–263

    PubMed Central  PubMed  Google Scholar 

  51. Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24:1580–1589

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ponnuswamy A, Hupp T, Fahraeus R (2012) Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes Cancer 3:291–297

    PubMed Central  PubMed  Google Scholar 

  53. Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR, Livingston DM (1995) Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375:694–698

    CAS  PubMed  Google Scholar 

  54. Martin K, Trouche D, Hagemeier C, Sorensen TS, La Thangue NB, Kouzarides T (1995) Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375:691–694

    CAS  PubMed  Google Scholar 

  55. Asahara H, Li Y, Fuss J, Haines DS, Vlatkovic N, Boyd MT, Linn S (2003) Stimulation of human DNA polymerase epsilon by MDM2. Nucleic Acids Res 31:2451–2459

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Jung YS, Qian Y, Chen X (2012) DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair 11:177–184

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Vlatkovic N, Guerrera S, Li Y, Linn S, Haines DS, Boyd MT (2000) MDM2 interacts with the C-terminus of the catalytic subunit of DNA polymerase epsilon. Nucleic Acids Res 28:3581–3586

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Gu L, Findley HW, Zhou M (2002) MDM2 induces NF-kappaB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 99:3367–3375

    CAS  PubMed  Google Scholar 

  59. Johnson-Pais T, Degnin C, Thayer MJ (2001) pRB induces Sp1 activity by relieving inhibition mediated by MDM2. Proc Natl Acad Sci U S A 98:2211–2216

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Heyne K, Winter C, Gerten F, Schmidt C, Roemer K (2013) A novel mechanism of crosstalk between the p53 and NFkappaB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle 12:2479–2492

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hsieh JK, Chan FS, O’Connor DJ, Mittnacht S, Zhong S, Lu X (1999) RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell 3:181–193

    CAS  PubMed  Google Scholar 

  62. Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R, Allday MJ, Xiao ZX (2005) MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20:699–708

    CAS  PubMed  Google Scholar 

  63. Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9:738–748

    CAS  PubMed  Google Scholar 

  64. Wunderlich M, Berberich SJ (2002) Mdm2 inhibition of p53 induces E2F1 transactivation via p21. Oncogene 21:4414–4421

    CAS  PubMed  Google Scholar 

  65. Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield CR, Lozano G, Rosenberg MP, Finlay CA (1997) Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 11:714–725

    CAS  PubMed  Google Scholar 

  66. Reinke V, Bortner DM, Amelse LL, Lundgren K, Rosenberg MP, Finlay CA, Lozano G (1999) Overproduction of MDM2 in vivo disrupts S phase independent of E2F1. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 10:147–154

    CAS  Google Scholar 

  67. Brown DR, Thomas CA, Deb SP (1998) The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J 17:2513–2525

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Bartel F, Harris LC, Wurl P, Taubert H (2004) MDM2 and its splice variant messenger RNAs: expression in tumors and down-regulation using antisense oligonucleotides. Mol Cancer Res 2:29–35

    CAS  PubMed  Google Scholar 

  69. Zhou R, Frum R, Deb S, Deb SP (2005) The growth arrest function of the human oncoprotein mouse double minute-2 is disabled by downstream mutation in cancer cells. Cancer Res 65:1839–1848

    CAS  PubMed  Google Scholar 

  70. Folberg-Blum A, Sapir A, Shilo BZ, Oren M (2002) Overexpression of mouse Mdm2 induces developmental phenotypes in Drosophila. Oncogene 21:2413–2417

    CAS  PubMed  Google Scholar 

  71. Alkhalaf M, Ganguli G, Messaddeq N, Le Meur M, Wasylyk B (1999) MDM2 overexpression generates a skin phenotype in both wild type and p53 null mice. Oncogene 18:1419–1434

    CAS  PubMed  Google Scholar 

  72. Ganguli G, Abecassis J, Wasylyk B (2000) MDM2 induces hyperplasia and premalignant lesions when expressed in the basal layer of the epidermis. EMBO J 19:5135–5147

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Bennett-Lovsey R, Hart SE, Shirai H, Mizuguchi K (2002) The SWIB and the MDM2 domains are homologous and share a common fold. Bioinformatics 18:626–630

    CAS  PubMed  Google Scholar 

  74. Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J (2002) SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem 277:22330–22337

    CAS  PubMed  Google Scholar 

  75. Wang M, Gu C, Qi T, Tang W, Wang L, Wang S, Zeng X (2007) BAF53 interacts with p53 and functions in p53-mediated p21-gene transcription. J Biochem 142:613–620

    CAS  PubMed  Google Scholar 

  76. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, Harbour JW, Dean DC (2000) Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101:79–89

    CAS  PubMed  Google Scholar 

  77. Kang H, Cui K, Zhao K (2004) BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol Cell Biol 24:1188–1199

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Giono LE, Manfredi JJ (2007) Mdm2 is required for inhibition of Cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest. Mol Cell Biol 27:4166–4178

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Medina PP, Carretero J, Ballestar E, Angulo B, Lopez-Rios F, Esteller M, Sanchez-Cespedes M (2005) Transcriptional targets of the chromatin-remodelling factor SMARCA4/BRG1 in lung cancer cells. Hum Mol Genet 14:973–982

    CAS  PubMed  Google Scholar 

  80. Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE (2003) Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63:560–566

    CAS  PubMed  Google Scholar 

  81. Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378:F115–F177

    CAS  PubMed  Google Scholar 

  82. Dutta A, Chandra R, Leiter LM, Lester S (1995) Cyclins as markers of tumor proliferation: immunocytochemical studies in breast cancer. Proc Natl Acad Sci U S A 92:5386–5390

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci U S A 90:1112–1116

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Leveillard T, Wasylyk B (1997) The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J Biol Chem 272:30651–30661

    CAS  PubMed  Google Scholar 

  85. Leng P, Brown DR, Deb S, Deb SP (1995) Human oncoprotein MDM2 interacts with the TATA-binding protein in vitro and in vivo. Int J Oncol 6:251–259

    CAS  PubMed  Google Scholar 

  86. Thut CJ, Goodrich JA, Tjian R (1997) Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev 11:1974–1986

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Minsky N, Oren M (2004) The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 16:631–639

    CAS  PubMed  Google Scholar 

  88. Zhao J, Bilsland A, Jackson K, Keith WN (2005) MDM2 negatively regulates the human telomerase RNA gene promoter. BMC Cancer 5:6

    PubMed Central  PubMed  Google Scholar 

  89. Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71:1286–1290

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Mullany LK, White P, Hanse EA, Nelsen CJ, Goggin MM, Mullany JE, Anttila CK, Greenbaum LE, Kaestner KH, Albrecht JH (2008) Distinct proliferative and transcriptional effects of the D-type cyclins in vivo. Cell Cycle 7:2215–2224

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Diao L, Chen YG (2007) PTEN, a general negative regulator of cyclin D expression. Cell Res 17:291–292

    CAS  PubMed  Google Scholar 

  92. Banerji L, Glassford J, Lea NC, Thomas NS, Klaus GG, Lam EW (2001) BCR signals target p27(Kip1) and cyclin D2 via the PI3-K signalling pathway to mediate cell cycle arrest and apoptosis of WEHI 231 B cells. Oncogene 20:7352–7367

    CAS  PubMed  Google Scholar 

  93. Huang W, Chang HY, Fei T, Wu H, Chen YG (2007) GSK3 beta mediates suppression of cyclin D2 expression by tumor suppressor PTEN. Oncogene 26:2471–2482

    CAS  PubMed  Google Scholar 

  94. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204

    PubMed  Google Scholar 

  95. Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477–5485

    CAS  PubMed  Google Scholar 

  96. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3:192–222

    CAS  Google Scholar 

  97. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, Zhao JJ, Roberts TM, Mandel G, Hannon GJ et al (2005) A genetic screen for candidate tumor suppressors identifies REST. Cell 121:837–848

    CAS  PubMed  Google Scholar 

  98. Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277:21843–21850

    CAS  PubMed  Google Scholar 

  99. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98:11598–11603

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Frum R, Busby SA, Ramamoorthy M, Deb S, Shabanowitz J, Hunt DF, Deb SP (2007) HDM2-binding partners: interaction with translation elongation factor EF1alpha. J Proteome Res 6:1410–1417

    CAS  PubMed  Google Scholar 

  101. Bouchard C, Marquardt J, Bras A, Medema RH, Eilers M (2004) Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J 23:2830–2840

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M (1999) Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 18:5321–5333

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Fernandez de Mattos S, Essafi A, Soeiro I, Pietersen AM, Birkenkamp KU, Edwards CS, Martino A, Nelson BH, Francis JM, Jones MC et al (2004) FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol 24:10058–10071

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Ben-Yehoyada M, Gautier J, Dupre A (2007) The DNA damage response during an unperturbed S-phase. DNA Repair 6:914–922

    CAS  PubMed  Google Scholar 

  105. Grallert B, Boye E (2008) The multiple facets of the intra-S checkpoint. Cell Cycle 7:2315–2320

    CAS  PubMed  Google Scholar 

  106. Nakanishi M, Katsuno Y, Niida H, Murakami H, Shimada M (2010) Chk1-cyclin A/Cdk1 axis regulates origin firing programs in mammals. Chromosom Res Int J Mol Supramol Evol Asp Chromosom Biol 18:103–113

    CAS  Google Scholar 

  107. Sorensen CS, Syljuasen RG (2012) Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 40:477–486

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Willis N, Rhind N (2009) Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div 4:13

    PubMed Central  PubMed  Google Scholar 

  109. Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK, Cheng EH, Hsieh JJ (2010) Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467:343–346

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    CAS  PubMed  Google Scholar 

  111. Di Micco R, Fumagalli M, D’Adda di Fagagna F (2007) Breaking news: high-speed race ends in arrest–how oncogenes induce senescence. Trends Cell Biol 17:529–536

    PubMed  Google Scholar 

  112. Yaswen P, Campisi J (2007) Oncogene-induced senescence pathways weave an intricate tapestry. Cell 128:233–234

    CAS  PubMed  Google Scholar 

  113. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    PubMed  Google Scholar 

  114. Herold S, Herkert B, Eilers M (2009) Facilitating replication under stress: an oncogenic function of MYC? Nat Rev Cancer 9:441–444

    CAS  PubMed  Google Scholar 

  115. Lopez-Contreras AJ, Gutierrez-Martinez P, Specks J, Rodrigo-Perez S, Fernandez-Capetillo O (2012) An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J Exp Med 209:455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Segurado M, Tercero JA (2009) The S-phase checkpoint: targeting the replication fork. Biol Cell Under Auspice Eur Cell Biol Organ 101:617–627

    CAS  Google Scholar 

  119. de Boer J, Walf-Vorderwulbecke V, Williams O (2013) In focus: MLL-rearranged leukemia. Leukemia 27:1224–1228

    PubMed  Google Scholar 

  120. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass SA, Albitar M (1993) The human MDM-2 oncogene is overexpressed in leukemias. Blood 82:2617–2623

    CAS  PubMed  Google Scholar 

  121. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219

    CAS  PubMed  Google Scholar 

  122. Errico A, Costanzo V (2012) Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 47:222–235

    CAS  PubMed  Google Scholar 

  123. Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7:e1002407

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Handa T, Kanke M, Takahashi TS, Nakagawa T, Masukata H (2012) DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Mol Biol Cell 23:3240–3253

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24

    CAS  PubMed  Google Scholar 

  126. Bouska A, Eischen CM (2009) Mdm2 affects genome stability independent of p53. Cancer Res 69:1697–1701

    CAS  PubMed  Google Scholar 

  127. Lushnikova T, Bouska A, Odvody J, Dupont WD, Eischen CM (2011) Aging mice have increased chromosome instability that is exacerbated by elevated Mdm2 expression. Oncogene 30:4622–4631

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Carr AM, Paek AL, Weinert T (2011) DNA replication: failures and inverted fusions. Semin Cell Dev Biol 22:866–874

    CAS  PubMed  Google Scholar 

  129. Mizuno K, Miyabe I, Schalbetter SA, Carr AM, Murray JM (2013) Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature 493:246–249

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Bouska A, Lushnikova T, Plaza S, Eischen CM (2008) Mdm2 promotes genetic instability and transformation independent of p53. Mol Cell Biol 28:4862–4874

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Palit Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Deb, S.P., Singh, S., Deb, S. (2014). MDM2 Overexpression, Activation of Signaling Networks, and Cell Proliferation. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_12

Download citation

Publish with us

Policies and ethics