Skip to main content

Optical Charging of Self-Assembled InAs Quantum Dots

  • Chapter
  • 457 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 81))

Abstract

In this paper we describe the results of spectrally resolved photo-resistance investigations of optically induced charge storage in self-assembled InAs quantum dots. The results obtained demonstrate that, following resonant photo-excitation of the dots, excitons can be selectively ionised leaving either electrons or holes stored. This charge is sensed remotely using a density tuneable 2D electron - hole system and is shown to remain stored over very long timescales (>8 hours) at elevated temperature (~150K). By analysing the temporal dependence of the charge storage effect, the optical absorption strength of the quantum dots is estimated to be ~3.5x10-5. The potential operation of the devices investigated as highly sensitive photo-transistors or a basic optical memory element is suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For example: D. Leonard, M. Krishnamurty, C. M. Reaves, S. P. DenBaars, and P. M. Petroff, Appl. Phys Lett. 63 3203 (1993).

    Article  ADS  Google Scholar 

  2. S. Muto. Jpn. J. Appl. Phys. 34 L210 (1995).

    Article  ADS  Google Scholar 

  3. L. Zhuang, L. Guo and S.Y. Chou, Appl. Phys. Lett. 72, 1205 (1998).

    Article  ADS  Google Scholar 

  4. H. Yusa and H. Sakaki, Appl. Phys. Lett. 70 345 (1997).

    Article  ADS  Google Scholar 

  5. K Imamura, Y. Sugiyama, Y. Nakata, S. Muto, and N Yokoyama, Jpn. J. Appl. Phys 34 L1445 (1995).

    Article  ADS  Google Scholar 

  6. J.J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Böhm and G. Abstreiter, Appl. Phys. Lett. 73, 2618, (1998).

    Article  ADS  Google Scholar 

  7. A. J. Shields, M. P. O’Sullivan, I. Farrer, D. A. Ritchie, K. Cooper, C. L. Foden and M. Pepper, “Optically Induced Bistability in the Mobility of a 2DEG Coupled to a Layer of Quantum Dots” Submitted to Phys. Rev. B (1999).

    Google Scholar 

  8. H. Sakaki, G. Yusa, T. Someya, Y. Ohno, T. Noda, H. Akiyama, Y. Kadoya, and H Noge, Appl. Phys. Lett. 67 3444 (1995).

    Article  ADS  Google Scholar 

  9. E. Ribeiro, E. Miller, T. Heinzel, H. Auderset, K. Ensslin, G. Medeiros-Ribeiro, and P M Petroff, Phys. Rev. B58 1506 (1998).

    ADS  Google Scholar 

  10. P. W. Fry, I. E. Itskevitch, D. J. Mowbray, M. S. Skolnick, J. A. Barker, E. P. O. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Kafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clarke, Submitted to Phys Rev. Lett.

    Google Scholar 

  11. D. J. Chadi and K. J. Chang, Phys. Rev. Lett. 61 7 873 (1988).

    Article  ADS  Google Scholar 

  12. L. Chu, M. Arzberger, G. Böhm and G. Abstreiter, Journal of Applied Physics 85 2355 (1999).

    Article  ADS  Google Scholar 

  13. For T<100K, both samples-A and B exhibit an additional persistent photo-response, the contribution of which becomes stronger as the temperature decreases. These effects are completely absent at T=145K, and the observed photo-response arises solely from charge storage in the QD layer.

    Google Scholar 

  14. The samples were typically reset by passing between Ipn=1–10μA for times between 100–300ms.

    Google Scholar 

  15. We note that the form of the excitation cycle for Eex=1059meV is representative of the measured response to higher Ea,, up to 1250meV whilst the Eex 1016meV cycle typifies the lower excitation energy response

    Google Scholar 

  16. S. Raymond, P. J. Poole, S. Fafard, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, P. M. Petroff, and J. L. Merz, Phys. Rev. B54 11548 (1996).

    ADS  Google Scholar 

  17. R. J. Warburton, B. T. Miller, C. S. Dürr, C. Bödefeld, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, and S. Haunt, Phys. Rev. B58 16221 (1998).

    ADS  Google Scholar 

  18. Using simple electrostatic arguments, this factor may be related simply to the separation from the 2D electron channel of the dot layer (\( {\ell _1} \) ) and p-contact (\( {\ell _2} \) ) respectively i.e. \( f = {\left( {1 - \frac{{{\ell _2}}}{{{\ell _1}}}} \right)^{ - 1}} \)

    Google Scholar 

  19. For our sample we expect that the n-channel mobility is controlled by optical phonon and ionised impurity scattering at 145K. Furthermore, the QD layer is separated by 50nm from the n-channel and has in ref 8, for a similar structure, been shown not to strongly perturb the channel mobility. Thus, the strongest effect on the channel conductivity is expected to arise from the reduction of the 020.

    Google Scholar 

  20. Using f=0.8 and μ=8000 cm2/Vs.

    Google Scholar 

  21. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff. Phys Rev. Lett. 79 5282 (1997).

    Article  ADS  Google Scholar 

  22. For the electron storage sample, the strength of the observed photoeffect reduces for T>170K, and is not observed for T>230K.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heinrich, D. et al. (2000). Optical Charging of Self-Assembled InAs Quantum Dots. In: Sadowski, M.L., Potemski, M., Grynberg, M. (eds) Optical Properties of Semiconductor Nanostructures. NATO Science Series, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4158-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4158-1_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6317-0

  • Online ISBN: 978-94-011-4158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics