Skip to main content

Presence in, and Release of, Nanomaterials from Consumer Products

  • Chapter
  • First Online:
Nanomaterial

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

Widespread use of engineered nanomaterials (ENMs) in consumer products has led to concerns about their potential impact on humans and the environment. In order to fully assess the impacts and release of ENMs from consumer products, this chapter provides an overview of the types of consumer products that contain nanomaterials, the potential release mechanisms of these ENMs from consumer products, and the associated human exposure. Information from two large datasets on consumer goods associated with ENMs, namely, the U.S.-based Project for Emerging Nanotechnologies from the Woodrow Wilson International Center, and the European-based National Institute for Public Health and the Environment of Netherlands, have been summarized. These databases reveal that silver, titanium, carbon-based ENMs are the major nanomaterials associated with consumer products. The presence and potential release of silver, titanium, carbon-based, and other nanomaterials from consumer goods available in published literature are also summarized, as well as the potential human exposure scenarios of inhalation, ingestion, dermal, and combination of all means. The prospecting of nanomaterial in water and biosolids provides further evidence of ENM occurrence, which could be linked to the use of nanomaterials containing consumer goods. Finally, this overview provides guidelines on toxicity studies, which calls for further efforts to analyze the biological effects of ENMs on human beings and their exposure pathways in consumer products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maynard AD (2011) Don’t define nanomaterials. Nature 475(7354):31–31

    Article  CAS  PubMed  Google Scholar 

  2. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, Group, A.r.f.t.I.R.F.R.S.I.N.T.S.W. (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):8

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gao J, Wang Y, Hovsepyan A, Bonzongo JCJ (2011) Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments. J Hazard Mater 186(1):940–945

    Article  CAS  PubMed  Google Scholar 

  4. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  CAS  PubMed  Google Scholar 

  5. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  PubMed  Google Scholar 

  6. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Tech 45(4):1177–1183

    Article  CAS  Google Scholar 

  7. U.S.EPA (2012) Nanomaterial case study: nanoscale silver in disinfectant spray. National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park

    Google Scholar 

  8. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7):1221–1231

    Article  CAS  PubMed  Google Scholar 

  9. U.S.EPA (2010) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen (final). U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  10. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Binetruy C, Boussu F (2010) Recent advances in textile composites: 26–28 Oct 2010, Lille Grand Palais, Lille, France, DEStech Publications

    Google Scholar 

  12. U.S.EPA (2012) Nanomaterial case study: a comparison of multiwalled carbon nanotube and decabromodiphenyl ether flame-retardant coatings applied to upholstery textiles (external review draft). U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  13. U.S.EPA (2013) Comprehensive environmental assessment applied to multiwalled carbon nanotube flame-retardant coatings in upholstery textiles: a case study presenting priority research gaps for future risk assessments (final report). U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  14. Quadros ME, Pierson R, Tulve NS, Willis R, Rogers K, Thomas TA, Marr LC (2013) Release of silver from nanotechnology-based consumer products for children. Environ Sci Technol 47(15):8894–8901

    Article  CAS  PubMed  Google Scholar 

  15. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Tech 42(12):4447–4453

    Article  CAS  Google Scholar 

  16. Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763

    Article  CAS  PubMed  Google Scholar 

  17. Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409

    Article  CAS  PubMed  Google Scholar 

  18. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Tech 43(21):8113–8118

    Article  CAS  Google Scholar 

  19. Giokas DL, Salvador A, Chisvert A (2007) UV filters: from sunscreens to human body and the environment. TrAC Trends Anal Chem 26(5):360–374

    Article  CAS  Google Scholar 

  20. Wong SWY, Leung PTY, Djurišić A, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396(2):609–618

    Article  CAS  PubMed  Google Scholar 

  21. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Tech 45(9):3902–3908

    Article  CAS  Google Scholar 

  22. Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Tech 44(19):7509–7514

    Article  CAS  Google Scholar 

  23. Yang Y, Chen Q, Wall JD, Hu Z (2012) Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Res 46(4):1176–1184

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impacts 15:39–48

    Article  CAS  PubMed  Google Scholar 

  25. Benn TM, Westerhoff P, Herckes P (2011) Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159(5):1334–1342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44(14):4105–4114

    Article  CAS  PubMed  Google Scholar 

  27. Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monitor 13(5):1195–1203

    Google Scholar 

  28. U.S.EPA (1999) Biosolids generation, use, and disposal in the United States. Environmental Protection Agency, Washington, DC

    Google Scholar 

  29. Reinhart DR, Berge ND, Santra S, Bolyard SC (2010) Emerging contaminants: nanomaterial fate in landfills. Waste Manag 30(11):2020–2021

    Article  PubMed  Google Scholar 

  30. Yang Y, Xu M, Wall JD, Hu Z (2012) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32(5):816–825

    Article  CAS  PubMed  Google Scholar 

  31. Warheit DB (2010) Debunking some misconceptions about nanotoxicology. Nano Lett 10(12):4777–4782

    Article  CAS  PubMed  Google Scholar 

  32. PEN (2011) The project on emerging nanotechnologies. The Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  33. Wijnhoven SWP, Dekkers S, Kooi M, Jongeneel WP, de Jong WH (2010) Nanomaterials in consumer products. National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport, Bilthoven, Netherlands

    Google Scholar 

  34. Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1(3):243–250

    Article  CAS  Google Scholar 

  35. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56(5):300–306

    Article  CAS  Google Scholar 

  36. Chin C-JM, Chen P-W, Wang L-J (2006) Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation. Chemosphere 63(10):1809–1813

    Article  CAS  PubMed  Google Scholar 

  37. Lee S-H, Lu Z, Babu SV, Matijevic E (2002) Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria. J Mater Res 17(10):2744–2749

    Article  CAS  Google Scholar 

  38. Hendren CO, Mesnard X, Droge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7):2562–2569

    Article  CAS  PubMed  Google Scholar 

  39. Lem KW, Choudhury A, Lakhani AA, Kuyate P, Haw JR, Lee DS, Iqbal Z, Brumlik CJ (2012) Use of nanosilver in consumer products. Recent Pat Nanotechnol 6(1):60–72

    Article  CAS  PubMed  Google Scholar 

  40. Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882

    Article  CAS  PubMed  Google Scholar 

  41. Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45(24):10713–10719

    Article  CAS  PubMed  Google Scholar 

  42. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Tech 42(12):4583–4588

    Article  CAS  Google Scholar 

  43. Schluesener J, Schluesener H (2013) Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87(4):569–576

    Article  CAS  PubMed  Google Scholar 

  44. Yang Y, Gajaraj S, Wall JD, Hu Z (2013) A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res 47(10):3422–3430

    Article  CAS  PubMed  Google Scholar 

  45. Bin Y, Mine M, Koganemaru A, Jiang X, Matsuo M (2006) Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites. Polymer 47(4):1308–1317

    Article  CAS  Google Scholar 

  46. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  CAS  PubMed  Google Scholar 

  47. Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41(6):1905–1908

    Article  CAS  Google Scholar 

  48. Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan D (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47(1):113–122

    Article  CAS  Google Scholar 

  49. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res C7-1109 14(9):1–11

    Google Scholar 

  50. Kohler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937

    Article  Google Scholar 

  51. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23(3):646–657

    Article  CAS  Google Scholar 

  52. Gonçalves AG, Jarrais B, Pereira C, Morgado J, Freire C, Pereira MFR (2012) Functionalization of textiles with multi-walled carbon nanotubes by a novel dyeing-like process. J Mater Sci 47(13):5263–5275

    Article  Google Scholar 

  53. Arora A, Padua GW (2009) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  Google Scholar 

  54. Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SAK, Christensen FM (2010) Review of fullerene toxicity and exposure—appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58(3):455–473

    Article  CAS  PubMed  Google Scholar 

  55. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43(12):4227–4233

    Article  CAS  PubMed  Google Scholar 

  56. Macwan DP, Dave P, Chaturvedi S (2011) A review on nano-TiO2 sol-gel type syntheses and its applications. J Mater Sci 46(11):3669–3686

    Article  CAS  Google Scholar 

  57. Barker PJ, Branch A (2008) The interaction of modern sunscreen formulations with surface coatings. Prog Org Coat 62(3):313–320

    Article  CAS  Google Scholar 

  58. Scotter MJ (2011) Methods for the determination of European Union-permitted added natural colours in foods: a review. Food Addit Contam A 28(5):527–596

    Article  CAS  Google Scholar 

  59. Lomer MCE, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RPH, Powell JJ (2004) Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 92(06):947–955

    Article  CAS  PubMed  Google Scholar 

  60. Windler L, Lorenz C, von Goetz N, Hungerbuhler K, Amberg M, Heuberger M, Nowack B (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46(15):8181–8188

    Article  CAS  PubMed  Google Scholar 

  61. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero J-Y (2010) Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44(7):2689–2694

    Article  CAS  PubMed  Google Scholar 

  62. Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73(1):8–17

    Article  CAS  Google Scholar 

  63. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  PubMed  Google Scholar 

  64. Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74(5):N31–N35

    Article  CAS  PubMed  Google Scholar 

  65. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5(3):1046–1051

    Article  CAS  PubMed  Google Scholar 

  66. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

  67. Chaudhry Q, Castle L, Watkins R (2010) Nanotechnologies in food. Royal Society of Chemistry, Cambridge, UK

    Book  Google Scholar 

  68. Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Institute of Nanotechnology. Nanoforum.org, European Nanotechnology Gateway.

    Google Scholar 

  69. Kusmono WMW, Mohd IZA (2013) Preparation and properties of clay-reinforced epoxy nanocomposites. Int J Poly Sci 7:690675

    Google Scholar 

  70. Sk MP, Jaiswal A, Paul A, Ghosh SS, Chattopadhyay A (2012) Presence of amorphous carbon nanoparticles in food caramels. Sci Rep 2. 1–5

    Google Scholar 

  71. Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2011) Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ Toxicol Chem 31(1):115–121

    Article  PubMed  Google Scholar 

  72. Gray EP, Bruton TA, Higgins CP, Halden RU, Westerhoff P, Ranville JF (2012) Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J Anal Atom Spectrom 27(9):1532–1539

    Article  CAS  Google Scholar 

  73. Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012) Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal Atom Spectrom 27(7):1131–1142

    Article  CAS  Google Scholar 

  74. Reed RB, Higgins CP, Westerhoff P, Tadjiki S, Ranville JF (2012) Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 27(7):1093–1100

    Article  CAS  Google Scholar 

  75. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31(1):93–99

    Article  CAS  PubMed  Google Scholar 

  76. Rudnick RL, Fountain DM (1995) Nature and composition of the continental-crust – a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  77. Priest ND, Van de Vyver FL (1990) Trace metals and fluoride in bones and teeth. CRC Press, Boca Raton

    Google Scholar 

  78. Kiser MA, Ladner DA, Hristovski KD, Westerhoff PK (2012) Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: implications for testing protocol and environmental fate. Environ Sci Technol 46(13):7046–7053

    Article  CAS  PubMed  Google Scholar 

  79. Westerhoff PK, Kiser A, Hristovski K (2013) Nanomaterial removal and transformation during biological wastewater treatment. Environ Eng Sci 30(3):109–117

    Article  CAS  Google Scholar 

  80. McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44(2):658–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was funded by the Funding was provided by the National Science Foundation (CBET 1336542). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF. We thank Sungyun Lee for the help in the analysis of nanomaterials by sp-ICP/MS. We also thank the National Institute for Public Health and the Environment (RIVM) of Netherlands for the collected inventory of nanomaterial in consumer product on the European market (“Nanomaterials in consumer products”, 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, Y., Westerhoff, P. (2014). Presence in, and Release of, Nanomaterials from Consumer Products. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_1

Download citation

Publish with us

Policies and ethics