Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 106))

Abstract

In this chapter, an introduction to cavitation and cavitation erosion is presented. Cavitation involves the development of various types of vapor structures (such as attached cavities, travelling bubbles, vortical cavities, bubble clouds) in liquid flow due to a drop in the local pressure below a critical value usually close to the vapor pressure. These structures generally originate from cavitation nuclei, typically gaseous microbubbles contained in the liquid. The critical pressure of a nucleus is defined as the particular value of the pressure below which no equilibrium is possible. If a nucleus is subject to pressure lower than its critical pressure, it will explosively grow into a macroscopic cavitation bubble. The bubble will collapse when transported by the liquid flow into regions of pressure recovery. If the collapse occurs near a wall, the resulting high amplitude and small duration impulsive loads may cause local damage. Repeated impulsive loads may cause increasing cavitation erosion damage. The response of the material to cavitation impulsive loads is discussed and material properties most relevant to cavitation erosion, such as sensitivity to strain rate, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knapp RT, Daily JW, Hammitt FG (1970) Cavitation. McGraw Hill Book Co., New York

    Google Scholar 

  2. Hammitt FG (1980) Cavitation and multiphase flow phenomena. McGraw-Hill International Book Co., New York

    Google Scholar 

  3. Young FR (1989) Cavitation. McGraw Hill Book Co., New York

    Google Scholar 

  4. Franc J-P, Michel J-M (2004) Fundamentals of cavitation. R Moreau (ed) Fluid mechanics and its applications. Springer, Dordrecht

    Google Scholar 

  5. Brennen CE (1995) Cavitation and bubble dynamics. Oxford engineering sciences series 44. Oxford University Press, New York

    Google Scholar 

  6. Hsiao C-T, Chahine GL (2004) Prediction of vortex cavitation inception using coupled spherical and non-spherical models and navier-stokes computations. J Mar Sci Technol 8(3):99–108

    Article  Google Scholar 

  7. Hsiao C-T, Chahine GL (2005) Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution. J Fluids Eng 127(1):55–65

    Article  Google Scholar 

  8. MacIntyre F (1986) On reconciling optical and acoustical bubble spectra in the mixed layer. In: Monahan EC, Niocaill GM (eds) Oceanic whitecaps. D. Reidel Publishing Company, New York, pp 75–94

    Chapter  Google Scholar 

  9. Oldenziel DM (1982) A new instrument in cavitation research: the cavitation susceptibility meter. J Fluids Eng 104(2):136–141

    Article  Google Scholar 

  10. Billet ML (1985) Cavitation nuclei measurements—a review. Paper presented at the ASME cavitation and multiphase flow forum FED vol 23, June 1985

    Google Scholar 

  11. Breitz N, Medwin H (1989) Instrumentation for in situ acoustical measurements of bubble spectra under breaking waves. J Acoust Soc Am 86:739–743

    Article  Google Scholar 

  12. Duraiswami R, Prabhukumar S, Chahine GL (1998) Bubble counting using an inverse acoustic scattering method. J Acoust Soc Am 105 (5)

    Google Scholar 

  13. Hsiao CT, Chahine GL (2008) Numerical study of cavitation inception due to vortex/vortex interaction in a ducted propulsor. J Ship Res 52(2):114–123

    Google Scholar 

  14. Jayaprakash A, Hsiao C-T, Chahine G (2012) Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. J Fluids Eng 134(3):031301. doi:10.1115/1.4005688

    Article  Google Scholar 

  15. Chahine GL, Frederick GS, Lambrecht CJ, Harris GS, Mair HU (1995) Spark generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools. In: 66th Shock and vibration symposium, Biloxi, MS, November 1995. pp 265–276

    Google Scholar 

  16. De MK, Hammitt FG (1982) New method for monitoring and correlating cavitation noise to erosion capability. Trans ASME J Fluids Eng 104(4):434–442

    Article  Google Scholar 

  17. Soyama H, Lichtarowicz A, Momma T, Williams EJ (1998) A new calibration method for dynamically loaded transducers and its application to cavitation impact measurement. J Fluids Eng 120(4):712–718

    Article  Google Scholar 

  18. Nguyen Trong H (1993) Développement et validation d’une méthode analytique de prévision de l’érosion de cavitation. PhD, Institut National Polytechnique de Grenoble, Grenoble

    Google Scholar 

  19. Chahine GL, Annasami R, Hsiao CT, Harris G (2006) Scaling rules for the prediction on UNDEX bubble re-entering jet parameters. SAVIAC Crit Technol Shock Vib 4(1):1–12 (Ed Walter Pilkey)

    Google Scholar 

  20. Franc J-P, Riondet M, Karimi A, Chahine GL (2011) Impact load measurements in an erosive cavitating flow. J Fluids Eng 133(12):121301–121308

    Article  Google Scholar 

  21. Hattori S, Hirose T, Sugiyama K (2009) Prediction of cavitation erosion based on the measurement of bubble collapse impact loads. Paper presented at the 7th International symposium on cavitation, Ann Arbor, Michigan, USA, August 17–22, 2009

    Google Scholar 

  22. Franc J-P, Michel J-M (1997) Cavitation erosion research in France: the state of the art. J Mar Sci Technol 2:233–244

    Article  Google Scholar 

  23. Franc J-P (2009) Incubation time and cavitation erosion rate of work-hardening materials. J Fluids Eng 131(2):021303

    Article  Google Scholar 

  24. Karimi A, Maamouri M, Martin JL (1989) Cavitation-erosion-induced microstructures in copper single crystals. Mater Sci Eng A 113:287–296. doi:10.1016/0921-5093(89)90317-1

    Article  Google Scholar 

  25. Armstrong RW, Arnold W, Zerilli FJ (2009) Dislocation mechanisms of copper and iron in high rate deformation tests. J Appl Phys 105:1–7

    Google Scholar 

  26. Konno A, Kato H, Yamaguchi H, Maeda M (1999) Observation of cavitation bubble collapse by high-speed video. Proc, 5th Asian symposium on visualization, Bedugul Bali, Indonesia, March 8–11, 1999

    Google Scholar 

  27. Soyama H, Sekine Y, Saito K (2011) Evaluation of the enhanced cavitation impact energy using a PVDF transducer with an acrylic resin backing. Meas 44:1279–1283

    Article  Google Scholar 

  28. Hattori S, Hirose T, Sugiyama K (2010) Prediction method for cavitation erosion based on measurement of bubble collapse impact loads. Wear 269(7–8):507–514. doi:10.1016/j.wear.2010.05.015

    Article  Google Scholar 

  29. Carnelli D, Karimi A, Franc J-P (2012) Application of spherical nanoindentation to determine the pressure of cavitation impacts from pitting tests. J Mater Res 27(1):91–99. doi:10.1557/jmr.2011.259

    Article  Google Scholar 

  30. Lee WS, Lin CF (2001) Impact properties and microstructure evolution of 304L stainless steel. Mater Sci Eng A 308:124–135

    Article  Google Scholar 

  31. Ferreira PJ, Sande JBV, Fortes MA, Kyrolainen A (2004) Microstrucrure development during high velocity deformation. Metall Mater Trans 35A:3091–3101

    Article  Google Scholar 

  32. Andrade U, Meyers MA, Vecchio KS, Chokshi AH (1994) Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metall Mater 42(9):3183–3195. doi:10.1016/0956-7151(94)90417-0

    Article  Google Scholar 

  33. Johnson KA, Murr LE, Staudhammer KP (1985) Comparison of residual microstructures for 304 stainless steel shock loaded in plane and cylindrical geometries: implications for dynamic compaction and forming. Acta Metall 33(4):677–684. doi:10.1016/0001-6160(85)90031-8

    Article  Google Scholar 

  34. Christian JW, Majahan S (1995) Deformation twinning. Prog Mater Sci 39(1–2):1–157

    Article  Google Scholar 

  35. Altynova M, Hu XY, Daehn GS (1996) Increased ductility in high velocity electromagnetic ring expansion. Metall Mater Trans A 27A:1837–1844

    Article  Google Scholar 

  36. Karimi A (1989) Cavitation erosion of austenitic stainless steel and effect of boron and nitrogen ion implantation. Acta Metall 37(4):1079–1088. doi:10.1016/0001-6160(89)90104-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georges L. Chahine , Jean-Pierre Franc or Ayat Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chahine, G.L., Franc, JP., Karimi, A. (2014). Cavitation and Cavitation Erosion. In: Kim, KH., Chahine, G., Franc, JP., Karimi, A. (eds) Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Fluid Mechanics and Its Applications, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8539-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8539-6_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8538-9

  • Online ISBN: 978-94-017-8539-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics