Skip to main content

Abstract

Hidden state transitions are frequent events in complex biological systems like the brain. Accurately detecting these transitions from sequential measurements (e.g., EEG, MER, EMG, etc.) is pivotal in several applications at the interface between engineering and medicine, like neural prosthetics, brain-computer interface, and drug delivery, but the detection methodologies developed thus far generally suffer from a lack of robustness. We recently addressed this problem by developing a Bayesian detection paradigm that combines optimal control and Markov processes. The neural activity is described as a stochastic process generated by a Hidden Markov Model (HMM) and the detection policy minimizes a loss function of both probability of false positives and accuracy (i.e., lag between estimated and actual transition time). The policy results in a time-varying threshold that applies to the a posteriori Bayesian probability of state transition and automatically adapts to each newly acquired measurement, based on the evolution of the HMM and the relative loss for false positives and accuracy. An application of the proposed paradigm to the automatic online detection of seizures in drug-resistant epilepsy subjects is here reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya S, Tenore F, Aggarwal V, Etienne-Cummings R, Schieber MH, Thakor NV (2008) Decoding individuated finger movements using volume-constrained neuronal ensembles in the M1 hand area. IEEE Trans Neural Syst Rehabil Eng 16:15–23

    Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  3. Al-Otaibi FA, Hamani C, Lozano AM (2011) Neuromodulation in epilepsy. Neurosurgery 69:957–979

    Article  PubMed  Google Scholar 

  4. Alarcon G, Binnie CD, Elwes RD, Polkey CE (1995) Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol 94:326–337

    Article  CAS  PubMed  Google Scholar 

  5. Alkan A, Koklukaya E, Subasi A (2005) Automatic seizure detection in EEG using logistic regression and artificial neural network. J Neurosci Methods 148:167–176

    Article  PubMed  Google Scholar 

  6. Baier G, Muller M, Stephani U, Muhle M (2007) Characterizing correlation changes of complex pattern transitions: the case of epileptic activity. Phys Lett A 363:290–296

    Article  CAS  Google Scholar 

  7. Baker JJ, Scheme E, Englehart K, Hutchinson DT, Greger B (2010) Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans Neural Syst Rehabil Eng 18:424–432

    Google Scholar 

  8. Bansal AK, Truccolo W, Vargas-Irwin CE, Donoghue JP (2012) Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials. J Neurophysiol 107:1337–1355

    Google Scholar 

  9. Basseville M, Nikiforov IV (1993) Detection of Abrupt Changes: Theory and Applications. Prentice Hall, Englewood Cliffs, NJ (USA)

    Google Scholar 

  10. Berger JO (1985) Statistical Decision Theory and Bayesian Analysis, 2nd edn. Springer, New York, NY (USA)

    Book  Google Scholar 

  11. Bertsekas DP (2005) Dynamic Programming and Optimal Control, vol. I-II, 3rd edn. Athena Scientific, Belmont, MA (USA)

    Google Scholar 

  12. de Boer HM, Mula M, Sander JW (2008) The global burden and stigma of epilepsy. Epilepsy Behav 12:540–546

    Article  PubMed  Google Scholar 

  13. Bowman AW, Azzalini A (1997) Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford University Press, New York, NY (USA)

    Google Scholar 

  14. Brodsky BE, Darkhovsky BS (1993) Nonparametric Methods in Change-Point Problems. Kluwer Academic Publishers, Norwell, MA (USA)

    Book  Google Scholar 

  15. Brown EN, Barbieri R, Eden UT, Frank LM (2003) Likelihood methods for neural data analysis. In: Feng J (ed) Computational Neuroscience: A Comprehensive Approach. CRC, London, UK, pp 253–286

    Google Scholar 

  16. Burns SP, Sritharan D, Jouny C, Bergey G, Crone N et al (2012) A network analysis of the dynamics of seizure. 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA (USA), pp. 4684–4687

    Google Scholar 

  17. Cavanna AE, Monaco F (2009) Brain mechanisms of altered conscious states during epileptic seizures. Nat Rev Neurol 5:267–276

    Article  PubMed  Google Scholar 

  18. Chavez M, Le Van Quyen M, Navarro V, Baulac M, Martinerie J (2003) Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings. IEEE Trans Biomed Eng 50:571–583

    Google Scholar 

  19. Chen X, Hu Y, Fetics BJ, Berger RD, Trayanova NA (2011) Unstable QT interval dynamics precedes ventricular tachycardia onset in patients with acute myocardial infarction: a novel approach to detect instability in QT interval dynamics from clinical ECG. Circ Arrhythm Electrophysiol 4:858–866

    Article  PubMed Central  PubMed  Google Scholar 

  20. Czanner G, Eden UT, Wirth S, Yanike M, Suzuki WA, Brown EN (2008) Analysis of between-trial and within-trial neural spiking dynamics. J Neurophysiol 99:2672–2693

    Article  PubMed Central  PubMed  Google Scholar 

  21. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, UK

    Google Scholar 

  22. Elger CE, Schmidt D (2008) Modern management of epilepsy: a practical approach. Epilepsy Behav 12:501–539

    Article  PubMed  Google Scholar 

  23. Elliott RJ, Aggoun L, Moore JB (1995) Hidden Markov Models: Estimation and Control. Springer, New York, NY (USA)

    Google Scholar 

  24. Esteller R, Echauz J, D’Alessandro M, Worrell G, Cranstoun S et al (2005) Continuous energy variation during the seizure cycle: towards an on-line accumulated energy. Clin Neurophysiol 116:517–526

    Google Scholar 

  25. Fisher RS (2012) Therapeutic devices for epilepsy. Ann Neurol 71:157–168

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    Google Scholar 

  27. Fisher RS, Webber WR, Lesser RP, Arroyo S, Uematsu S (1992) High-frequency EEG activity at the start of seizures. J Clin Neurophysiol 9:441–448

    Article  CAS  PubMed  Google Scholar 

  28. Flint RD, Ethier C, Oby ER, Miller LE, Slutzky MW (2012) Local field potentials allow accurate decoding of muscle activity. J Neurophysiol 108:18–24

    Article  PubMed Central  PubMed  Google Scholar 

  29. Frank LM, Eden UT, Solo V, Wilson MA, Brown EN (2002) Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: an adaptive filtering approach. J Neurosci 22:3817–3830

    Google Scholar 

  30. Gale JT, Shields DC, Jain FA, Amirnovin R, Eskandar EN (2009) Subthalamic nucleus discharge patterns during movement in the normal monkey and Parkinsonian patient. Brain Res 1260:15–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B (2007) Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin Neurophysiol 118:1134–1143

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 54:1545–1551

    Article  PubMed  Google Scholar 

  33. Ghosh-Dastidar S, Adeli H, Dadmehr N (2008) Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng 55:512–518

    Article  PubMed  Google Scholar 

  34. Gotman J (1982) Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 54:530–540

    Google Scholar 

  35. Gotman J, Gloor P (1976) Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr Clin Neurophysiol 41:513–529

    Google Scholar 

  36. Grewal S, Gotman J (2005) An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clin Neurophysiol 116:2460–2472

    Article  PubMed  Google Scholar 

  37. Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A (2010) Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods 191:101–109

    Article  PubMed  Google Scholar 

  38. Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193:156–163

    Article  PubMed  Google Scholar 

  39. Hu J, Si J, Olson BP, He J (2005) Feature detection in motor cortical spikes by principal component analysis. IEEE Trans Neural Syst Rehabil Eng 13:256–262

    Google Scholar 

  40. Iasemidis LD, Sackellares JC, Zaveri HP, Williams WJ (1990) Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr 2:187–201

    Google Scholar 

  41. Iasemidis LD, Shiau DS, Sackellares JC, Pardalos PM, Prasad A (2004) Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans Biomed Eng 51:493–506

    Google Scholar 

  42. Jerger KK, Netoff TI, Francis JT, Sauer T, Pecora L et al (2001) Early seizure detection. J Clin Neurophysiol 18:259–268

    Article  CAS  PubMed  Google Scholar 

  43. Jirsch JD, Urrestarazu E, Le Van P, Olivier A, Dubeau F, Gotman J (2006) High-frequency oscillations during human focal seizures. Brain 129:1593–1608

    Google Scholar 

  44. Kemere C, Santhanam G, Yu BM, Afshar A, Ryu SI et al (2008) Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. J Neurophysiol 100:2441–2452

    Article  PubMed Central  PubMed  Google Scholar 

  45. Khan YU, Gotman J (2003) Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol 114:898–908

    Article  CAS  PubMed  Google Scholar 

  46. Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS (2010) Coalescence and fragmentation of cortical networks during focal seizures. J Neurosci 30:10076–10085

    Google Scholar 

  47. Lee HC, van Drongelen W, McGee AB, Frim DM, Kohrman MH (2007) Comparison of seizure detection algorithms in continuously monitored pediatric patients. J Clin Neurophysiol 24:137–146

    Article  PubMed  Google Scholar 

  48. Li D, Zhou W, Drury I, Savit R (2003) Linear and nonlinear measures and seizure anticipation in temporal lobe epilepsy. J Comput Neurosci 15:335–345

    Article  PubMed  Google Scholar 

  49. Litt B, Esteller R, Echauz J, D’Alessandro M, Shor R et al (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30:51–64

    Google Scholar 

  50. Lombardi F, Porta A, Marzegalli M, Favale S, Santini M et al (2000) Heart rate variability patterns before ventricular tachycardia onset in patients with an implantable cardioverter defibrillator. Am J Cardiol 86:959–963

    Article  CAS  PubMed  Google Scholar 

  51. Markowitz DA, Wong YT, Gray CM, Pesaran B (2011) Optimizing the decoding of movement goals from local field potentials in macaque cortex. J Neurosci 31:18412–18422

    Google Scholar 

  52. Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S et al (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4:1173–1176

    Google Scholar 

  53. McCullagh P, Nelder JA (1990) Generalized Linear Models, 2nd edn. CRC, Boca Raton, FL (USA)

    Google Scholar 

  54. Meier R, Dittrich H, Schulze-Bonhage A, Aertsen A (2008) Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J Clin Neurophysiol 25:119–131

    Article  PubMed  Google Scholar 

  55. Milekovic T, Fischer J, Pistohl T, Ruescher J, Schulze-Bonhage A et al (2012) An online brain-machine interface using decoding of movement direction from the human electrocorticogram. J Neural Eng 9:046003

    Google Scholar 

  56. Miller P, Katz DB (2010) Stochastic transitions between neural states in taste processing and decision-making. J Neurosci 30:2559–2570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Minasyan GR, Chatten JB, Chatten MJ, Harner RN (2010) Patient-specific early seizure detection from scalp electroencephalogram. J Clin Neurophysiol 27:163–178

    Article  PubMed Central  PubMed  Google Scholar 

  58. Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53:173–185

    Article  PubMed  Google Scholar 

  59. Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144:358–369

    Article  Google Scholar 

  60. Niedermeyer E, Lopes da Silva FH (2005) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA (USA)

    Google Scholar 

  61. Osorio I, Frei MG, Wilkinson SB (1998) Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia 39:615–627

    Article  CAS  PubMed  Google Scholar 

  62. Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115

    Article  Google Scholar 

  63. Paninski L (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Netw 15:243–262

    Google Scholar 

  64. Pillow JW, Ahmadian Y, Paninski L (2011) Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput 23:1–45

    Article  PubMed Central  PubMed  Google Scholar 

  65. Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118:918–927

    Article  CAS  PubMed  Google Scholar 

  66. Poor HV (1998) Quickest detection with exponential penalty for delay. Ann Statist 26:2179–2205

    Article  Google Scholar 

  67. Poor HV, Hadjiliadis O (2009) Quickest Detection. Cambridge University Press, Cambridge, UK

    Google Scholar 

  68. van Putten MJ, Kind T, Visser F, Lagerburg V (2005) Detecting temporal lobe seizures from scalp EEG recordings: a comparison of various features. Clin Neurophysiol 116:2480–2489

    Google Scholar 

  69. Le Van Quyen M, Martinerie J, Navarro V, Baulac M, Varela FJ (2001) Characterizing neurodynamic changes before seizures. J Clin Neurophysiol 18:191–208

    Google Scholar 

  70. Risinger MW, Engel J Jr, Van Ness PC, Crandall PH (1989) Ictal localization of temporal lobe seizures with scalp/sphenoidal recordings. Neurology 39:1288–1293

    Google Scholar 

  71. Rummel C, Abela E, Muller M, Hauf M, Scheidegger O et al (2011) Uniform approach to linear and nonlinear interrelation patterns in multivariate time series. Phys Rev E Stat Nonlin Soft Matter Phys 83:066215

    Google Scholar 

  72. Rummel C, Muller M, Baier G, Amor F, Schindler K (2010) Analyzing spatio-temporal patterns of genuine cross-correlations. J Neurosci Methods 191:94–100

    Article  PubMed  Google Scholar 

  73. Saab ME, Gotman J (2005) A system to detect the onset of epileptic seizures in scalp EEG. Clin Neurophysiol 116:427–442

    Article  CAS  PubMed  Google Scholar 

  74. Sander JW (2003) The epidemiology of epilepsy revisited. Curr Opin Neurol 16:165–170

    Article  PubMed  Google Scholar 

  75. Santaniello S, Burns SP, Golby AJ, Singer JM, Anderson WS, Sarma SV (2011) Quickest detection of drug-resistant seizures: an optimal control approach. Epilepsy Behav 22:S49–S60

    Google Scholar 

  76. Santaniello S, Burns SP, Sarma SV (2012) Automatic seizure onset detection in drug-resistant epilepsy: a Bayesian optimal solution. IEEE 51st Annual Conference on Decision and Control. Maui, HI (USA), pp. 3189–3194

    Google Scholar 

  77. Santaniello S, Burns SP, Sarma SV (2012) Quickest seizure onset detection in drug-resistant epilepsy. IEEE American Control Conference. Montreal, QC (Canada), pp. 4771–4776

    Google Scholar 

  78. Santaniello S, Montgomery EB Jr, Gale JT, Sarma SV (2012) Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation. Front Integr Neurosci 6:35

    Google Scholar 

  79. Santaniello S, Sherman DL, Mirski MA, Thakor NV, Sarma SV (2011) A Bayesian framework for analyzing iEEG data from a rat model of epilepsy. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA (USA), pp. 1435–1438

    Google Scholar 

  80. Santaniello S, Sherman DL, Thakor NV, Eskandar EN, Sarma SV (2012) Optimal control-based Bayesian detection of clinical and behavioral state transitions. IEEE Trans Neural Syst Rehabil Eng 20:708–719

    Google Scholar 

  81. Sarma SV, Eden UT, Cheng ML, Williams ZM, Hu R et al (2010) Using point process models to compare neural spiking activity in the subthalamic nucleus of Parkinson’s patients and a healthy primate. IEEE Trans Biomed Eng 57:1297–1305

    Article  PubMed  Google Scholar 

  82. Sarma SV, Santaniello S (2011) Quickest detection of state-transition in point processes: application to neuronal activity. Proceedings of the 18th IFAC World Conference. Milan, IT, pp. 10021–10026

    Google Scholar 

  83. Saxena S, Gale JT, Eskandar EN, Sarma SV (2011) Modulations in the oscillatory activity of the globus pallidus internus neurons during a behavioral task. A point process analysis. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA (USA), pp. 4179–4182

    Google Scholar 

  84. Schalk G, Brunner P, Gerhardt LA, Bischof H, Wolpaw JR (2008) Brain Computer Interfaces (BCIs): detection instead of classification. J Neurosci Methods 167:51–62

    Google Scholar 

  85. Schiller Y, Cascino GD, Busacker NE, Sharbrough FW (1998) Characterization and comparison of local onset and remote propagated electrographic seizures recorded with intracranial electrodes. Epilepsia 39:380–388

    Google Scholar 

  86. Schindler K, Amor F, Gast H, Muller M, Stibal A et al (2010) Peri-ictal correlation dynamics of high-frequency (80–200 Hz) intracranial EEG. Epilepsy Res 89:72–81

    Google Scholar 

  87. Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K (2008) Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18:033119

    Google Scholar 

  88. Schindler K, Leung H, Elger CE, Lehnertz K (2007) Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130:65–77

    Google Scholar 

  89. Schmidt D (2009) Drug treatment of epilepsy: options and limitations. Epilepsy Behav 15:56–65

    Google Scholar 

  90. Shiryaev AN (1963) On optimum methods in quickest detection problems. Theory Probab Appl 8:22–46

    Article  Google Scholar 

  91. Shoeb A, Edwards H, Connolly J, Bourgeois B et al (2004) Patient-specific seizure onset detection. Epilepsy Behav 5:483–498

    Article  PubMed  Google Scholar 

  92. Snyder DL, Miller MI (1991) Random Point Processes in Time and Space. Springer, New York, NY (USA)

    Book  Google Scholar 

  93. Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 11:288–295

    Article  PubMed  Google Scholar 

  94. Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD et al (2012) A recurrent neural network for closed-loop intracortical brain-machine interface decoders. J Neural Eng 9:026027

    Google Scholar 

  95. Temko A, Thomas E, Marnane W, Lightbody G, Boylan G (2011) EEG-based neonatal seizure detection with Support Vector Machines. Clin Neurophysiol 122:464–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Thakor NV, Natarajan A, Tomaselli GF (1994) Multiway sequential hypothesis testing for tachyarrhythmia discrimination. IEEE Trans Biomed Eng 41:480–487

    Article  CAS  PubMed  Google Scholar 

  97. Thakor NV, Zhu YS, Pan KY (1990) Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. IEEE Trans Biomed Eng 37:837–843

    Article  CAS  PubMed  Google Scholar 

  98. Theodore WH, Spencer SS, Wiebe S, Langfitt JT, Ali A et al (2006) Epilepsy in North America: a report prepared under the auspices of the global campaign against epilepsy, the International Bureau for Epilepsy, the International League Against Epilepsy, and the World Health Organization. Epilepsia 47:1700–1722

    Article  PubMed  Google Scholar 

  99. Tito M, Cabrerizo M, Ayala M, Jayakar P, Adjouadi M (2009) Seizure detection: an assessment of time- and frequency-based features in a unified two-dimensional decisional space using nonlinear decision functions. J Clin Neurophysiol 26:381–391

    Article  PubMed  Google Scholar 

  100. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 93:1074–1089

    Article  PubMed  Google Scholar 

  101. Truccolo W, Hochberg LR, Donoghue JP (2010) Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat Neurosci 13:105–111

    Google Scholar 

  102. Ushiba J, Tomita Y, Masakado Y, Komune Y (2002) A cumulative sum test for a peri-stimulus time histogram using the Monte Carlo method. J Neurosci Methods 118:207–214

    Article  PubMed  Google Scholar 

  103. Wetherhill GB, Brown DW (1991) Statistical Process Control: Theory and Practice Chapman and Hall, London, UK

    Google Scholar 

  104. White AM, Williams PA, Ferraro DJ, Clark S, Kadam SD et al (2006) Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J Neurosci Methods 152:255–266

    Article  PubMed  Google Scholar 

  105. Wilke C, Worrell G, He B (2011) Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52:84–93

    Google Scholar 

  106. Williams ZM, Neimat JS, Cosgrove GR, Eskandar EN (2005) Timing and direction selectivity of subthalamic and pallidal neurons in patients with Parkinson’s disease. Exp Brain Res 162:407–416

    Article  PubMed  Google Scholar 

  107. Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B (2004) High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127:1496–1506

    Article  PubMed  Google Scholar 

  108. Yaffe R, Burns S, Gale J, Park HJ, Bulacio J, et al (2012) Brain state evolution during seizure and under anesthesia: a network-based analysis of stereotaxic EEG activity in drug-resistant epilepsy patients. 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA (USA), pp. 5158–5161

    Google Scholar 

  109. Yoon JW, Roberts SJ, Dyson M, Gan JQ (2009) Adaptive classification for Brain Computer Interface systems using sequential Monte Carlo sampling. Neural Netw 22:1286–1294

    Google Scholar 

  110. Yu AJ (2007) Optimal change-detection and spiking neurons. In: Scholkopf B, Platt JC, Hoffman T (eds) Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, MA (USA), pp 1545–1552

    Google Scholar 

Download references

Acknowledgments

S. Santaniello was supported by the US National Science Foundation Grant ECCS 1346888. S. V. Sarma was supported by the US National Science Foundation CAREER Award 1055560 and the Burroughs Welcome Fund CASI Award 1007274. The Bayesian optimal detection framework presented in Sect. 6.2 and Sect. 6.3 was developed in [80] with preliminary results in [79, 82]. The network analysis and the generalized linear model structure presented in Sect. 6.4 and Sect. 6.4.1 were developed in [75] with preliminary results in [77]. Preliminary results with subjects PT-03 and PT-04 were presented in [76].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabato Santaniello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santaniello, S., Burns, S.P., Anderson, W.S., Sarma, S.V. (2014). An Optimal Control Approach to Seizure Detection in Drug-Resistant Epilepsy. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9041-3_6

Download citation

Publish with us

Policies and ethics