Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 222))

Abstract

The enhancement of the solid phase epitaxial growth (SPEG) rate in Si and Ge by hydrostatic pressure, and the reduction in the rate by uniaxial compression, place severe constraints on the kinds of point defects that can be responsible for thermal SPEG. These measurements are interpreted in terms of an activation strain tensor, the nonhydrostatic analogue of the activation volume, which results from an extension of transition state theory to nonhydrostatic stress states. These results and those of other experiments allow us to rule out all mechanisms in which the rate-limiting step is thermal generation of point defects in the bulk of either phase, and the migration of these defects to the crystal-amorphous interface. All experimental results are semi-quantitatively consistent with the Spaepen-Turnbull interfacial dangling bond mechanism. The structural aspects of the Williams-Elliman interfacial kink site model are shown to be a special case of the dangling bond mechanism. The electronic aspect of the Williams-Elliman model has been generalized to take into account more recent experiments on the doping-dependence of the SPEG rate. It is compared to the fractional ionization model of Walser and Jeon. They both account for the enhancements due to low, but not high, dopant concentrations. The relevance to models for the effects of ion irradiation on SPEG is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Csepregi, J.W. Mayer, and T.W. Sigmon, Phys. Lett. A 54, 157 (1975).

    Article  Google Scholar 

  2. L. Csepregi, R.P. Kullen, J.W. Mayer, and T.W. Sigmon, Solid State Commun. 21, 1019 (1977).

    Article  CAS  Google Scholar 

  3. G.L. Olson and J.A. Roth, Mater. Sci. Reports 3, 1 (1988).

    Article  CAS  Google Scholar 

  4. M.G. Grimaldi, M. Maenpaa, B.M. Paine, M.-A. Nicolet, S.S. Lau, and W.F. Tseng, J. Appl. Phys. 52, 1351 (1981).

    Article  CAS  Google Scholar 

  5. E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, and D.C. Jacobson, J. Appl. Phys. 57, 1795 (1985).

    Article  CAS  Google Scholar 

  6. I. Suni, G. Goltz, M.-A. Nicolet, and S.S. Lau, Thin Solid Films 93, 171 (1982).

    Article  CAS  Google Scholar 

  7. J. Linnros, B. Svensson, and G. Holmden, Phys. Rev. B30, 3629 (1984).

    Google Scholar 

  8. J.S. Williams, R.G. Elliman, W.L. Brown, and T.E. Seidel, Phys. Rev. Lett. 55, 1482 (1985).

    Article  CAS  Google Scholar 

  9. G. Lulli, P.G. Merli, and M.V. Antisari, MRS Symp. Proc. 100, 375 (1988).

    Article  CAS  Google Scholar 

  10. A. La Ferla, E. Rimini, S. Cannavo, and G. Ferla, MRS Symp. Proc. 100, 381 (1988).

    Article  Google Scholar 

  11. F. Priolo, A. La Ferla, and E. Rimini, J. Mat. Res. 3, 1212 (1988).

    Article  CAS  Google Scholar 

  12. F. Spaepen and D. Turnbull, AIP Conf. Proc. 50, 73 (1979).

    Article  CAS  Google Scholar 

  13. J.S. Williams and R.G. Elliman, Phys. Rev. Lett. 51, 1069 (1983).

    Article  CAS  Google Scholar 

  14. J. Narayan, J. Appl. Phys. 53, 8607 (1982).

    Article  CAS  Google Scholar 

  15. L.E. Mosley and M.A. Paesler, Appl. Phys. Lett. 45, 86 (1984).

    Article  CAS  Google Scholar 

  16. S.T. Pantelides, MRS Symp. Proc. 100, 387 (1988).

    Article  CAS  Google Scholar 

  17. C. Licoppe and Y.I. Nissim, J. Appl. Phys. 59, 432 (1986).

    Article  CAS  Google Scholar 

  18. M.J. Aziz, P.C. Sabin, and G.-Q. Lu, Phys. Rev. B1, in press, 1 November 1991.

    Google Scholar 

  19. G.-Q. Lu, E. Nygren, and M.J. Aziz, J. Appl. Phys., in press 15 November 1991.

    Google Scholar 

  20. R.M. Walser and Y.-J. Jeon, Mat. Res. Soc. Symp. Proc. 205 (in press, 1991).

    Google Scholar 

  21. A.L. Greer, J. Non-Crystalline Solids 61/62. 737 (1984).

    Article  Google Scholar 

  22. B. Park, Ph.D. Thesis, Harvard University (1989).

    Google Scholar 

  23. E. Nygren, B. Park, L.M. Goldman, and F. Spaepen, Appl. Phys. Lett. 56, 2094 (1990).

    Article  CAS  Google Scholar 

  24. E.P. Donovan, F. Spaepen, J.M. Poate, D.C. Jacobson, Appl. Phys. Lett. 55, 1516 (1989).

    Article  CAS  Google Scholar 

  25. M. Werner, H. Mehrer, and H.D. Hochheimer, Phys. Rev. B32, 3930 (1985).

    Google Scholar 

  26. A. Antonelli and J. Bernholc, Phys. Rev. B 40, 10643 (1989).

    Article  CAS  Google Scholar 

  27. A. Witvrouw and F. Spaepen, Mater. Res. Soc. Symp. Proc. 205 (in press, 1991).

    Google Scholar 

  28. P. Sabin and A. Witvrouw (unpublished).

    Google Scholar 

  29. V.J. Fratello, J.F. Hays, F. Spaepen, and D. Turnbull, J. Appl. Phys. 51, 6160 (1980).

    Article  CAS  Google Scholar 

  30. O. Shimomura, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, J. Fukushima, and H. Endo, Philos. Mag. 29, 547 (1974).

    Article  CAS  Google Scholar 

  31. R.G. Elliman, S.T. Johnson, K.T. Short, and J.S. Williams, Mat. Res. Soc. Symp. Proc. 27, 229 (1984).

    Article  CAS  Google Scholar 

  32. W.W. Park, M.F. Becker, and R.M. Walser, Appl. Phys. Lett. 52, 1517 (1988).

    Article  CAS  Google Scholar 

  33. Y.J. Jeon, W.W. Park, M.F. Becker, and R.M. Walser, Mater. Res. Soc. Symp. Proc. 128, 551 (1989).

    Article  CAS  Google Scholar 

  34. K.A. Jackson, J. Mater. Res. 3, 1218 (1988).

    Article  CAS  Google Scholar 

  35. E. Nygren (unpublished).

    Google Scholar 

  36. J. Linnros and G. Holmen, J. Appl. Phys. 59, 1513 (1986).

    Article  CAS  Google Scholar 

  37. R.G. Elliman, J.S. Williams, W.L. Brown, A. Leiberich, D.M. Maher, and R.V. Knoell, Nucl. Instrum. Meth. B19/20, 435 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aziz, M.J. (1992). The Mechanism of Solid Phase Epitaxy. In: Coffa, S., Priolo, F., Rimini, E., Poate, J.M. (eds) Crucial Issues in Semiconductor Materials and Processing Technologies. NATO ASI Series, vol 222. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2714-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2714-1_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5203-0

  • Online ISBN: 978-94-011-2714-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics