Skip to main content

The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication

  • Chapter
Nutrients and Eutrophication in Estuaries and Coastal Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 164))

Abstract

Current conventional wisdom argues that human-induced excesses in nutrient loadings to estuaries often stimulate ‘excess’ algal production leading to hypoxia, via bacterial pathways, and subsequent reduced recruitment/survival of finfish and shellfish. Why wouldn’t such elevated production stimulate more animal production, rather than less? In a three-year study of Long Island Sound, U.S.A., a multitude of variables were quantified along a west to east gradient, to address the above question via the hypothesis that different successes among planktonic species experiencing eutrophication alter planktonic food web structure away from traditional pathways to microbial loop dominated ones. Variables studied included: nutrient concentrations and ratios (i.e. NO2, NO3, NH4, DON, PON, PO4, Silicate, N/P and N/Si), phytoplankton, protozooplanktonic ciliate, zooplankton, heterotrophic nanoplankton (HNAN), photosynthetic nanoplankton (PNAN), size-fractionated chlorophyll, larval fish and bacterial concentrations and/or species composition, and bacterial growth rates (as frequency of dividing cells, FDC). Results indicated that although current nitrogen and other nutrient loadings into the estuary are much higher than past inputs (especially in western waters), the average concentration of dissolved inorganic nutrients is similar (though slightly higher) to past values. Relative proportioning among chemical species does vary from west to east, with NH4 and dissolved organic nitrogen (DON) at times more prevalent in the west, especially in bottom waters. Excess loadings of nitrogen and other nutrients into the estuary are converted to elevated biomass of both small (< 10 µm), and large (>20 µm) phytoplankton in the west. Slightly enhanced bacterial densities and growth rates shadow the elevated chlorophyll levels, with distinctive Sound-wide seasonal patterns that follow not total chlorophyll, but rather PNAN concentrations. HNAN concentrations also are elevated in the west, and likely influence bacterial dynamics. Species composition of phytoplankton routinely differ west to east. Inorganic N/P are routinely low (i.e. below Redfield ratios), especially in the west, while total dissolved N/P (i.e. including DON) are similar among stations and typically are significantly higher than Redfield ratios. Associated with bacterial and <10 µm chlorophyll enhancements to an elevated diversity of ciliate species in the west. Copepod biomass is extremely enhanced in the west, indicating that while stimulating the microbial loop, eutrophication is also enhancing the secondary production preferred by larval fish and gelatinous zooplankton. Larval fish diversity is down relative to the past, but shows little contemporaneous west/east variations. So, if adult fish populations are down, but larvae are not food limited, possibly toxicity, overfishing, and/or habitat destruction which prevent a healthy, normal system response to eutrophication are culpable. It is suggested that recipients of the excess copepod production are likely gelatinous zooplankton and benthic sediments, and that unused copepod ‘excess’ biomass likely significantly contributes to hypoxia.

New conventional wisdom: Excess nitrogen stimulates microbial loop and net phytoplankton biomass and production, which in turn stimulates microcrustasean biomass and production and fecal release, and both significantly fuel hypoxia and likely stimulate gelatinous zooplankton production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agawin, N. S. R., C. M. Duarte and S. Agusti, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591–600.

    Google Scholar 

  • Andersen, P. and H. M. Sprensen, 1986. Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters. Mar. Ecol. Prog. Ser. 33: 99–109.

    Google Scholar 

  • Anderson, G. C., 1965. Fractionation of phytoplankton communities off the Washington and Oregon coasts. Limnol. Oceanogr. 10: 477–480.

    Google Scholar 

  • Anderson, V. and P. Nival, 1989. Modeling of phytoplankton population dynamics in an enclosed water column. J. mar. biol. Ass. U.K. 69: 625–646.

    Google Scholar 

  • Anonymous. 1976–1983. Annual reports: monitoring the marine environment of Long Island Sound at Millstone nuclear power station. North East Utilities service co. Not published but may be photocopied on site.

    Google Scholar 

  • Atlas, R. M. and R. Bartha, 1987. Microbial Ecology. Benjamin/Cummings Pub. Co. Inc.: 533 pp.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Azam, F. and J. A. Fuhrman, 1984. Measurements of bacterioplankton growth in the sea and its regulation by environmental conditions. In Hobbie, J. and P. J. Williams (eds), Heterotrophic Activity in the Sea. Plenum Press. New York: 179–196.

    Google Scholar 

  • Banse, K., 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Falkowski, P. G. and A. D. Woodhead (eds), Primary Productivity and Geo-chemical Cycles in the Sea. Plenum press, New York: 550 pp.

    Google Scholar 

  • Bautista, B. and R. P. Harris, 1992. Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring bloom. Mar. Ecol. Prog. Ser. 82: 41–50.

    Google Scholar 

  • Bautista, B., R. P. Harris, P. R. G. Tranter and D. Harbour, 1992. In Situ copepod feeding and grazing rates during a spring bloom dominated by Phaeocvstis sp. in the English Channel. J. Plankton Res. 14(5): 691–703.

    Google Scholar 

  • Beeton, A. M., 1969. Changes in the environment and biota of the Great Lakes. In Eutrophication: Causes, consequences, correctives. Proceedings of a symposium, National Academy of Sciences: 150–187.

    Google Scholar 

  • Berggreen, U., B. Hansen and T. Kiprboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tond during development: implications for determination of copepod production. Mar. Biol. 99: 341–352.

    Google Scholar 

  • Bidigare, R. R., 1991. Marine particles: analysis and characterization. In Hurd, D. C. and D. W. Spencer (eds), Geophysical Monograph 63. American Geophysical Union: 119–123.

    Google Scholar 

  • Bird, D. F. and J. Kalif, 1986. Bacterial grazing by planktonic lake algae. Science 231: 493–494.

    PubMed  CAS  Google Scholar 

  • Bishop, J. W., 1967. Feeding rates of the ctenophore Mnemiopsis leich’i. Chesepeake Sci. 8: 259–264.

    Google Scholar 

  • Bprsheim, K. Y., 1984. Clearance rates of bacteria-sized particles by freshwater ciliates, measured with non-disperse fluorescent latex beads. Oecologia, Berlin 63: 286–288.

    Google Scholar 

  • Bettger, R. and D. Schnack, 1986. On the effect of formaldehyde fixation on the dry weight of copepods. Meersforschung 31: 141–152.

    Google Scholar 

  • Breteler, W. C. M and S. R. Gonzalez, 1988. Influence of temperature and food concentration on body size, weight and lipid content of two Calanoid copepod species. Hydrobiologia 167 /168: 201–210.

    Google Scholar 

  • Brown, C., W. J. Blogoslawski and L. P. Tettebach, 1988. Enumeration and identification of heterotrophic bacteria on oyster grounds of Long Island Sound. J. Shellfish Res. 7: 479–482.

    Google Scholar 

  • Butler, M. and H. G. Dam, 1994. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated bloom conditions: implications for vertical fluxes. Mar. Ecol. Prog. Ser. 114(1and2): 81–91.

    Google Scholar 

  • Capriulo, G. M., 1990. Feeding related ecology of marine protozoa In Capriulo, G. M. (ed.), Ecology of Marine Protozoa. Oxford University Press, New York: 186–259.

    Google Scholar 

  • Capriulo, G. M. and E. G. Carpenter, 1980. Grazing by 35–202 pm microzooplankton in Long Island Sound. Mar. Biol. 56: 319–326

    Google Scholar 

  • Capriulo, G. M. and E. J. Carpenter, 1983. Abundance, species composition and feeding impact of tintinnid microzooplankton in central Long Island Sound. Mar. Ecol. Prog. Ser. 10: 277–288.

    Google Scholar 

  • Capriulo, G. M. and D. V. Ninivaggi, 1982. A comparison of the feeding activities of field collected tintinnids and copepods fed with identical natural particle assemblages. Mar. Pel. Protozoa Microzoopl. Ecol. 58: 325–334.

    Google Scholar 

  • Capriulo, G. M., R. A. Schnieder, and B. L. Dexter, 1988. Differential growth of Euplotes vannus fed fragmented versus unfragmented chains of Skeletonema costatom. Mar. Ecol. Prog. Ser. 47: 205–209.

    Google Scholar 

  • Capriulo, G. M., E. B. Sherr and B. F. Sherr, 1991. Trophic behaviour and related community feeding activities of heterotrophic marine protists. In Reid, P. C. et al. (eds), Protozoa and their Role in Marine Procceses. NATO ASI series, Springer-Verlag: 219–265.

    Google Scholar 

  • Capriulo, G.M., R. Troy, M. Morales, K. Beddows, H. Budrock, G. Wikfors and C. Yarish, 1993. Possible eutrophication-related enhancement of the microbial loop in Long Island Sound and consequences for shellfish. J. of Shellfish Research 12 (1): 107.

    Google Scholar 

  • Capriulo, G.M., 1997. Mechanisms of hypoxia development and future research needs, Long Island Sound Conference Panel Session Summary. Proceedings of the 3rd Long Island Sound Research Conference. Connecticut Sea Grant Publication CTSG97–08, pp 86–88.

    Google Scholar 

  • Caron, D. A. and J. Goldman, 1990. Protozoan nutrient regeneration. In Capriulo, G. M. (ed.), The Ecology of Marine Protozoa. Oxford University Press, N.Y.: 283–306.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, and J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. Bioscience 35 (10): 634–639.

    Google Scholar 

  • Conover, R. J., 1956. Biology of Acartia tonca and Acartia clausi. In Oceanography of Long Island Sound. Bulletin of the Bingham Oceanographic Collection. Peabody Museum of Natural History, Yale University. 15: 156–233.

    Google Scholar 

  • Conover R. J., 1978. Assimilation of organic matter by zooplankton. Limnol. Oceanogr. 11: 338–345.

    Google Scholar 

  • Conover, R. J. and M. E. Huntley, 1980. General rules of grazing in pelagic ecosystems. In Falkowski, P. (ed.), Primary Production in the Sea. Plenum Press, New York: 461–485.

    Google Scholar 

  • Cowles. T. J., R. J. Olson and S. W. Chisholm, 1988. Food selection by copepods: discrimination on the basis of food quality. Mar. Biol. 100: 41–49.

    Google Scholar 

  • Cushing, D. H., 1975. Marine Ecology and Fisheries. Cambridge Univ. Press: 278 pp.

    Google Scholar 

  • Dam, H. G.. 1989. The dynamics of copepod grazing in Long Island Sound. Doctoral dissertation. State Univ. of New York.

    Google Scholar 

  • Dam, H. G. and W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. J. exp. mar. Biol. Ecol. 123: 1–14.

    Google Scholar 

  • Dam, H. G. and W. T. Peterson, 1991. In situ feeding behavior of the copepod Temora longicornis: effects of seasonal changes in chlorophyll size fractions and female size. Mar. Ecol. Prog. Ser. 71: 113–123.

    Google Scholar 

  • Dam, H. G., W. T. Peterson and D. C. Bellantoni, 1994. Seasonal feeding and fecundity of the calanoid copepod Acartia tonsa in Long Island Sound: is omnivory important to egg production? In Ferrari, F. D. and B. P. Bradley (eds), Ecology and Morphology of Copepods. Hydrobiologia 292/293: 191–199.

    Google Scholar 

  • Deevey, G. B., 1956. Zooplankton. In Oceanography of Long Island Sound. Bulletin of the Bingham Oceanographic Collection. Peabody Museum of Natural History, Yale University. 15: 113–155.

    Google Scholar 

  • de Jonge, V. N., W. Boynton, C. F. D’Elia, R. Elmgren and B. L. Welsh, 1995. Responses to developements in eutrophication in four different North Atlantic estuarine systems. In Dyer, K. R. and R. J. Orth (eds), Changes in Fluxes in Estuaries. Olsen and Olsen International Symposium Series: I79–195.

    Google Scholar 

  • Demers. S.. L. Legendre and J. C. Therriault, 1986. Phytoplankton responses to vertical mixing. In Bowman, J.. M. Yentsch and W. T. Peterson (eds), Lecture Notes on Coastal and Estuarine Studies. Vol. 17. Tidal Mixing and Plankton Dynamics. Springer-Verlag, Berlin. Heidelberg.

    Google Scholar 

  • Dolan, J. R.. 1991. Microphagous ciliates in mesohaline Chesepeake Bay waters: estimates of growth rates and consumption by copepods. Mar. Biol. I I I: 303–309.

    Google Scholar 

  • Dorsey, T. E.. W. McDonald and O. A. Roels, 1977. A heated biuretFolin protien assay which gives equal absorbence with different proteins. Anal. Biochem 78: 156–164.

    Google Scholar 

  • Dorsey, T. E., W. McDonald and O. A. Roels, 1978. Measurements of phytoplankton protein content with the heated biuret-Folinassay. J. Phycol. 14: 167–171.

    Google Scholar 

  • Ducklow, H. W., 1983. Production and fate of bacteria in the sea. Bioscience 33 (8): 494–499.

    Google Scholar 

  • Durbin, E. G. and A. G. Durbin, 1978. Length and wieght relationships of Acartia clausi from Narragansett Bay. Rhode Island. Limnol. Oceanogr. 23: 958–969.

    Google Scholar 

  • Durbin et al., 1992. Body size and egg production in the marine copepod Acartia hudsonica during a winter-spring bloom in Narragansett Bay. Limnol. Oceanogr. 37 (2): 342–360.

    Google Scholar 

  • Egge, J. K. and D. L. Aksnes, 1992. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Progr. Ser. 83: 281–299.

    Google Scholar 

  • EPA, 1994. The Long Island Sound Study: The Comprehensive Conservation and Management Plan. EPA Publication of the Long Island Sound Study. Long Island Sound Office of the U.S. Environmental Protection Agency, State University of New York at Stony Brook, New York: 168 pp.

    Google Scholar 

  • Fenchel, T., 1967. The ecology of marine microbenthos. The quantitative importance of ciliates as compared with metazoans in various types of sediment. Ophelia 4: I2I-I37.

    Google Scholar 

  • Fenchel, T., 1968. The ecology of marine microbenthos. 2. The food of marine benthic ciliates. Ophelia 5: 73–121.

    Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. 4: Quantitative occurrence and importance of bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T. and B. J. Finlay, 1983. Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9: 99–122.

    Google Scholar 

  • Fenchel, T., L. D. Kristensen and L. Rasmussen. 1990. Water column anoxia: vertical zonation of planktonic protozoa. Mar. Ecol. Prog. Ser. 62: 1–10.

    Google Scholar 

  • Fisher, R. A., 1950. The significance of deviations from expectation in a Poisson series. Biometrics. I: 17–24.

    Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17 (6): 805–815.

    Google Scholar 

  • Fuhram, J. A., J. W. Ammerman and F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: distribution. activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.

    Google Scholar 

  • Fuhram, J. A. and F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation of field results. Mar. Biol. 66: 109–120.

    Google Scholar 

  • Fumas, M. J., 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankton Res. 12: 1117–115I.

    Google Scholar 

  • Gast, V., 1985. Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar. Ecol. Prog. Ser. 22: 107–120.

    Google Scholar 

  • Geider, R. J., T. Platt and J. A. Raven, 1986. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar. Ecol. Prog. Ser. 30: 93–104.

    Google Scholar 

  • Gifford, D. J. and M. J. Dagg, 1988. Feeding of the estuarine copepod Amain torso: Carnivory vs.herbivory in natural microplankto assemblages. In Paffenhoefer, G. A. and H. J. Price (eds), Zooplankton Behavior Symposium. Savannah, GA (U.S.A.). 13–16 Apr 1987. Bull. mar. Sci. 43(3): 458–468.

    Google Scholar 

  • Glibert, P. M., C. A. Miller, C. Garside, M. R. Roman and G. B. McManus. 1992. NH4+ regeneration and grazing: interdependent processes in size fractionated 15NH4+ experiments. Mar. Ecol. Prog. Ser. 82: 65–74.

    Google Scholar 

  • Goldman, J. C., D. A. Caron, O. K. Andersen and M. R. Den-nett, 1985. Nutrient cycling in a microflagellate food chaIn 1. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24: 231–242.

    Google Scholar 

  • Greve, W. and T. R. Parsons, 1977. Photosynthesis and fish production: hypothetical effects of climate change and pollution. Helgolander wiss. Meeresunters. 30: 666–672.

    Google Scholar 

  • Haas, L. W. and K. L. Webb, 1979. Nutritional mode of several non-pigmented micro-flagellates from the York River estuary, Virginia. J. exp. mar. Biol. Ecol. 39: 125–134.

    Google Scholar 

  • Hagstrom, A.. 1984. Aquatic bacteria: measurements and significance of growth. In Klug. M. J. and C. A. Reddy (eds), Current Perspectives in Microbiology. American Society for Microbiology, Washington, D.C.: 495–501.

    Google Scholar 

  • Hagstrgm, A., U. Larsson. P. Horstedt and S. Norwalk, 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Env. Microbiol. 37: 805–812.

    Google Scholar 

  • Hansen, F. C.. M. Reckermann, W. C. M. Klein Breteler and R. Riegman, 1993. Phaeocvstis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser. 102: 51–57.

    Google Scholar 

  • Hardy. C. D., 1970. Hydrographie data report: Long Island Sound -1969. Technical Report No. 4. Marine Sciences Research Center. State University of New York. Stony Brook, NY. 130 pp.

    Google Scholar 

  • Harris, E., 1959. The nitrogen cycle in Long Island Sound. Bulletin of the Bingham Oceanographic Collection. Peabody Museum of Natural History. Yale Univ. 17: 31–65.

    Google Scholar 

  • Harris, E. and G. A. Riley, 1956. Chemical composition of the plankton. In Oceanography of Long Island Sound. Bull. Bingham Oceanogr. Collection, Peabody Museum of Natural History, Yale University 15: 315–323.

    Google Scholar 

  • Harris. G. P., 1986. Phytoplankton Ecology - Structure, Function and Fluctuation. Chapman and Hall, N.Y.

    Google Scholar 

  • Harrison. P. J.. D. H. Turpin, P. K. Bienfang and C. O. Davis, 1986. Sinking as a factor affecting phytoplankton species succession: the use of selective loss, semi-continuous cultures. J. exp. mar. Biol. Ecol. 99: 19–30.

    Google Scholar 

  • Robbie, J. E., R. J. Daley and S. Jasper, 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Hoch, M. P. and D. L. Kirchman, 1993. Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Mar. Ecol. Prog. Ser. 98: 283–295.

    Google Scholar 

  • Howarth, R. W. and J. J. Cole, 1985. Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229: 653–655.

    PubMed  CAS  Google Scholar 

  • Hulburt, E. M.,1988. Diversity, equilibrium and adaptation as related by equivalence in the oceanic phytoplankton. Biol. Oceanogr. 6: 1–21.

    Google Scholar 

  • Hunter, M. S. and P. W. Price, 1992. Playing chutes and ladders: heterogeniety and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73 (3): 724–732.

    Google Scholar 

  • Huntley, M. and C. Boyd, 1984. Food limited growth of marine zooplankton. Am. Nat. 124(4): 455–478.

    Google Scholar 

  • Ikeda, T., 1974. Nutritional ecology of marine zooplankton. Mem. fac. fish. Hokkaido univ. 22: 1–97.

    Google Scholar 

  • Ikeda, T., 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 85: 1–11.

    Google Scholar 

  • Johannes, R. E., 1964. Phosphorus excretion and body size in marine animals: microzooplankton and nutrient regeneration. Science 146: 923–924.

    PubMed  CAS  Google Scholar 

  • Johannes, R. E., 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10: 434–442.

    Google Scholar 

  • Johnson, J. M., 1993. The recycling of inorganic nutrients in the upper water column during seasonal stratification in western Long Island Sound. M.S. thesis, Univ. CT.

    Google Scholar 

  • Johnson, P. W. and J. McN. Sieburth, 1979. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928–935.

    Google Scholar 

  • Johnson, P. W. and J. McN. Sieburth, 1982. In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18: 318–327.

    Google Scholar 

  • Johnson, T. D., 1987. Growth and regulation of the population of Parvocalanus crassirostris (Copepoda: Calanoida) in Long Island Sound, New York. Doctoral dissertation, State University of New York at Stony Brook.

    Google Scholar 

  • Jones, R., 1976. Growth of fishes. In Cushing, D. H. and J. J. Walsh (eds), Ecology of the Seas. Blackwell Scientific. Oxford: 251–279.

    Google Scholar 

  • Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry and B. W. Frost, 1989. Closing the microbial loop: dissolve carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep Sea Res. 36 (4): 483–495.

    CAS  Google Scholar 

  • Ketchum, B. H., 1969. Eutrophication of estuaries. In Eutrophication: Causes. consequences, correctives. Proceedings of a symposium, National Academy of Sciences: 197–209.

    Google Scholar 

  • KiOrboe, T., 1989. Phytoplankton growth rate and nitrogen content: implications for feeding and fecundity in a herbivorous copepod. Mar. Ecol. Prog. Ser. 55: 229–234.

    Google Scholar 

  • Kiorboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. In Baxter, J. H. S. and A. J. Southward (eds), Advances in Marine Biology. Academic Press ( 29 ): 2–61.

    Google Scholar 

  • Kiorboe, T., P. Munk. K. Richardson, V. Christensen and H. Paulsen, 1988. Plankton dynamics and larval herring growth, drift, and survival in a frontal area. Mar. Ecol. Prog. Ser. 44: 205–219.

    Google Scholar 

  • Kiorboe, T., F. Mohlenberg, and K. Hamburger, 1985. Bioenergetics of the planktonic copepod Acartia topa: relation between feeding, egg production and respiration, and compostion of specific dynamic action. Mar. Ecol. Prog. Ser. 26: 85–97.

    Google Scholar 

  • KiOrboe, T. and T. G. Nielsen, 1994. Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39(3): 493–507.

    Google Scholar 

  • Kirchman, D. L., H. W. Ducklow and R. Mitchell, 1982. Estimates of bacterial growth from changes in uptake rate and biomass. Appl. Envir. Microbiol. 44: 1296–1307.

    Google Scholar 

  • Klein-Breteler, W. C. and S. R. Gonzalez. 1988. Influence of temperature and food concentration on body size, and lipid content of two calanoid copepod species. Hydrobiologia 167 /168: 201–210.

    Google Scholar 

  • Kremer, P., 1979. Predation by the ctenophore Mneniiopsis leidvi in Narragansset Bay, Rhode Island. Estuaries 2: 97–105.

    Google Scholar 

  • Larsson, U. and A. Hagstrßm, 1982. Fractionated phytoplankton primary production, exudate release, and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70.

    Google Scholar 

  • Lasker, R. (ed.), 1981. Marine Fish Larvae: Morphology, Ecology and Relation to Fisheries. Washington Sea Grant Program, Univ. of Washington Press, Seattle: 131 pp.

    Google Scholar 

  • Lee, J. J., E. B. Small, D. H. Lynn and E.C. Bovee, 1985. Some techniques for collecting, cultivating and observing protozoa. In Lee, J. J., S. H. Hunter and E. C. Bovee (eds). An Illustrated Guide to the Protozoa. Allen Press, Lawrence, Kansas: 629 pp.

    Google Scholar 

  • Legendre, L. and J. Le Févre, 1989. Hydrodynamical singularities as controls of recycled versus export production in oceans. In Berger, W. H. V. S. Smetacek and G. Wefer (eds), Productivity of the Ocean: Present and Past. John Wiley and Sons Limited: 49–63.

    Google Scholar 

  • Lessard. E. J. and E. Swift, 1985. Species specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Mar. Biol. 87: 289–296.

    Google Scholar 

  • Lignell, R., A. S. Heiskanen, H. Kuosa, K. Gundersen, R. KuuppoLeinikki, R. Pajuniemi, A. Uitto, 1993. Fate of a phytoplankton spring bloom in the planktonic food web in the northern Baltic. Mar. Ecol. Prog. Ser. 94: 239–252.

    Google Scholar 

  • Long Island Sound Study Annual Report, 1988. U.S. Environmental Protection Agency. Region 2. U.S. Government Printing Office: 36 pp.

    Google Scholar 

  • Long Island Sound Study Annual Report, 1989/1990. U.S. Environmental Protection Agency, Region 2. U.S. Government Printing Office: 37 pp.

    Google Scholar 

  • Long Island Sound Study Annual Report. and Interim Actions for Hypoxia Management. 1990. U.S. Environmental Protection Agency, Region 2. U.S. Government Printing Office.

    Google Scholar 

  • Longhurst, A. R., A. W. Bedo, W. G. Harrison. E. J. Head and D. D. Sameto, 1990. Verical flux of respiratory carbon by diel migrant biota. Deep Sea Res. 37: 685–694.

    Google Scholar 

  • Loyd, M., 1967. `Mean Crowding’. J. anim. Ecol. 36: 1–30.

    Google Scholar 

  • Lund. J. W. G., 1969. Phytoplankton. In Eutrophication: Causes, Consequences, Correctives. Proceedings of a Symposium, National Academy of Sciences: 306–330.

    Google Scholar 

  • Lutz, P. E.. 1986. Invertebrate zoology. Addison Wesley: 734 pp.

    Google Scholar 

  • Malone. T. C.. 1971. The relative importance of nanoplankton and netplankton as primary producers in tropical oceanic and neritic phytoplankton communities. Limnol. Oceanogr. 16: 633–639.

    Google Scholar 

  • Malvin, G. M. and S. C. Wood. 1992. Behavioral hypothermia and survival of hypoxic protozoans Paramecium caudatum. Science 255: 1423–1425.

    PubMed  CAS  Google Scholar 

  • Mann. K. H., 1982. Ecology of Coastal Waters: A Systems Approach. University of California Press: 321 pp.

    Google Scholar 

  • Mann, K. H. and J. R. N. Lazier. 1991. Dynamics of Marine Ecosystems. Blackwell Scientific Publications: 475 pp.

    Google Scholar 

  • Mantoura, R. F., B. Li, W. Gieskes, H. Maske and R. Bidigare, 1990. In Core Measurements Protocols, report no. 6, chapter 9: 17–19.

    Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1 (4): 493–509.

    Google Scholar 

  • McManus, G. B. and J. A. Fuhrman, 1986. Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420–426.

    Google Scholar 

  • McManus, G. B. and J. A. Fuhrman, 1988. Clearance of bacteria sized particles by natural populations of nanoplankton in the Chesapeake bay outflow plume. Mar. Ecol. Prog. Ser. 42: 199–206.

    Google Scholar 

  • McQueen, D. J., M. R. S Johannes, J. R. Post, T. J. Stewart and D. R. S. Lean, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59(3): 289–309.

    Google Scholar 

  • Montagnes, D. J. S., D. H. Lynn, J. C. Raff and W. D. Taylor, 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoales, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21–30.

    Google Scholar 

  • Monteleone, D. M., W. T. Peterson and G. C. Williams, 1987. Interannual variations in density of sand lance, Armnodvtes americanrs, larvae in Long Island Sound, 1951–1983. Estuaries, 10: 246–254.

    Google Scholar 

  • Morris, I. And H. Glover, 1981. Physiology of photosynthesis by marine coccoid cyanobacteria - some ecological implications. Limnol. Oceanogr. 26: 957–961.

    Google Scholar 

  • Mullin, M. M., 1963. Some factors affecting the feeding of marine copepods of the genus Calanus. Limnol. Oceanogr. 17: 805–815.

    Google Scholar 

  • Murdoch, W. W., R. M. Nisbet, E. McCauly, A. M. DeRoos and W. S. C. Gurney, 1998. Plankton abundance and dynamics across nutrient levels: test of hypothesis. Ecology, 79: 1339–1356.

    Google Scholar 

  • Ng, S. J., M. I. Lucas, W. T. Peterson, P. C. Brown, L. Hutchings, and B. A. Mitchell-Innes, 1993. Dynamics of bacterioplankton, phytoplankton and mesozooplankton communities during the develpment of an upwelling plume in the southern Benguela. Mar. Ecol. Prog. Ser. 100: 35–53.

    Google Scholar 

  • Nielsen, T. G., B. Lokkegaard, K. Richardson, F. B. Petersen and L. Hansen, 1993. Structure of plankton communities in the Dogger Bank area (North Sea) during a stratified situation. Mar. Ecol. Prog. Ser. 95: 115–131.

    Google Scholar 

  • Nixon, W. S. and M. Q. Pilson, 1983. Nitrogen in Estuarine and coastal ecosystems. In Nitrogen in the marine environment. Academic Press Inc.: 565–648.

    Google Scholar 

  • O’Connors, H. B., L. F. Small, and R. L. Donaghay, 1976. Particle size modification by two size classes of the estuarine copepod Acartia clausi. Limnol. Oceanogr. 21: 300–308.

    Google Scholar 

  • O’Connors, H. B., D. C. Biggs, and D. V. Ninivaggi, 1980. Particlesize-dependent maximum grazing rates for Temora longicornis fed natural particle assemblages. Mar. Biol. 56: 65–70.

    Google Scholar 

  • O’Connors, H. B., C. F. Wurster, C. D. Powers and R. G. Rowland, 1978. Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size and production. Science 201: 737–739.

    PubMed  Google Scholar 

  • Olson, R. L., 1975. Masters Thesis, State Univ. of New York at Stony Brook, N. Y.

    Google Scholar 

  • Omori, M. and T. Ikeda. 1984. Methods in Marine Zooplankton Ecology. John Wiley and Sons. 332 pp.

    Google Scholar 

  • Painting, S. J., M. I. Lucas. W. T. Peterson, R C. Brown, L. Hutchings and B. A. Mitchell-Innes. 1993. Dynamics of bacterioplankton, phytoplankton, and mesoplankton communities during the development of an upwelling plume in the southern Benguela. Mar. Ecol. Prog. Ser. 100: 35–53.

    Google Scholar 

  • Parsons, T. R., Y. Maita and C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford: 173 pp.

    Google Scholar 

  • Pechenick, J. A., 1985. Biology of Invertebrates. Prindle, Weber, and Schmidt: 513 pp.

    Google Scholar 

  • Peduzzi, G. J., 1992. Zooplankton activity fueling the microbial loop: differential growth response of bacteria from oligotrophic and eutrophic waters. Limnol. Oceanogr. 37 (5): 1087–1092.

    CAS  Google Scholar 

  • Peterson, W. T., 1985. Abundance, age structure and in situ egg production rates of the copepod Temora longicornis in Long Island Sound, New York. Bull. mar. Sci. 37: 726–738.

    Google Scholar 

  • Peterson. W. T.. 1986. The effects of seasonal variation in stratification on plankton dynamics in Long Island Sound. In Bowman, J., M. Yentch and W. T. Peterson (eds), Lecture Notes on Coastal and Estuarine Studies, Vol. 17, Tidal Mixing and Plankton Dynamics. Springer-Verlag: 297–320.

    Google Scholar 

  • Peterson, W. T. and D. C. Bellantoni, 1987. Relationships between water column stratification, phytoplankton cell size and copepod fecundity in Long Island Sound and off central Chile. S. Afr. J. mar. Sci. 5: 411–421.

    Google Scholar 

  • Peterson. W. T.. L. Hutchings, J. A. Hugget and J. L. Largier, 1992. Anchovy spawning in relation to the biomass and the replenishment rate of their copepod prey on the Western Agulhas Bank. In Payne, A. I. L., K. H. Mann. K. H. Brink and R. Hillborn (eds), Benguela Trophic Functioning. South African J. mar. Sci. 12: 487–500.

    Google Scholar 

  • Pomeroy. L. R., 1974. Significance of microorganisms in carbon and energy flow in marine ecosystems. In Klug, M. J. and C. A. Reddy (eds), Current Perspectives in Microbial Ecology. Amer. Soc. Microbiol., Washington, D. C.: 405 pp.

    Google Scholar 

  • Power, M. E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology 73 (3) 733–746.

    Google Scholar 

  • Price, H. J., G. A. Paffenhoefer and J. R. Strickler, 1983. Modes of cell capture in calanoid copepods. Limnol. Oceanogr. 28 (1): 116–123.

    Google Scholar 

  • Price, H. J. and G. A. Paffenhoefer, 1984. Effects of feeding experience in the copepod Eucala nrs pileatus: A cinematographic study. Mar. Biol. 84 (1): 35–40.

    Google Scholar 

  • Proctor, L. M. and J. A. Fuhram, 1990. Viral mortality of marine bacteria and cyanobacteria. Nature, 343: 60–62.

    Google Scholar 

  • Purcell, J. E., J. R. White and M. R. Roman. 1994. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesepeake Bay. Limnol. Oceanogr. 39 (2): 263–278.

    Google Scholar 

  • Redfield, A. C., 1934. On the proportion of organic derivatives in sea water and their relation to the composition of plankton. James Johnston Memorial Volume. Univ. Press of Liverpool: 176–192.

    Google Scholar 

  • Riley. G. A., 1955. Review of the oceanography of Long Island Sound. In Papers in Marine biology and oceanography Pergamaon Press Ltd., London: 224–238.

    Google Scholar 

  • Riley, G. A., 1956a. Physical oceanography. In Oceanography of Long Island Sound. Bulletin of the Bingham Oceanographic collection. Peabody Museum of Natural History, Yale University. 15: 15–46.

    Google Scholar 

  • Riley. G. A., 1956b. Production and utilization of organic matter. In Oceanography of Long Island Sound. Bulletin of the Bingham Oceanographic Collection. Peabody Museum of Natural History, Yale University 15: 324–343.

    Google Scholar 

  • Riley, G. A.. 1959. Oceanography of Long Island Sound. 19541955. In Oceanography of Long Island Sound and Guide for Preparing Figures. Bulletin of the Bingham Oceanographic Collection. Peabody Museum of Natural History, Yale University 17: 9–29.

    Google Scholar 

  • Riley, G. A., 1969. The plankton of estuaries. In Lauff, G. (ed.), Estuaries. A.A.A.S. publication no. 83: 757 pp.

    Google Scholar 

  • Riley. G. A., S. Conover, G. Deevey, R. Conover, S. B. Wheatland, E. Harris and H. L. Sanders, 1956. Oceanography of Long Island Sound 1952–1954. Bulletin of the Bingham Oceanographic Collection. V. 15. Peabody Museum of Natural History, Yale University: 414 pp.

    Google Scholar 

  • Riley, G. A. E. Harris, H. M. Schurr, P. J. Wangersky, S. W. Richards and R. W. Covill, 1959. Oceanography of Long Island Sound and Guide for Preparing Figures. Bulletin of the Bingham Oceanographic Collection. V. 17. Peabody Museum of Natural History, Yale University: 153 pp.

    Google Scholar 

  • Riley, G. A. and S. M. Conover, 1956. Chemical Oceanography. In Oceanography of Long Island Sound. Bulletin of the Bingham Oceanographic Collection. Peabody Museum of Natural History, Yale University 15: 47–61.

    Google Scholar 

  • Riley, G. A. and S. M. Conover. 1967. Phtytoplankton of Long Island Sound 1954–1955. Bulletin of the Bingham Oceanographic Collection. Peabody Museum of Natural History, Yale University 19: 5–33.

    Google Scholar 

  • Rohlich, G. A.. 1969. Introduction. summary, and recommendations. In Eutrophication: Causes. consequences, Correctives. Proceedings of a symposium. National Academy of Sciences: 661 pp.

    Google Scholar 

  • Rose, M., 1933. Faune de France 26. copepods pelagiques. Federation Francaise des Societes de Sciences Naturelles: 374 pp.

    Google Scholar 

  • Ryther, J. H. and W. M. Dunstan. 1971. Nitrogen, Phosphorus. and eutrophication in the coastal marine environment. Science 13: 1008–1013.

    Google Scholar 

  • Sakshaug, E., K. Andersen. S. Myklestad and S. Olsen. 1983. Nutrient status of phtoplankton communities in Norwegian waters (marine, brackish and fresh) as revealed by their chemical composition. J. Plankon Res. 5: 175–196.

    Google Scholar 

  • Sakshaug, E. and Y. Olsen, 1986. Nutrient status of phytoplankton blooms in Norwegian waters and algal strategies for nutrient competition. Can. J. Fish. aquat. Sci. 43: 389–396.

    Google Scholar 

  • Sanders, J. G.. S. J. Cibik, C. F. D’Elia and W. R. Boynton, 1987. Nutrient enrichment studies in a coastal plain estuary: changes in phytoplankton species composition. Can. J. Fish. aquat. Sci. 44: 83–90.

    Google Scholar 

  • Sanders, R. W. and K. G. Porter, 1988. Phagotrophic phytoflagellates. In Marshall, K. C. (ed.), Advances in Microbial Ecology. V. 10. Plenum Pub. Corp.

    Google Scholar 

  • Sanders, R. W., D. A. Caron and V.-G. Berninger, 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1–14.

    Google Scholar 

  • Sars, G. O., 1903. An Account of the Crustacea of Norway, Vol. IV, Copepocla calanoida. Bergen Museum: 169 pp.

    Google Scholar 

  • Schnitzer, M. B., 1979. Vertical stability and the distribution of phytoplankton in Long Island Sound. Masters thesis, SUNY, Stoney Brook.

    Google Scholar 

  • Sharp, J. H., A. C. Frake and G. B. Hillier, 1982. Modeling nutrient regeneration in the open ocean with an aquarium system. Mar. Ecol. Prog. Ser. 8: 15–23.

    Google Scholar 

  • Sherr, E. B. and B. F. Sherr, 1987. High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Google Scholar 

  • Sherr, E. and B. F. Sherr, 1988. Role of microbes in pelagic food webs: A revised concept. Limnol. Oceanogr. 33 (5): 1225–1227.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr and G. A. Paffenhofer, 1986. Phagotrophic protozoa as food for metazoans: a `missing’ trophic link in marine pelagic food webs. Mar. Microbial food webs I: 61–80.

    Google Scholar 

  • Sherr, E. B., D. A. Caron and B. F. Sherr, 1994. Staining of heterotrophic protists for visualization via epifluorescence microscopy. In Kemp, P. F., B. F. Sherr, E. B. Sherr and J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL., U.S.A.: 213–228.

    Google Scholar 

  • Smetacek, V. S., 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1–11.

    Google Scholar 

  • Snedecor, G. W. and G. Cochran, 1967. Statistical Methods. The Iowa State Univ. Press: 593 pp.

    Google Scholar 

  • Sondergaard, M., L. M. Jensen and G. Aertebjerg, 1991. Picoalgae in Danish coastal waters during summer stratification. Mar. Ecol. Prog. Ser. 79: 139–149.

    Google Scholar 

  • Strickland. J. D. H. and T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis. Fisheries Res. Board of Canada: 310 pp.

    Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons, 1977. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Bd Can. 167: 1–310.

    Google Scholar 

  • Strong, D. R., 1992. Are trophic cascades all wet? Differentiation and donor control in speciose ecosystems. Ecology 73 (3): 747–754.

    Google Scholar 

  • Tettelbach, S. T., L. M. Petti and W. J. Blogoslawski, 1984. Survey of Vibrio associated with a New Haven Harbor Shellfish bed, emphasizing recovery of larval oyster pathogens. In Colwell, R. R. (ed.), Vibrios in the Environment. John Wiley and Sons. New York.

    Google Scholar 

  • Thigstad, T. F. and F. Rassoulzadegan, 1999. Conceptual models for the biogeochemical role of the photic zone microbial food web, with particular reference to the Mediterranean Sea. Prog. Oceanogr. 44: 271–286.

    Google Scholar 

  • Thomas, W. H. and D. L. R. Seibert, 1977. Effects of cooper on the dominance and diversity of algae: controlled ecosystem pollution experiment. Bull. mar. Sci. 27: 23–33.

    Google Scholar 

  • Tilman, D., S. S. Kilham and P. Kilham, 1982. Phytoplankton Community Ecology: The Role of Limiting Nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Google Scholar 

  • Tilman, D.. R. Kiesling, R. Sterner, S. S. Kilham and F. A. Johnson. 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus. silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.

    Google Scholar 

  • Todd, C. D. and M. S. Laverick, 1991. Coastal Marine Zooplankton: a Practical Manual for Students. Cambridge Univ. Press: 106 pp.

    Google Scholar 

  • UNESCO. 1968. Zooplankton sampling: monographs on oceanographic methodology. 2. United Nations Educational, Scientific, and Cultural Organization Press, Paris, France: 174 pp.

    Google Scholar 

  • Uye, S., 1994. Replacement of large copepods by small ones with eutrophication of embayments: causes and consequences. Hydrobiologia 292 /293: 513–519.

    Google Scholar 

  • Uye, S. and N. Shibuno, 1992. Reproductive biology of the planktonic copepod Paracalanus sp. in the Inland Sea of Japan. J. Plankton Res. 14 (3): 343–358.

    Google Scholar 

  • Valle-Levinson, A. and R. A. Wilson. 1984. Effects of sill processes and tidal forcing on exchange in eastern Long Island Sound. J. Geophysical Res. 99: 12 667–12 681.

    Google Scholar 

  • Valliela, I., 1984. Marine Ecological Procceses. Springer-Verlag: 546 pp.

    Google Scholar 

  • Vanderploeg, H. A.. 1990. Feeding mechanisms and particle selection in suspension feeding zooplankton. In Wotton, R. S. (ed.), The Biology of Particles in Aquatic Systems. CRC Press.

    Google Scholar 

  • Van Donk, E. and S. S. Kilham, 1990. Temperature effects on silicon-and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol. 26: 40–50.

    Google Scholar 

  • Verheye, H. M., L. Hutchings, J. A. Huggets and S. J. Painting, 1992. Mesoplankton dynamics in the Benguela ecosystem, with emphasis on the herbivorous copepods. In Payne, A. I. L., K. H. Mann, K. H. Brink and R. Hillborn (eds), Benguela Trophic Functioning. South African J. mar. Sci. 12: 561–584.

    Google Scholar 

  • Walker, D. R. and W. T. Peterson, 1991. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela upwelling system in April 1988. S. Afr. J. mar. Sci. I I: 289–305.

    Google Scholar 

  • Welsh, B. L., 1992. Phsical oceanography of Long Island Sound: an ecological perspective. Univ. of Connecticut plenary paper from Long Island Sound scientific conference Oct. 23–24. 1992. proceedings, Connecticut Sea Grant Publication.

    Google Scholar 

  • Welsh, B. L., R. I. Welsh and M. L. Digiacomo-Cohen. 1995. Quantifying hypoxia and anoxia in Long Island Sound. In Dyer. K. R. and R. J. Orth (eds), Changes in Fluxes in Estuaries. Olsen and Olsen International Symposium Series: 131–137.

    Google Scholar 

  • Welsh, B. L. and F. C. Eller, 1991. Mechanisms controlling summertime oxygen depletion in western Long Island Sound. Estuaries 14: 265–278.

    Google Scholar 

  • Wheeler. P. A. and D. L. Kirchman, 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr. 31(5): 998–1009.

    Google Scholar 

  • White. J. R. and M. R. Roman, 1992. Egg production by the calanoid copepod Acartia tossa in the mesohaline Chesapeake Bay: the importance of food resources and temperature. Mar. Ecol. Prog. Ser. 86: 239–249.

    Google Scholar 

  • Wikfors, G. H., J. W. Twarog and R. Ukeles, 1984. Influence of chemical composition of algal food sources on growth of juvenile oysters, Crassostrea virginica. Biol. Bull. 167: 251–263.

    Google Scholar 

  • Wikner, J. and A. Hagstom, 1988. Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the marine environment. Mar. Ecol. Prog. Ser. 47: 137–145.

    Google Scholar 

  • Yentsch, C. S. and J. H. Ryther, 1959. Relative significance of the net phytoplankton and nanoplankton in the waters of Vineyard Sound. J. Cons. Perm. Int. Exp. Mer. 24: 231–238.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical analysis. Prentice Hall Inc. 718 pp.

    Google Scholar 

  • Zeuthen, E., 1943. A cartesian diver micro-respirometer with a gas volume of 0.1 µl. Respiration measurements with an experimental error of 2 x 10–5 µl. C.R. Tray. Lab. ( Carlsberg ) 24: 479–518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Capriulo, G.M., Smith, G., Troy, R., Wikfors, G.H., Pellet, J., Yarish, C. (2002). The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication. In: Orive, E., Elliott, M., de Jonge, V.N. (eds) Nutrients and Eutrophication in Estuaries and Coastal Waters. Developments in Hydrobiology, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2464-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2464-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6123-2

  • Online ISBN: 978-94-017-2464-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics