Skip to main content

Characterization of Photonic Crystal Fibers: Selected Methods and Experience

  • Chapter
  • First Online:
Contemporary Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 199))

Abstract

Several techniques for characterization of photonic crystal fibers (PCFs) are reviewed, focusing on measurements of attenuation, optical uniformity, selected polarization parameters, and effects of temperature and mechanical strain applied to the fiber. PCF properties often radically differ from those of conventional fibers used in communications networks, and available lengths are generally short, therefore different approach to characterization is required. Comparisons of alternative methods for selected tests are made, and examples of errors in PCF handling and testing are discussed. Examples of results obtained for silica single-mode PCFs with GeO2-doped core are also presented, accompanied by geometrical and compositional fiber data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006)

    Article  ADS  Google Scholar 

  2. R. Buczyński, Photonic crystal fibers. Acta Phys. Pol. A 106(2), 141–167 (2004)

    Google Scholar 

  3. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, I. Sankawa, Hole-assisted fiber design for small bending and splice losses. IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003)

    Article  ADS  Google Scholar 

  4. T.A. Birks, P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, J.C. Knight, P.S.J. Russell, The fundamental limits to the attenuation of hollow-core photonic crystal fibres, in Proceedings of ICTON 2005, Mo.B2.1 (2005), pp. 107–110

    Google Scholar 

  5. D.J. Richardson, F. Poletti, J.Y.Y. Leong, X. Feng, H.E. Heidepreim, H.V. Finazzi, K.E. Frampton, S. Asimakis, R.C. Moore, J.C. Baggett, J.R. Hayes, M.N. Petrovich, M.L. Tse, R. Amezcua, J.H.V. Price, N.G.R. Broderick, P. Petropoulos, T.M. Monro, Advances in microstructured fiber technology, in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (2005), pp. 1–9

    Google Scholar 

  6. J. Lægsgaard, A.O. Bjarklev, Microstructured optical fibers—fundamentals and applications. J. Am. Ceramic Soc. 89(1), 2–12 (2006)

    Article  Google Scholar 

  7. I. Gris-Sanchez, J.C. Knight, Time-dependent degradation of photonic crystal fiber attenuation around OH absorption wavelengths. J. Lightwave Technol. 30(23), 3597–3602 (2012)

    Article  ADS  Google Scholar 

  8. S.H. Law, J.D. Harvey, R.J. Kruhlak, M. Song, E. Wu, G.W. Barton, M.A. van Eijkelenborg, M.C.J. Large, Cleaving of microstructured polymer optical fibres. Opt. Commun. 258, 193–202 (2006)

    Article  ADS  Google Scholar 

  9. A. Stefani, K. Nielsen, H.K. Rasmussen, O. Bang, Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization. Opt. Commun. 285(7), 1825–1833 (2012)

    Article  ADS  Google Scholar 

  10. ITU-T Recommendation G.652, Characteristics of a single-mode optical fibre and cable (2009)

    Google Scholar 

  11. K. Borzycki, K. Schuster, Arc fusion splicing of photonic crystal fibres, in Photonic Crystal Fibres—Book, vol. 1 (Intech Publishing, Rijeka, Croatia, 2012), pp. 175–200

    Google Scholar 

  12. B. Bourliaguet, C. Pare, F. Emond, A. Croteau, A. Proulx, R. Vallee, Microstructured fiber splicing. Opt. Express 11(25), 3412–3417 (2003)

    ADS  Google Scholar 

  13. K. Borzycki, J. Kobelke, K. Schuster, J. Wójcik, Arc fusion splicing of photonic crystal fibers to standard single mode fibers, in Proceedings of SPIE (2010), pp. 7714–7738

    Google Scholar 

  14. A. Yablon, Optical Fiber Fusion Splicing (Springer, Berlin, 2005)

    Google Scholar 

  15. L. Xiao, M.S. Demokan, W. Jin, Y. Wang, Ch-L Zhao, Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect. J. Lightwave Technol. 25(11), 3563–3574 (2007)

    Article  ADS  Google Scholar 

  16. R. Thapa, K. Knabe, K.L. Corwin, B.R. Washburn, Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells. Opt. Express 14(21), 9576–9583 (2006)

    Article  ADS  Google Scholar 

  17. Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, R. Willsch, Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters. Opt. Express 16(10), 7258–7263 (2008)

    Article  ADS  Google Scholar 

  18. T. Hamada, R. Suzuki, K. Takenaga, N. Guan, S. Matsuo, K. Himeno, Arc-fusion splicing techniques for holey fibers. Fujikura Tech. Rev. 35, 5–9 (2006)

    Google Scholar 

  19. K. Borzycki, J. Kobelke, P. Mergo, K. Schuster, Challenges in characterization of photonic crystal fibers, in Proceedings of SPIE (2011), pp. 8073B–80107

    Google Scholar 

  20. ITU-T Recommendation G.650.1, Definitions and test methods for linear, deterministic attributes of single-mode fibre and cable (2010)

    Google Scholar 

  21. K. Borzycki, J. Kobelke, K. Schuster, J. Wójcik, Optical, thermal and mechanical characterization of photonic crystal fibers: results and comparisons, in Proceedings of SPIE (2010), pp. 7714–7731

    Google Scholar 

  22. K. Borzycki, J. Kobelke, P. Mergo, K. Schuster, Characterization of photonic crystal fibers with OTDR, in Proceedings of ICTON-2011, We.B4.5 (2011)

    Google Scholar 

  23. v-OTDR Very High Resolution Time Domain Reflectometer. Luciol Instruments SA (2009)

    Google Scholar 

  24. LOR-200 High Resolution Time Domain Reflectometer, Luciol Instruments SA (2012)

    Google Scholar 

  25. M.A.R. Franco, V.A. Serrao, T.R. Pitarello, A.S. Cerqueira Jr., Hybrid photonic crystal fiber sensing of high hydrostatic pressure, in Proceedings of SPIE (2011), p. 775346

    Google Scholar 

  26. K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, W. Urbanczyk, Microstructured fibers with highly nonlinear materials. Opt. Quant. Electron. 39, 1057–1069 (2007)

    Article  Google Scholar 

  27. T. Martynkien, P. Mergo, W. Urbańczyk, Sensitivity of birefringent microstructured polymer optical fiber to hydrostatic pressure. IEEE Photonics Technol. Lett. 25(16), 1562–1565 (2013)

    Article  ADS  Google Scholar 

  28. P. Lesiak, T. Woliński, Simultaneous twist and longitudinal strain effects on polarization mode dispersion in highly birefringent fibers. Opto-Electron. Rev. 13(2), 183–186 (2005)

    Google Scholar 

  29. T. Martynkien, M. Szpulak, G. Statkiewicz-Barabach, J. Olszewski, A. Anuszkiewicz, W. Urbanczyk, K. Schuster, J. Kobelke, Birefringence in microstructure fiber with elliptical GeO2 highly doped inclusion in the core. Opt. Lett. 33(23), 2764–2766 (2008)

    Google Scholar 

  30. K. Borzycki, K. Schuster, Characterization and fusion splicing of single-mode photonic crystal fibers, in Proceedings of CAOL-2013 (Sudak, Crimea, Ukraine, 9–13 Sept 2013), pp. 31–34

    Google Scholar 

  31. J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, K. Matsui, C. Fukai, I. Sankawa, PMD Suppression method for photonic crystal fiber, in Proceedings of OFC/NFOEC, OTuA6, vol. 2 (2005)

    Google Scholar 

  32. L. Thevenaz, J.-P. Pellaux, J.-P. von der Veid, All-fiber interferometer for chromatic dispersion measurements. J. Lightw. Technol. 6(1), 1–7 (1988)

    Article  ADS  Google Scholar 

  33. S.A. Diddams, J.-C. Diels, Dispersion measurements with white-light interferometry. J. Opt. Soc. Am. B 13(6), 1120–1129 (1996)

    Article  ADS  Google Scholar 

  34. P. Peterka, J. Kanka, P. Honzátko, D. Káčik, Measurement of chromatic dispersion of microstructure optical fibers using interferometric method. Optica Applicata 38(2), 295–303 (2008)

    Google Scholar 

  35. P. Hlubina, M. Kadulova, P. Mergo, Chromatic dispersion measurement of holey fibres using a supercontinuum source and a dispersion balanced interferometer. Opt. Lasers Eng. 51(4), 421–425 (2013)

    Google Scholar 

  36. P. Hlubina, M. Szpulak, D. Ciprian, Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry. Opt. Express 15(18), 11073–11081 (2007)

    Article  ADS  Google Scholar 

  37. D. Hoh, R. Spittel, M. Jäger, H. Bartelt, Chromatic dispersion measurement of microstructured optical fibers for nonlinear applications, in Proceedings of DGaO, 113, A36 (2012)

    Google Scholar 

Download references

Acknowledgements

Research work at NIT presented in this paper was carried out within COST Action 299 “FIDES” and financially supported by Polish Ministry of Science and Higher Education as special research project COST/39/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Borzycki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borzycki, K., Schuster, K. (2016). Characterization of Photonic Crystal Fibers: Selected Methods and Experience. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics