Skip to main content

Interactions Between Corals and Their Symbiotic Algae

  • Chapter
Coral Reefs in the Anthropocene

Abstract

The mutualistic relationship between corals and their dinoflagellate endosymbionts is a key factor in the evolutionary success of hermatypic (reef building) corals. The endosymbiotic algae benefit corals in numerous ways that have contributed to the long term persistence of coral reefs over geologic time. In this chapter we review ecological and physiological aspects of the interactions between corals and their symbiotic algae in light of recent advances in our knowledge of the diversity of these symbionts. While the role of symbiont diversity in promoting coral survival during environmental bleaching events has been a major focus of recent research, its importance in other physiological and ecological contexts such as inorganic nutrient dynamics and photosynthetic carbon fluxes has received much less attention. We suggest that cost-benefit analysis is a useful approach to examine these symbioses in the context of environmental change and human impacts upon corals and coral reefs. Weighing the costs versus the benefits of the symbiotic association under specific environmental perturbations has potential for use as an indicator of the health of not only corals but indeed the whole coral reef ecosystem. Drastic changes in the stability of the symbiosis, evidenced by changes in the ratio of zooxanthellae to animal biomass in corals, may turn out to be a useful diagnostic indicator of stresses to coral reefs. By using new tools developed to assess the stability of the symbiosis, we may be better able to understand and predict the effects of future stressors and perturbations that threaten these beautiful reef ecosystems.

We dedicate this chapter to our late mentor and friend, Len Muscatine, who was a leading figure in research on algal-invertebrate symbiosis, and who played a major role in our professional development .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH (1983) The microcosm: a new tool for reef research. Coral Reefs 1:193–201

    Article  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC (2004) Symbiont diversity on coral reefs and its relationship to bleaching resistance and resilience. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer-Verlag, Berlin, pp 177–194

    Chapter  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  PubMed  Google Scholar 

  • Banaszak AT, LaJeunesse TD, Trench RK (2000) The synthesis of mycosporine-like amino acids (MAA’s) by cultured, symbiotic dinoflagellates. J Exp Mar Biol Ecol 249:219–233

    Article  CAS  Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Ecosystems of the world, 25: coral reefs. Elsevier, New York, pp 109–131

    Google Scholar 

  • Bartley R, Bainbridge ZT, Lewis SE, Kroon FJ, Wilkinson SN, Brodie JE, Silburne DM (2014) Relating sediment impacts on coral reefs to watershed sources, processes and management: a review. Sci Total Environ 468–469:1138–1153

    Article  PubMed  CAS  Google Scholar 

  • Borneman EH (2001) Aquarium corals: selection, husbandry, and natural history. Microcosm Ltd., Charlotte

    Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326

    Article  Google Scholar 

  • Buddemeier RW, Baker AC, Fautin DG et al (2004a) The adaptive hypothesis of bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 427–444

    Chapter  Google Scholar 

  • Buddemeier RW, Kleypas JA, Aronson RB (2004b) Coral reefs & global climate change: potential contributions of climate change to stresses on coral reef ecosystems. Pew Center on Global Climate Change, Arlington

    Google Scholar 

  • Chen CA, Wang J-T, Fang L-S, Yang Y-W (2005) Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan. Mar Ecol Prog Ser 295:113–121

    Article  Google Scholar 

  • Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a Cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Article  Google Scholar 

  • Coles SL, Brown BE (2003) Coral bleaching – capacity for acclimatization and adaptation. Adv Mar Biol 46:181–223

    Google Scholar 

  • Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Biol 43:209–216

    Article  CAS  Google Scholar 

  • Cook CB, D’Elia CF (1987) Are zooxanthellae ever nutrient-limited? Symbiosis 4:199–212

    Google Scholar 

  • Cumbo VR, Baird AH, van Oppen MJH (2013) The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32:111–120

    Article  Google Scholar 

  • Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:259–262

    Article  Google Scholar 

  • D’Elia CF, Cook CB (1988) Methylamine uptake by zooxanthellae-invertebrate symbioses: insights into host ammonium environment and nutrition. Limnol Oceanogr 33:1153–1165

    Article  Google Scholar 

  • D’Elia CF, Domotor SL, Webb KL (1983) Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar Biol 75:157–167

    Article  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunlap WC, Chalker BE (1986) Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs 5:155–159

    Article  CAS  Google Scholar 

  • Enríguez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceangr 50:1025–1032

    Article  Google Scholar 

  • Fagoonee I, Wilson HB, Hassell MP et al (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283:843–845

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population control in symbiotic corals. Bioscience 43:606–611

    Article  Google Scholar 

  • Fay SA, Weber MX (2012) The occurrence of mixed infections of Symbiodinium (Dinoflagellata) within individual hosts. J Phycol 48:1306–1316

    Article  Google Scholar 

  • Finney JC, Pettay DT, Sampayo EM et al (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263

    Article  PubMed  Google Scholar 

  • Fitt WK (1984) The role of chemosensory behavior of Symbiodinium microadriaticum, intermediate hosts, and host behavior in the infection of coelenterates and molluscs with zooxanthellae. Mar Biol 81:9–17

    Article  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Fitt WK, Gates RD, Hoegh-Guldberg O et al (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

    Article  Google Scholar 

  • Fransolet D, Roberty S, Plumier J-C (2012) Establishment of endosymbiosis: the case of cnidarians and Symbiodinium. J Exp Mar Biol Ecol 420:1–7

    Article  Google Scholar 

  • Gattuso J-P, Allemand D, Frankignolle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Glynn PW (1991) Coral reef bleaching in the 1980s and possible connections with global warming. Trends Ecol Evol 6:175–179

    Article  CAS  PubMed  Google Scholar 

  • Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191

    Article  Google Scholar 

  • Godinot C, Ferrier-Pagès C, Sikorski S et al (2013) Alkaline phosphatase activity of reef-building corals. Limnol Oceangr 58:227–234

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2007) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  Google Scholar 

  • Harland AD, Nganro NR (1990) Copper uptake by the sea anemone Anemonia viridis and the role of zooxanthellae in metal regulation. Mar Biol 104:297–301

    Article  CAS  Google Scholar 

  • Hatcher BG (1988) The primary productivity of coral reefs: a beggar’s banquet. Trends Ecol Evol 3:106–111

    Article  CAS  PubMed  Google Scholar 

  • Hatcher BG (1997) Organic production and decomposition. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 140–174

    Chapter  Google Scholar 

  • Heikoop JM, Dunn JJ, Risk MJ et al (1998) Relationship between light and the δ15N of coral tissue: examples from Jamaica and Zanzibar. Limnol Oceanogr 43:909–920

    Article  CAS  Google Scholar 

  • Hirose M, Kinzie RA III, Hidaka M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20:273–280

    Article  Google Scholar 

  • Hoegh-Guldberg O (1994) Population dynamics of symbiotic zooxanthellae in the coral Pocillopora damicornis exposed to elevated ammonium concentrations. Pac Sci 48:263–272

    CAS  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwat Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Williamson J (1999) Availability of two forms of nitrogen in the coral Pocillopora damicornis and its symbiotic zooxanthellae. Mar Biol 133:561–570

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth LL, Kinzie RA III, Lewis TD et al (2005) Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24:523

    Article  Google Scholar 

  • Iglesias-Prieto R, Beltrán VH, LaJeunesse TC et al (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B 271:1757–1763

    Article  CAS  Google Scholar 

  • Jaubert J, Gattuso J-P (1989) An integrated nitrifying-denitrifying biological system capable of purifying seawater in a closed circuit system Deuxieme Congres International d’Aquariologie. Bulletin de l’Institut Oceanographique, Monaco, No. special 5, Monaco, pp 101–106

    Google Scholar 

  • Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162

    Article  Google Scholar 

  • Kawaguti S (1953) Ammonium metabolism of the reef corals. Biol J Okayama Univ 1:171–176

    Google Scholar 

  • Kemp DW, Hernandez-Pech X, Iglesias-Prieto R et al (2014) Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol Oceangr 59:788–797

    Article  CAS  Google Scholar 

  • Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6:215–220

    Article  CAS  Google Scholar 

  • Knowlton N, Rohwer F (2004) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162(Suppl):S51–S62

    Google Scholar 

  • Kopp C, Pernice M, Domart-Coulon I et al (2013) Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4:e00052–00013

    PubMed Central  CAS  PubMed  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM et al (2010) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with Cnidaria. J Phycol 48:1380–1391

    Article  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP, Stat M, Gates RD (2013) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32:603–611

    Article  Google Scholar 

  • Lipschultz F, Cook CB (2002) Uptake and assimilation of 15N-ammonium by the symbiotic sea anemones Bartholomea annulata and Aiptasia pallida: conservation versus recycling of nitrogen. Mar Biol 140:489–502

    Article  CAS  Google Scholar 

  • Little AF, Van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–332

    Article  CAS  Google Scholar 

  • Mazel CH, Lesser MP, Gorbunov MY et al (2003) Green-fluorescent proteins in Caribbean corals. Limnol Oceangr 48:402–411

    Article  CAS  Google Scholar 

  • Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA et al (2009) The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4:e6364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miller DJ, Yellowlees D (1989) Inorganic nitrogen uptake by symbiotic marine cnidarians: a critical review. Proc R Soc Lond B 237:109–125

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) Worldwide delivery of river sediment to the oceans. J Geol 91:1–21

    Article  Google Scholar 

  • Muller-Parker G, Cook CB, D’Elia CF (1994) Elemental composition of the coral Pocillopora damicornis exposed to elevated seawater ammonium. Pac Sci 48:234–246

    CAS  Google Scholar 

  • Muscatine L, D’Elia CF (1978) The uptake, retention, and release of ammonium by reef corals. Limnol Oceanogr 23:725–734

    Article  CAS  Google Scholar 

  • Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition. II. δ15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–459

    Article  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. I. d13C of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193

    Article  Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N et al (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–897

    Article  CAS  PubMed  Google Scholar 

  • Pasternak Z, Bchar A, Abelson A, Achituv Y (2004) Initiation of symbiosis between the soft coral Heteroxenia fuscescens and its zooxanthellae. Mar Ecol Prog Ser 279:113–116

    Article  Google Scholar 

  • Rees TAV (1987) The green hydra symbiosis and ammonium I. The role of the host in ammonium assimilation and its possible regulatory significance. Proc R Soc Lond B 229:299–314

    Article  Google Scholar 

  • Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: comparisons among the Caribbean, the tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203

    Article  Google Scholar 

  • Roth MS, Deheyn DD (2013) Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci Rpt 3: doi:10.1038/srep01421

  • Rowan R (1991) Molecular systematics of symbiotic algae. J Phycol 27:661–666

    Article  CAS  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral/algal symbiosis. Proc Natl Acad Sci U S A 92:2850–2853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci U S A 89:3639–3643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salih A, Larkum AWD, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  PubMed  Google Scholar 

  • Santos SR, Coffroth MA (2003) Molecular evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol Bull 204:10–20

    Article  CAS  PubMed  Google Scholar 

  • Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39:487–505

    Article  CAS  PubMed  Google Scholar 

  • Smith SV (1981) Responses of Kaneohe Bay, Hawaii, to relaxation of sewage stress. In: Neilson BJ, Cronin LE (eds) Estuaries and nutrients. Humana Press, Clifton, pp 391–441

    Chapter  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43s

    Article  Google Scholar 

  • Stat M, Baker AC, Bourne DG et al (2012) Molecular delineation of species in the coral holobiont. Adv Mar Biol 63:1–65

    Article  PubMed  Google Scholar 

  • Swanson R, Hoegh-Guldberg O (1998) Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Mar Biol 131:83–93

    Article  CAS  Google Scholar 

  • Szmant AM, Ferrer LM, Fitzgerald LM (1990) Nitrogen excretion and O:N ratios in reef corals: evidence for conservation of nitrogen. Mar Biol 104:119–127

    Article  CAS  Google Scholar 

  • Takabayashi M, Adams LM, Pochon X, Gates RD (2012) Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai’i and Florida. Coral Reefs 31:157–167

    Article  Google Scholar 

  • Takahashi T (2004) Fate of industrial carbon dioxide. Science 305:352–353

    Article  CAS  PubMed  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C et al (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A 101:13531–13535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas FIM, Atkinson MJ (1997) Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceangr 42:81–88

    Article  CAS  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW et al (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Trench RK (1987) Dinoflagellates in non-parasitic symbioses. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 530–570

    Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbioses: a review. Endocyt Cell Res 9:135–175

    Google Scholar 

  • Veron JEN (2000) Corals of the world, V1. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Pichon M (1976) Scleractinia of Eastern Australia. Part I. Families Thamnesteriidae, Astrocoeniidae, Pocilloporidae. Austr Inst Mar Sci Monogr Ser I:1–86

    Google Scholar 

  • Wiedenmann J, D’Angelo C, Smith EG et al (2012) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:160–164

    Article  CAS  Google Scholar 

  • Wilkinson C (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville

    Google Scholar 

  • Wooldridge SA (2009) Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58:745–751

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2010) Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? Bioessays 32:615–625

    Article  CAS  PubMed  Google Scholar 

  • Yonge CM, Nicholls AG (1931) Studies on the physiology of corals. IV. The structure, distribution and physiology of zooxanthellae. Sci Rep Great Barrier Reef Exped 1:135–176

    Google Scholar 

Download references

Acknowledgements

We thank Katrina Helm for drafting Figs. 5.1, 5.2, and 5.3. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This is Contribution No. 1937 of the Harbor Branch Oceanographic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton B. Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Muller-Parker, G., D’Elia, C.F., Cook, C.B. (2015). Interactions Between Corals and Their Symbiotic Algae. In: Birkeland, C. (eds) Coral Reefs in the Anthropocene. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7249-5_5

Download citation

Publish with us

Policies and ethics